ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2706 by tim, Thu Apr 13 04:47:47 2006 UTC vs.
Revision 2721 by tim, Thu Apr 20 03:42:21 2006 UTC

# Line 570 | Line 570 | The free rigid body is an example of Poisson system (a
570   \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571   \end{equation}
572   The most obvious change being that matrix $J$ now depends on $x$.
573 The free rigid body is an example of Poisson system (actually a
574 Lie-Poisson system) with Hamiltonian function of angular kinetic
575 energy.
576 \begin{equation}
577 J(\pi ) = \left( {\begin{array}{*{20}c}
578   0 & {\pi _3 } & { - \pi _2 }  \\
579   { - \pi _3 } & 0 & {\pi _1 }  \\
580   {\pi _2 } & { - \pi _1 } & 0  \\
581 \end{array}} \right)
582 \end{equation}
583
584 \begin{equation}
585 H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
586 }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
587 \end{equation}
573  
574   \subsection{\label{introSection:exactFlow}Exact Flow}
575  
# Line 837 | Line 822 | q(\Delta t)} \right]. %
822   %
823   q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
824   q(\Delta t)} \right]. %
825 < \label{introEquation:positionVerlet1}
825 > \label{introEquation:positionVerlet2}
826   \end{align}
827  
828   \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
# Line 898 | Line 883 | As a special discipline of molecular modeling, Molecul
883  
884   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
885  
886 < As a special discipline of molecular modeling, Molecular dynamics
887 < has proven to be a powerful tool for studying the functions of
888 < biological systems, providing structural, thermodynamic and
889 < dynamical information.
886 > As one of the principal tools of molecular modeling, Molecular
887 > dynamics has proven to be a powerful tool for studying the functions
888 > of biological systems, providing structural, thermodynamic and
889 > dynamical information. The basic idea of molecular dynamics is that
890 > macroscopic properties are related to microscopic behavior and
891 > microscopic behavior can be calculated from the trajectories in
892 > simulations. For instance, instantaneous temperature of an
893 > Hamiltonian system of $N$ particle can be measured by
894 > \[
895 > T(t) = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
896 > \]
897 > where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
898 > respectively, $f$ is the number of degrees of freedom, and $k_B$ is
899 > the boltzman constant.
900  
901 < \subsection{\label{introSec:mdInit}Initialization}
901 > A typical molecular dynamics run consists of three essential steps:
902 > \begin{enumerate}
903 >  \item Initialization
904 >    \begin{enumerate}
905 >    \item Preliminary preparation
906 >    \item Minimization
907 >    \item Heating
908 >    \item Equilibration
909 >    \end{enumerate}
910 >  \item Production
911 >  \item Analysis
912 > \end{enumerate}
913 > These three individual steps will be covered in the following
914 > sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
915 > initialization of a simulation. Sec.~\ref{introSec:production} will
916 > discusses issues in production run, including the force evaluation
917 > and the numerical integration schemes of the equations of motion .
918 > Sec.~\ref{introSection:Analysis} provides the theoretical tools for
919 > trajectory analysis.
920  
921 < \subsection{\label{introSec:forceEvaluation}Force Evaluation}
921 > \subsection{\label{introSec:initialSystemSettings}Initialization}
922  
923 < \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
923 > \subsubsection{Preliminary preparation}
924 >
925 > When selecting the starting structure of a molecule for molecular
926 > simulation, one may retrieve its Cartesian coordinates from public
927 > databases, such as RCSB Protein Data Bank \textit{etc}. Although
928 > thousands of crystal structures of molecules are discovered every
929 > year, many more remain unknown due to the difficulties of
930 > purification and crystallization. Even for the molecule with known
931 > structure, some important information is missing. For example, the
932 > missing hydrogen atom which acts as donor in hydrogen bonding must
933 > be added. Moreover, in order to include electrostatic interaction,
934 > one may need to specify the partial charges for individual atoms.
935 > Under some circumstances, we may even need to prepare the system in
936 > a special setup. For instance, when studying transport phenomenon in
937 > membrane system, we may prepare the lipids in bilayer structure
938 > instead of placing lipids randomly in solvent, since we are not
939 > interested in self-aggregation and it takes a long time to happen.
940 >
941 > \subsubsection{Minimization}
942 >
943 > It is quite possible that some of molecules in the system from
944 > preliminary preparation may be overlapped with each other. This
945 > close proximity leads to high potential energy which consequently
946 > jeopardizes any molecular dynamics simulations. To remove these
947 > steric overlaps, one typically performs energy minimization to find
948 > a more reasonable conformation. Several energy minimization methods
949 > have been developed to exploit the energy surface and to locate the
950 > local minimum. While converging slowly near the minimum, steepest
951 > descent method is extremely robust when systems are far from
952 > harmonic. Thus, it is often used to refine structure from
953 > crystallographic data. Relied on the gradient or hessian, advanced
954 > methods like conjugate gradient and Newton-Raphson converge rapidly
955 > to a local minimum, while become unstable if the energy surface is
956 > far from quadratic. Another factor must be taken into account, when
957 > choosing energy minimization method, is the size of the system.
958 > Steepest descent and conjugate gradient can deal with models of any
959 > size. Because of the limit of computation power to calculate hessian
960 > matrix and insufficient storage capacity to store them, most
961 > Newton-Raphson methods can not be used with very large models.
962 >
963 > \subsubsection{Heating}
964 >
965 > Typically, Heating is performed by assigning random velocities
966 > according to a Gaussian distribution for a temperature. Beginning at
967 > a lower temperature and gradually increasing the temperature by
968 > assigning greater random velocities, we end up with setting the
969 > temperature of the system to a final temperature at which the
970 > simulation will be conducted. In heating phase, we should also keep
971 > the system from drifting or rotating as a whole. Equivalently, the
972 > net linear momentum and angular momentum of the system should be
973 > shifted to zero.
