ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2707 by tim, Thu Apr 13 22:17:13 2006 UTC vs.
Revision 2713 by tim, Sat Apr 15 01:08:18 2006 UTC

# Line 570 | Line 570 | The free rigid body is an example of Poisson system (a
570   \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571   \end{equation}
572   The most obvious change being that matrix $J$ now depends on $x$.
573 The free rigid body is an example of Poisson system (actually a
574 Lie-Poisson system) with Hamiltonian function of angular kinetic
575 energy.
576 \begin{equation}
577 J(\pi ) = \left( {\begin{array}{*{20}c}
578   0 & {\pi _3 } & { - \pi _2 }  \\
579   { - \pi _3 } & 0 & {\pi _1 }  \\
580   {\pi _2 } & { - \pi _1 } & 0  \\
581 \end{array}} \right)
582 \end{equation}
583
584 \begin{equation}
585 H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
586 }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
587 \end{equation}
573  
574   \subsection{\label{introSection:exactFlow}Exact Flow}
575  
# Line 950 | Line 935 | coworkers\cite{Dullweber1997}.
935   However, both of these methods are iterative and inefficient. In
936   this section, we will present a symplectic Lie-Poisson integrator
937   for rigid body developed by Dullweber and his
938 < coworkers\cite{Dullweber1997}.
954 <
955 < \subsection{\label{introSection:lieAlgebra}Lie Algebra}
938 > coworkers\cite{Dullweber1997} in depth.
939  
940   \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
941 <
941 > The motion of the rigid body is Hamiltonian with the Hamiltonian
942 > function
943   \begin{equation}
944   H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
945   V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
# Line 1027 | Line 1011 | Hence,
1011   \[
1012   V(q,Q) = V(Q X_0 + q).
1013   \]
1014 < Hence,
1014 > Hence, the force and torque are given by
1015   \[
1016 < \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)}
1016 > \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1017   \]
1018 <
1018 > and
1019   \[
1020   \nabla _Q V(q,Q) = F(q,Q)X_i^t
1021   \]
1022 + respectively.
1023  
1024   As a common choice to describe the rotation dynamics of the rigid
1025   body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
# Line 1080 | Line 1065 | Since $\Lambda$ is symmetric, the last term of Equatio
1065   (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1066   \end{equation}
1067   Since $\Lambda$ is symmetric, the last term of Equation
1068 < \ref{introEquation:skewMatrixPI}, which implies the Lagrange
1069 < multiplier $\Lambda$ is ignored in the integration.
1068 > \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1069 > multiplier $\Lambda$ is absent from the equations of motion. This
1070 > unique property eliminate the requirement of iterations which can
1071 > not be avoided in other methods\cite{}.
1072  
1073 < Hence, applying hat-map isomorphism, we obtain the equation of
1074 < motion for angular momentum on body frame
1075 < \[
1076 < \dot \pi  = \pi  \times I^{ - 1} \pi  + Q^T \sum\limits_i {F_i (r,Q)
1077 < \times X_i }
1078 < \]
1073 > Applying hat-map isomorphism, we obtain the equation of motion for
1074 > angular momentum on body frame
1075 > \begin{equation}
1076 > \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1077 > F_i (r,Q)} \right) \times X_i }.
1078 > \label{introEquation:bodyAngularMotion}
1079 > \end{equation}
1080   In the same manner, the equation of motion for rotation matrix is
1081   given by
1082   \[
1083 < \dot Q = Qskew(M^{ - 1} \pi )
1083 > \dot Q = Qskew(I^{ - 1} \pi )
1084   \]
1085  
1086 < The free rigid body equation is an example of a non-canonical
1087 < Hamiltonian system.
1086 > \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1087 > Lie-Poisson Integrator for Free Rigid Body}
1088  
1089 < \subsection{\