974 >
975 > \subsubsection{Equilibration}
976 >
977 > The purpose of equilibration is to allow the system to evolve
978 > spontaneously for a period of time and reach equilibrium. The
979 > procedure is continued until various statistical properties, such as
980 > temperature, pressure, energy, volume and other structural
981 > properties \textit{etc}, become independent of time. Strictly
982 > speaking, minimization and heating are not necessary, provided the
983 > equilibration process is long enough. However, these steps can serve
984 > as a means to arrive at an equilibrated structure in an effective
985 > way.
986 >
987 > \subsection{\label{introSection:production}Production}
988 >
989 > \subsubsection{\label{introSec:forceCalculation}The Force Calculation}
990 >
991 > \subsubsection{\label{introSection:integrationSchemes} Integration
992 > Schemes}
993 >
994 > \subsection{\label{introSection:Analysis} Analysis}
995 >
996 > Recently, advanced visualization technique are widely applied to
997 > monitor the motions of molecules. Although the dynamics of the
998 > system can be described qualitatively from animation, quantitative
999 > trajectory analysis are more appreciable. According to the
1000 > principles of Statistical Mechanics,
1001 > Sec.~\ref{introSection:statisticalMechanics}, one can compute
1002 > thermodynamics properties, analyze fluctuations of structural
1003 > parameters, and investigate time-dependent processes of the molecule
1004 > from the trajectories.
1005 >
1006 > \subsubsection{\label{introSection:thermodynamicsProperties}Thermodynamics Properties}
1007 >
1008 > \subsubsection{\label{introSection:structuralProperties}Structural Properties}
1009 >
1010 > Structural Properties of a simple fluid can be described by a set of
1011 > distribution functions. Among these functions,\emph{pair
1012 > distribution function}, also known as \emph{radial distribution
1013 > function}, are of most fundamental importance to liquid-state
1014 > theory. Pair distribution function can be gathered by Fourier
1015 > transforming raw data from a series of neutron diffraction
1016 > experiments and integrating over the surface factor \cite{Powles73}.
1017 > The experiment result can serve as a criterion to justify the
1018 > correctness of the theory. Moreover, various equilibrium
1019 > thermodynamic and structural properties can also be expressed in
1020 > terms of radial distribution function \cite{allen87:csl}.
1021  
1022 + A pair distribution functions $g(r)$ gives the probability that a
1023 + particle $i$ will be located at a distance $r$ from a another
1024 + particle $j$ in the system
1025 + \[
1026 + g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1027 + \ne i} {\delta (r - r_{ij} )} } } \right\rangle.
1028 + \]
1029 + Note that the delta function can be replaced by a histogram in
1030 + computer simulation. Figure
1031 + \ref{introFigure:pairDistributionFunction} shows a typical pair
1032 + distribution function for the liquid argon system. The occurrence of
1033 + several peaks in the plot of $g(r)$ suggests that it is more likely
1034 + to find particles at certain radial values than at others. This is a
1035 + result of the attractive interaction at such distances. Because of
1036 + the strong repulsive forces at short distance, the probability of
1037 + locating particles at distances less than about 2.5{\AA} from each
1038 + other is essentially zero.
1039 +
1040 + %\begin{figure}
1041 + %\centering
1042 + %\includegraphics[width=\linewidth]{pdf.eps}
1043 + %\caption[Pair distribution function for the liquid argon
1044 + %]{Pair distribution function for the liquid argon}
1045 + %\label{introFigure:pairDistributionFunction}
1046 + %\end{figure}
1047 +
1048 + \subsubsection{\label{introSection:timeDependentProperties}Time-dependent
1049 + Properties}
1050 +
1051 + Time-dependent properties are usually calculated using \emph{time
1052 + correlation function}, which correlates random variables $A$ and $B$
1053 + at two different time
1054 + \begin{equation}
1055 + C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1056 + \label{introEquation:timeCorrelationFunction}
1057 + \end{equation}
1058 + If $A$ and $B$ refer to same variable, this kind of correlation
1059 + function is called \emph{auto correlation function}. One example of
1060 + auto correlation function is velocity auto-correlation function
1061 + which is directly related to transport properties of molecular
1062 + liquids. Another example is the calculation of the IR spectrum
1063 + through a Fourier transform of the dipole autocorrelation function.
1064 +
1065   \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1066  
1067   Rigid bodies are frequently involved in the modeling of different
# Line 942 | Line 1095 | rotation matrix $A$ and re-formulating Hamiltonian's e
1095   The break through in geometric literature suggests that, in order to
1096   develop a long-term integration scheme, one should preserve the
1097   symplectic structure of the flow. Introducing conjugate momentum to
1098 < rotation matrix $A$ and re-formulating Hamiltonian's equation, a
1098 > rotation matrix $Q$ and re-formulating Hamiltonian's equation, a
1099   symplectic integrator, RSHAKE, was proposed to evolve the
1100   Hamiltonian system in a constraint manifold by iteratively
1101 < satisfying the orthogonality constraint $A_t A = 1$. An alternative
1101 > satisfying the orthogonality constraint $Q_T Q = 1$. An alternative
1102   method using quaternion representation was developed by Omelyan.
1103   However, both of these methods are iterative and inefficient. In
1104   this section, we will present a symplectic Lie-Poisson integrator
1105 < for rigid body developed by Dullweber and his coworkers\cite{}.
1105 > for rigid body developed by Dullweber and his
1106 > coworkers\cite{Dullweber1997} in depth.
1107  
954 \subsection{\label{introSection:lieAlgebra}Lie Algebra}
955
1108   \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
1109 <
1109 > The motion of the rigid body is Hamiltonian with the Hamiltonian
1110 > function
1111   \begin{equation}
1112   H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1113   V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
# Line 975 | Line 1128 | Q^t PJ^{ - 1}  + J^{ - 1} P^t Q = 0 . \\
1128   Differentiating \ref{introEquation:orthogonalConstraint} and using
1129   Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
1130   \begin{equation}
1131 < Q^t PJ^{ - 1}  + J^{ - 1} P^t Q = 0 . \\
1131 > Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
1132   \label{introEquation:RBFirstOrderConstraint}
1133   \end{equation}
1134  
# Line 987 | Line 1140 | the equations of motion,
1140   \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1141   \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1142   \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1143 < \frac{{dP}}{{dt}} =  - \nabla _q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
1143 > \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
1144   \end{array}
1145   \]
1146  
1147 + In general, there are two ways to satisfy the holonomic constraints.
1148 + We can use constraint force provided by lagrange multiplier on the
1149 + normal manifold to keep the motion on constraint space. Or we can
1150 + simply evolve the system in constraint manifold. The two method are
1151 + proved to be equivalent. The holonomic constraint and equations of
1152 + motions define a constraint manifold for rigid body
1153 + \[
1154 + M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
1155 + \right\}.
1156 + \]
1157  
1158 + Unfortunately, this constraint manifold is not the cotangent bundle
1159 + $T_{\star}SO(3)$. However, it turns out that under symplectic
1160 + transformation, the cotangent space and the phase space are
1161 + diffeomorphic. Introducing
1162   \[
1163 < M = \left\{ {(Q,P):Q^T Q = 1,Q^t PJ^{ - 1}  + J^{ - 1} P^t Q = 0}
997 < \right\} .
1163 > \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1164   \]
1165 + the mechanical system subject to a holonomic constraint manifold $M$
1166 + can be re-formulated as a Hamiltonian system on the cotangent space
1167 + \[
1168 + T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1169 + 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1170 + \]
1171  
1172 < \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
1173 <
1174 < \subsection{\label{introSection:symplecticDiscretizationRB}Symplectic Discretization of Euler Equations}
1003 <
1004 <
1005 < \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1006 <
1007 < \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
1008 <
1009 < \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
1010 <
1172 > For a body fixed vector $X_i$ with respect to the center of mass of
1173 > the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1174 > given as
1175   \begin{equation}
1176 < H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1013 < \label{introEquation:bathGLE}
1176 > X_i^{lab} = Q X_i + q.
1177   \end{equation}
1178 < where $H_B$ is harmonic bath Hamiltonian,
1178 > Therefore, potential energy $V(q,Q)$ is defined by
1179   \[
1180 < H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1018 < }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
1180 > V(q,Q) = V(Q X_0 + q).
1181   \]
1182 < and $\Delta U$ is bilinear system-bath coupling,
1182 > Hence, the force and torque are given by
1183   \[
1184 < \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1184 > \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1185   \]
1186 < Completing the square,
1186 > and
1187   \[
1188 < H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
1027 < {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1028 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1029 < w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
1030 < 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1188 > \nabla _Q V(q,Q) = F(q,Q)X_i^t
1189   \]
1190 < and putting it back into Eq.~\ref{introEquation:bathGLE},
1190 > respectively.
1191 >
1192 > As a common choice to describe the rotation dynamics of the rigid
1193 > body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
1194 > rewrite the equations of motion,
1195 > \begin{equation}
1196 > \begin{array}{l}
1197 > \mathop \Pi \limits^ \bullet   = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda  \\
1198 > \mathop Q\limits^{{\rm{   }} \bullet }  = Q\Pi {\rm{ }}J^{ - 1}  \\
1199 > \end{array}
1200 > \label{introEqaution:RBMotionPI}
1201 > \end{equation}
1202 > , as well as holonomic constraints,
1203   \[
1204 < H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1205 < {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1206 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1207 < w_\alpha ^2 }}x} \right)^2 } \right\}}
1204 > \begin{array}{l}
1205 > \Pi J^{ - 1}  + J^{ - 1} \Pi ^t  = 0 \\
1206 > Q^T Q = 1 \\
1207 > \end{array}
1208   \]
1209 < where
1209 >
1210 > For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1211 > so(3)^ \star$, the hat-map isomorphism,
1212 > \begin{equation}
1213 > v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1214 > {\begin{array}{*{20}c}
1215 >   0 & { - v_3 } & {v_2 }  \\
1216 >   {v_3 } & 0 & { - v_1 }  \\
1217 >   { - v_2 } & {v_1 } & 0  \\
1218 > \end{array}} \right),
1219 > \label{introEquation:hatmapIsomorphism}
1220 > \end{equation}
1221 > will let us associate the matrix products with traditional vector
1222 > operations
1223   \[
1224 < W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1042 < }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1224 > \hat vu = v \times u
1225   \]
1044 Since the first two terms of the new Hamiltonian depend only on the
1045 system coordinates, we can get the equations of motion for
1046 Generalized Langevin Dynamics by Hamilton's equations
1047 \ref{introEquation:motionHamiltonianCoordinate,
1048 introEquation:motionHamiltonianMomentum},
1049 \begin{align}
1050 \dot p &=  - \frac{{\partial H}}{{\partial x}}
1051       &= m\ddot x
1052       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
1053 \label{introEquation:Lp5}
1054 \end{align}
1055 , and
1056 \begin{align}
1057 \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
1058                &= m\ddot x_\alpha
1059                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
1060 \end{align}
1226  
1227 < \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
1227 > Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1228 > matrix,
1229 > \begin{equation}
1230 > (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ \bullet  ^T
1231 > ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1232 > - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1233 > (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1234 > \end{equation}
1235 > Since $\Lambda$ is symmetric, the last term of Equation
1236 > \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1237 > multiplier $\Lambda$ is absent from the equations of motion. This
1238 > unique property eliminate the requirement of iterations which can
1239 > not be avoided in other methods\cite{}.
1240  
1241 + Applying hat-map isomorphism, we obtain the equation of motion for
1242 + angular momentum on body frame
1243 + \begin{equation}
1244 + \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1245 + F_i (r,Q)} \right) \times X_i }.
1246 + \label{introEquation:bodyAngularMotion}
1247 + \end{equation}
1248 + In the same manner, the equation of motion for rotation matrix is
1249 + given by
1250   \[
1251 < L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
1251 > \dot Q = Qskew(I^{ - 1} \pi )
1252   \]
1253  
1254 + \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1255 + Lie-Poisson Integrator for Free Rigid Body}
1256 +
1257 + If there is not external forces exerted on the rigid body, the only
1258 + contribution to the rotational is from the kinetic potential (the
1259 + first term of \ref{ introEquation:bodyAngularMotion}). The free
1260 + rigid body is an example of Lie-Poisson system with Hamiltonian
1261 + function
1262 + \begin{equation}
1263 + T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1264 + \label{introEquation:rotationalKineticRB}
1265 + \end{equation}
1266 + where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1267 + Lie-Poisson structure matrix,
1268 + \begin{equation}
1269 + J(\pi ) = \left( {\begin{array}{*{20}c}
1270 +   0 & {\pi _3 } & { - \pi _2 }  \\
1271 +   { - \pi _3 } & 0 & {\pi _1 }  \\
1272 +   {\pi _2 } & { - \pi _1 } & 0  \\
1273 + \end{array}} \right)
1274 + \end{equation}
1275 + Thus, the dynamics of free rigid body is governed by
1276 + \begin{equation}
1277 + \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi )
1278 + \end{equation}
1279 +
1280 + One may notice that each $T_i^r$ in Equation
1281 + \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1282 + instance, the equations of motion due to $T_1^r$ are given by
1283 + \begin{equation}
1284 + \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1285 + \label{introEqaution:RBMotionSingleTerm}
1286 + \end{equation}
1287 + where
1288 + \[ R_1  = \left( {\begin{array}{*{20}c}
1289 +   0 & 0 & 0  \\
1290 +   0 & 0 & {\pi _1 }  \\
1291 +   0 & { - \pi _1 } & 0  \\
1292 + \end{array}} \right).
1293 + \]
1294 + The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1295   \[
1296 < L(x + y) = L(x) + L(y)
1296 > \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1297 > Q(0)e^{\Delta tR_1 }
1298   \]
1299 <
1299 > with
1300   \[
1301 < L(ax) = aL(x)
1301 > e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1302 >   0 & 0 & 0  \\
1303 >   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1304 >   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1305 > \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1306   \]
1307 <
1307 > To reduce the cost of computing expensive functions in $e^{\Delta
1308 > tR_1 }$, we can use Cayley transformation,
1309   \[
1310 < L(\dot x) = pL(x) - px(0)
1310 > e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1311 > )
1312   \]
1313 + The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1314 + manner.
1315  
1316 + In order to construct a second-order symplectic method, we split the
1317 + angular kinetic Hamiltonian function can into five terms
1318   \[
1319 < L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
1319 > T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1320 > ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1321 > (\pi _1 )
1322 > \].
1323 > Concatenating flows corresponding to these five terms, we can obtain
1324 > an symplectic integrator,
1325 > \[
1326 > \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1327 > \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1328 > \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1329 > _1 }.
1330   \]
1331  
1332 + The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1333 + $F(\pi )$ and $G(\pi )$ is defined by
1334   \[
1335 < L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
1335 > \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1336 > )
1337   \]
1338 <
1339 < Some relatively important transformation,
1338 > If the Poisson bracket of a function $F$ with an arbitrary smooth
1339 > function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1340 > conserved quantity in Poisson system. We can easily verify that the
1341 > norm of the angular momentum, $\parallel \pi
1342 > \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1343 > \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1344 > then by the chain rule
1345   \[
1346 < L(\cos at) = \frac{p}{{p^2  + a^2 }}
1346 > \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1347 > }}{2})\pi
1348   \]
1349 + Thus $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel \pi
1350 + \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1351 + Lie-Poisson integrator is found to be extremely efficient and stable
1352 + which can be explained by the fact the small angle approximation is
1353 + used and the norm of the angular momentum is conserved.
1354  
1355 + \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1356 + Splitting for Rigid Body}
1357 +
1358 + The Hamiltonian of rigid body can be separated in terms of kinetic
1359 + energy and potential energy,
1360   \[
1361 < L(\sin at) = \frac{a}{{p^2  + a^2 }}
1361 > H = T(p,\pi ) + V(q,Q)
1362   \]
1363 <
1363 > The equations of motion corresponding to potential energy and
1364 > kinetic energy are listed in the below table,
1365 > \begin{center}
1366 > \begin{tabular}{|l|l|}
1367 >  \hline
1368 >  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1369 >  Potential & Kinetic \\
1370 >  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1371 >  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1372 >  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1373 >  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1374 >  \hline
1375 > \end{tabular}
1376 > \end{center}
1377 > A second-order symplectic method is now obtained by the composition
1378 > of the flow maps,
1379   \[
1380 < L(1) = \frac{1}{p}
1380 > \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1381 > _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1382   \]
1383 <
1384 < First, the bath coordinates,
1383 > Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1384 > sub-flows which corresponding to force and torque respectively,
1385   \[
1386 < p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
1387 < _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
1105 < }}L(x)
1386 > \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1387 > _{\Delta t/2,\tau }.
1388   \]
1389 + Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1390 + $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1391 + order inside $\varphi _{\Delta t/2,V}$ does not matter.
1392 +
1393 + Furthermore, kinetic potential can be separated to translational
1394 + kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1395 + \begin{equation}
1396 + T(p,\pi ) =T^t (p) + T^r (\pi ).
1397 + \end{equation}
1398 + where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1399 + defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1400 + corresponding flow maps are given by
1401   \[
1402 < L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
1403 < px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
1402 > \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1403 > _{\Delta t,T^r }.
1404   \]
1405 < Then, the system coordinates,
1406 < \begin{align}
1407 < mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1408 < \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
1409 < }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
1410 < (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
1411 < }}\omega _\alpha ^2 L(x)} \right\}}
1412 < %
1413 < &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1414 < \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
1121 < - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
1122 < - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
1123 < \end{align}
1124 < Then, the inverse transform,
1405 > Finally, we obtain the overall symplectic flow maps for free moving
1406 > rigid body
1407 > \begin{equation}
1408 > \begin{array}{c}
1409 > \varphi _{\Delta t}  = \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \\
1410 >  \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \\
1411 >  \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1412 > \end{array}
1413 > \label{introEquation:overallRBFlowMaps}
1414 > \end{equation}
1415  
1416 + \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1417 + As an alternative to newtonian dynamics, Langevin dynamics, which
1418 + mimics a simple heat bath with stochastic and dissipative forces,
1419 + has been applied in a variety of studies. This section will review
1420 + the theory of Langevin dynamics simulation. A brief derivation of
1421 + generalized Langevin equation will be given first. Follow that, we
1422 + will discuss the physical meaning of the terms appearing in the
1423 + equation as well as the calculation of friction tensor from
1424 + hydrodynamics theory.
1425 +
1426 + \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1427 +
1428 + Harmonic bath model, in which an effective set of harmonic
1429 + oscillators are used to mimic the effect of a linearly responding
1430 + environment, has been widely used in quantum chemistry and
1431 + statistical mechanics. One of the successful applications of
1432 + Harmonic bath model is the derivation of Deriving Generalized
1433 + Langevin Dynamics. Lets consider a system, in which the degree of
1434 + freedom $x$ is assumed to couple to the bath linearly, giving a
1435 + Hamiltonian of the form
1436 + \begin{equation}
1437 + H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1438 + \label{introEquation:bathGLE}.
1439 + \end{equation}
1440 + Here $p$ is a momentum conjugate to $q$, $m$ is the mass associated
1441 + with this degree of freedom, $H_B$ is harmonic bath Hamiltonian,
1442 + \[
1443 + H_B  = \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1444 + }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  \omega _\alpha ^2 }
1445 + \right\}}
1446 + \]
1447 + where the index $\alpha$ runs over all the bath degrees of freedom,
1448 + $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1449 + the harmonic bath masses, and $\Delta U$ is bilinear system-bath
1450 + coupling,
1451 + \[
1452 + \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1453 + \]
1454 + where $g_\alpha$ are the coupling constants between the bath and the
1455 + coordinate $x$. Introducing
1456 + \[
1457 + W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1458 + }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1459 + \] and combining the last two terms in Equation
1460 + \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1461 + Hamiltonian as
1462 + \[
1463 + H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1464 + {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1465 + w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1466 + w_\alpha ^2 }}x} \right)^2 } \right\}}
1467 + \]
1468 + Since the first two terms of the new Hamiltonian depend only on the
1469 + system coordinates, we can get the equations of motion for
1470 + Generalized Langevin Dynamics by Hamilton's equations
1471 + \ref{introEquation:motionHamiltonianCoordinate,
1472 + introEquation:motionHamiltonianMomentum},
1473 + \begin{equation}
1474 + m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1475 + \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   -
1476 + \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)},
1477 + \label{introEquation:coorMotionGLE}
1478 + \end{equation}
1479 + and
1480 + \begin{equation}
1481 + m\ddot x_\alpha   =  - m_\alpha  w_\alpha ^2 \left( {x_\alpha   -
1482 + \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right).
1483 + \label{introEquation:bathMotionGLE}
1484 + \end{equation}
1485 +
1486 + In order to derive an equation for $x$, the dynamics of the bath
1487 + variables $x_\alpha$ must be solved exactly first. As an integral
1488 + transform which is particularly useful in solving linear ordinary
1489 + differential equations, Laplace transform is the appropriate tool to
1490 + solve this problem. The basic idea is to transform the difficult
1491 + differential equations into simple algebra problems which can be
1492 + solved easily. Then applying inverse Laplace transform, also known
1493 + as the Bromwich integral, we can retrieve the solutions of the
1494 + original problems.
1495 +
1496 + Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1497 + transform of f(t) is a new function defined as
1498 + \[
1499 + L(f(t)) \equiv F(p) = \int_0^\infty  {f(t)e^{ - pt} dt}
1500 + \]
1501 + where  $p$ is real and  $L$ is called the Laplace Transform
1502 + Operator. Below are some important properties of Laplace transform
1503 + \begin{equation}
1504 + \begin{array}{c}
1505 + L(x + y) = L(x) + L(y) \\
1506 + L(ax) = aL(x) \\
1507 + L(\dot x) = pL(x) - px(0) \\
1508 + L(\ddot x) = p^2 L(x) - px(0) - \dot x(0) \\
1509 + L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p) \\
1510 + \end{array}
1511 + \end{equation}
1512 +
1513 + Applying Laplace transform to the bath coordinates, we obtain
1514 + \[
1515 + \begin{array}{c}
1516 + p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) \\
1517 + L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }} \\
1518 + \end{array}
1519 + \]
1520 + By the same way, the system coordinates become
1521 + \[
1522 + \begin{array}{c}
1523 + mL(\ddot x) =  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1524 +  - \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0) - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}  \\
1525 + \end{array}
1526 + \]
1527 +
1528 + With the help of some relatively important inverse Laplace
1529 + transformations:
1530 + \[
1531 + \begin{array}{c}
1532 + L(\cos at) = \frac{p}{{p^2  + a^2 }} \\
1533 + L(\sin at) = \frac{a}{{p^2  + a^2 }} \\
1534 + L(1) = \frac{1}{p} \\
1535 + \end{array}
1536 + \]
1537 + , we obtain
1538   \begin{align}
1539   m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
1540   \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
# Line 1142 | Line 1554 | t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  =
1554   (\omega _\alpha  t)} \right\}}
1555   \end{align}
1556  
1557 + Introducing a \emph{dynamic friction kernel}
1558   \begin{equation}
1559 + \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1560 + }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1561 + \label{introEquation:dynamicFrictionKernelDefinition}
1562 + \end{equation}
1563 + and \emph{a random force}
1564 + \begin{equation}
1565 + R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1566 + - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1567 + \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1568 + (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t),
1569 + \label{introEquation:randomForceDefinition}
1570 + \end{equation}
1571 + the equation of motion can be rewritten as
1572 + \begin{equation}
1573   m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1574   (t)\dot x(t - \tau )d\tau }  + R(t)
1575   \label{introEuqation:GeneralizedLangevinDynamics}
1576   \end{equation}
1577 < %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1578 < %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
1577 > which is known as the \emph{generalized Langevin equation}.
1578 >
1579 > \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}Random Force and Dynamic Friction Kernel}
1580 >
1581 > One may notice that $R(t)$ depends only on initial conditions, which
1582 > implies it is completely deterministic within the context of a
1583 > harmonic bath. However, it is easy to verify that $R(t)$ is totally
1584 > uncorrelated to $x$ and $\dot x$,
1585   \[
1586 < \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1587 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1586 > \begin{array}{l}
1587 > \left\langle {x(t)R(t)} \right\rangle  = 0, \\
1588 > \left\langle {\dot x(t)R(t)} \right\rangle  = 0. \\
1589 > \end{array}
1590   \]
1591 < For an infinite harmonic bath, we can use the spectral density and
1592 < an integral over frequencies.
1591 > This property is what we expect from a truly random process. As long
1592 > as the model, which is gaussian distribution in general, chosen for
1593 > $R(t)$ is a truly random process, the stochastic nature of the GLE
1594 > still remains.
1595  
1596 + %dynamic friction kernel
1597 + The convolution integral
1598   \[
1599 < R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1161 < - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1162 < \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1163 < (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
1599 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1600   \]
1601 < The random forces depend only on initial conditions.
1601 > depends on the entire history of the evolution of $x$, which implies
1602 > that the bath retains memory of previous motions. In other words,
1603 > the bath requires a finite time to respond to change in the motion
1604 > of the system. For a sluggish bath which responds slowly to changes
1605 > in the system coordinate, we may regard $\xi(t)$ as a constant
1606 > $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1607 > \[
1608 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = \xi _0 (x(t) - x(0))
1609 > \]
1610 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1611 > \[
1612 > m\ddot x =  - \frac{\partial }{{\partial x}}\left( {W(x) +
1613 > \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1614 > \]
1615 > which can be used to describe dynamic caging effect. The other
1616 > extreme is the bath that responds infinitely quickly to motions in
1617 > the system. Thus, $\xi (t)$ can be taken as a $delta$ function in
1618 > time:
1619 > \[
1620 > \xi (t) = 2\xi _0 \delta (t)
1621 > \]
1622 > Hence, the convolution integral becomes
1623 > \[
1624 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = 2\xi _0 \int_0^t
1625 > {\delta (t)\dot x(t - \tau )d\tau }  = \xi _0 \dot x(t),
1626 > \]
1627 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1628 > \begin{equation}
1629 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1630 > x(t) + R(t) \label{introEquation:LangevinEquation}
1631 > \end{equation}
1632 > which is known as the Langevin equation. The static friction
1633 > coefficient $\xi _0$ can either be calculated from spectral density
1634 > or be determined by Stokes' law for regular shaped particles.A
1635 > briefly review on calculating friction tensor for arbitrary shaped
1636 > particles is given in Sec.~\ref{introSection:frictionTensor}.
1637  
1638   \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1639 < So we can define a new set of coordinates,
1639 >
1640 > Defining a new set of coordinates,
1641   \[
1642   q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1643   ^2 }}x(0)
1644 < \]
1645 < This makes
1644 > \],
1645 > we can rewrite $R(T)$ as
1646   \[
1647 < R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
1647 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}.
1648   \]
1649   And since the $q$ coordinates are harmonic oscillators,
1650   \[
1651 < \begin{array}{l}
1651 > \begin{array}{c}
1652 > \left\langle {q_\alpha ^2 } \right\rangle  = \frac{{kT}}{{m_\alpha  \omega _\alpha ^2 }} \\
1653   \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1654   \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1655 + \left\langle {R(t)R(0)} \right\rangle  = \sum\limits_\alpha  {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle } }  \\
1656 +  = \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t)}  \\
1657 +  = kT\xi (t) \\
1658   \end{array}
1659   \]
1660 <
1185 < \begin{align}
1186 < \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
1187 < {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
1188 < (t)q_\beta  (0)} \right\rangle } }
1189 < %
1190 < &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
1191 < \right\rangle \cos (\omega _\alpha  t)}
1192 < %
1193 < &= kT\xi (t)
1194 < \end{align}
1195 <
1660 > Thus, we recover the \emph{second fluctuation dissipation theorem}
1661   \begin{equation}
1662   \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1663 < \label{introEquation:secondFluctuationDissipation}
1663 > \label{introEquation:secondFluctuationDissipation}.
1664   \end{equation}
1665 + In effect, it acts as a constraint on the possible ways in which one
1666 + can model the random force and friction kernel.
1667  
1201 \section{\label{introSection:hydroynamics}Hydrodynamics}
1202
1668   \subsection{\label{introSection:frictionTensor} Friction Tensor}
1669 < \subsection{\label{introSection:analyticalApproach}Analytical
1670 < Approach}
1671 <
1672 < \subsection{\label{introSection:approximationApproach}Approximation
1673 < Approach}
1674 <
1675 < \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1676 < Body}
1669 > Theoretically, the friction kernel can be determined using velocity
1670 > autocorrelation function. However, this approach become impractical
1671 > when the system become more and more complicate. Instead, various
1672 > approaches based on hydrodynamics have been developed to calculate
1673 > the friction coefficients. The friction effect is isotropic in
1674 > Equation, \zeta can be taken as a scalar. In general, friction
1675 > tensor \Xi is a $6\times 6$ matrix given by
1676 > \[
1677 > \Xi  = \left( {\begin{array}{*{20}c}
1678 >   {\Xi _{}^{tt} } & {\Xi _{}^{rt} }  \\
1679 >   {\Xi _{}^{tr} } & {\Xi _{}^{rr} }  \\
1680 > \end{array}} \right).
1681 > \]
1682 > Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1683 > tensor and rotational resistance (friction) tensor respectively,
1684 > while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1685 > {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1686 > particle moves in a fluid, it may experience friction force or
1687 > torque along the opposite direction of the velocity or angular
1688 > velocity,
1689 > \[
1690 > \left( \begin{array}{l}
1691 > F_R  \\
1692 > \tau _R  \\
1693 > \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1694 >   {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1695 >   {\Xi ^{tr} } & {\Xi ^{rr} }  \\
1696 > \end{array}} \right)\left( \begin{array}{l}
1697 > v \\
1698 > w \\
1699 > \end{array} \right)
1700 > \]
1701 > where $F_r$ is the friction force and $\tau _R$ is the friction
1702 > toque.
1703  
1704 < \section{\label{introSection:correlationFunctions}Correlation Functions}
1704 > \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1705 >
1706 > For a spherical particle, the translational and rotational friction
1707 > constant can be calculated from Stoke's law,
1708 > \[
1709 > \Xi ^{tt}  = \left( {\begin{array}{*{20}c}
1710 >   {6\pi \eta R} & 0 & 0  \\
1711 >   0 & {6\pi \eta R} & 0  \\
1712 >   0 & 0 & {6\pi \eta R}  \\
1713 > \end{array}} \right)
1714 > \]
1715 > and
1716 > \[
1717 > \Xi ^{rr}  = \left( {\begin{array}{*{20}c}
1718 >   {8\pi \eta R^3 } & 0 & 0  \\
1719 >   0 & {8\pi \eta R^3 } & 0  \\
1720 >   0 & 0 & {8\pi \eta R^3 }  \\
1721 > \end{array}} \right)
1722 > \]
1723 > where $\eta$ is the viscosity of the solvent and $R$ is the
1724 > hydrodynamics radius.
1725 >
1726 > Other non-spherical shape, such as cylinder and ellipsoid
1727 > \textit{etc}, are widely used as reference for developing new
1728 > hydrodynamics theory, because their properties can be calculated
1729 > exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1730 > also called a triaxial ellipsoid, which is given in Cartesian
1731 > coordinates by
1732 > \[
1733 > \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1734 > }} = 1
1735 > \]
1736 > where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1737 > due to the complexity of the elliptic integral, only the ellipsoid
1738 > with the restriction of two axes having to be equal, \textit{i.e.}
1739 > prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1740 > exactly. Introducing an elliptic integral parameter $S$ for prolate,
1741 > \[
1742 > S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1743 > } }}{b},
1744 > \]
1745 > and oblate,
1746 > \[
1747 > S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1748 > }}{a}
1749 > \],
1750 > one can write down the translational and rotational resistance
1751 > tensors
1752 > \[
1753 > \begin{array}{l}
1754 > \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1755 > \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1756 > \end{array},
1757 > \]
1758 > and
1759 > \[
1760 > \begin{array}{l}
1761 > \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1762 > \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1763 > \end{array}.
1764 > \]
1765 >
1766 > \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1767 >
1768 > Unlike spherical and other regular shaped molecules, there is not
1769 > analytical solution for friction tensor of any arbitrary shaped
1770 > rigid molecules. The ellipsoid of revolution model and general
1771 > triaxial ellipsoid model have been used to approximate the
1772 > hydrodynamic properties of rigid bodies. However, since the mapping
1773 > from all possible ellipsoidal space, $r$-space, to all possible
1774 > combination of rotational diffusion coefficients, $D$-space is not
1775 > unique\cite{Wegener79} as well as the intrinsic coupling between
1776 > translational and rotational motion of rigid body\cite{}, general
1777 > ellipsoid is not always suitable for modeling arbitrarily shaped
1778 > rigid molecule. A number of studies have been devoted to determine
1779 > the friction tensor for irregularly shaped rigid bodies using more
1780 > advanced method\cite{} where the molecule of interest was modeled by
1781 > combinations of spheres(beads)\cite{} and the hydrodynamics
1782 > properties of the molecule can be calculated using the hydrodynamic
1783 > interaction tensor. Let us consider a rigid assembly of $N$ beads
1784 > immersed in a continuous medium. Due to hydrodynamics interaction,
1785 > the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1786 > unperturbed velocity $v_i$,
1787 > \[
1788 > v'_i  = v_i  - \sum\limits_{j \ne i} {T_{ij} F_j }
1789 > \]
1790 > where $F_i$ is the frictional force, and $T_{ij}$ is the
1791 > hydrodynamic interaction tensor. The friction force of $i$th bead is
1792 > proportional to its ``net'' velocity
1793 > \begin{equation}
1794 > F_i  = \zeta _i v_i  - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1795 > \label{introEquation:tensorExpression}
1796 > \end{equation}
1797 > This equation is the basis for deriving the hydrodynamic tensor. In
1798 > 1930, Oseen and Burgers gave a simple solution to Equation
1799 > \ref{introEquation:tensorExpression}
1800 > \begin{equation}
1801 > T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1802 > R_{ij}^T }}{{R_{ij}^2 }}} \right).
1803 > \label{introEquation:oseenTensor}
1804 > \end{equation}
1805 > Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1806 > A second order expression for element of different size was
1807 > introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1808 > la Torre and Bloomfield,
1809 > \begin{equation}
1810 > T_{ij}  = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1811 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1812 > _i^2  + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1813 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1814 > \label{introEquation:RPTensorNonOverlapped}
1815 > \end{equation}
1816 > Both of the Equation \ref{introEquation:oseenTensor} and Equation
1817 > \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1818 > \ge \sigma _i  + \sigma _j$. An alternative expression for
1819 > overlapping beads with the same radius, $\sigma$, is given by
1820 > \begin{equation}
1821 > T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1822 > \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1823 > \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1824 > \label{introEquation:RPTensorOverlapped}
1825 > \end{equation}
1826 >
1827 > To calculate the resistance tensor at an arbitrary origin $O$, we
1828 > construct a $3N \times 3N$ matrix consisting of $N \times N$
1829 > $B_{ij}$ blocks
1830 > \begin{equation}
1831 > B = \left( {\begin{array}{*{20}c}
1832 >   {B_{11} } &  \ldots  & {B_{1N} }  \\
1833 >    \vdots  &  \ddots  &  \vdots   \\
1834 >   {B_{N1} } &  \cdots  & {B_{NN} }  \\
1835 > \end{array}} \right),
1836 > \end{equation}
1837 > where $B_{ij}$ is given by
1838 > \[
1839 > B_{ij}  = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1840 > )T_{ij}
1841 > \]
1842 > where $\delta _{ij}$ is Kronecker delta function. Inverting matrix
1843 > $B$, we obtain
1844 >
1845 > \[
1846 > C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1847 >   {C_{11} } &  \ldots  & {C_{1N} }  \\
1848 >    \vdots  &  \ddots  &  \vdots   \\
1849 >   {C_{N1} } &  \cdots  & {C_{NN} }  \\
1850 > \end{array}} \right)
1851 > \]
1852 > , which can be partitioned into $N \times N$ $3 \times 3$ block
1853 > $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1854 > \[
1855 > U_i  = \left( {\begin{array}{*{20}c}
1856 >   0 & { - z_i } & {y_i }  \\
1857 >   {z_i } & 0 & { - x_i }  \\
1858 >   { - y_i } & {x_i } & 0  \\
1859 > \end{array}} \right)
1860 > \]
1861 > where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1862 > bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1863 > arbitrary origin $O$ can be written as
1864 > \begin{equation}
1865 > \begin{array}{l}
1866 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1867 > \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1868 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1869 > \end{array}
1870 > \label{introEquation:ResistanceTensorArbitraryOrigin}
1871 > \end{equation}
1872 >
1873 > The resistance tensor depends on the origin to which they refer. The
1874 > proper location for applying friction force is the center of
1875 > resistance (reaction), at which the trace of rotational resistance
1876 > tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1877 > resistance is defined as an unique point of the rigid body at which
1878 > the translation-rotation coupling tensor are symmetric,
1879 > \begin{equation}
1880 > \Xi^{tr}  = \left( {\Xi^{tr} } \right)^T
1881 > \label{introEquation:definitionCR}
1882 > \end{equation}
1883 > Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
1884 > we can easily find out that the translational resistance tensor is
1885 > origin independent, while the rotational resistance tensor and
1886 > translation-rotation coupling resistance tensor depend on the
1887 > origin. Given resistance tensor at an arbitrary origin $O$, and a
1888 > vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
1889 > obtain the resistance tensor at $P$ by
1890 > \begin{equation}
1891 > \begin{array}{l}
1892 > \Xi _P^{tt}  = \Xi _O^{tt}  \\
1893 > \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
1894 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{tr} ^{^T }  \\
1895 > \end{array}
1896 > \label{introEquation:resistanceTensorTransformation}
1897 > \end{equation}
1898 > where
1899 > \[
1900 > U_{OP}  = \left( {\begin{array}{*{20}c}
1901 >   0 & { - z_{OP} } & {y_{OP} }  \\
1902 >   {z_i } & 0 & { - x_{OP} }  \\
1903 >   { - y_{OP} } & {x_{OP} } & 0  \\
1904 > \end{array}} \right)
1905 > \]
1906 > Using Equations \ref{introEquation:definitionCR} and
1907 > \ref{introEquation:resistanceTensorTransformation}, one can locate
1908 > the position of center of resistance,
1909 > \[
1910 > \left( \begin{array}{l}
1911 > x_{OR}  \\
1912 > y_{OR}  \\
1913 > z_{OR}  \\
1914 > \end{array} \right) = \left( {\begin{array}{*{20}c}
1915 >   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
1916 >   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
1917 >   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
1918 > \end{array}} \right)^{ - 1} \left( \begin{array}{l}
1919 > (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
1920 > (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
1921 > (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
1922 > \end{array} \right).
1923 > \]
1924 > where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
1925 > joining center of resistance $R$ and origin $O$.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines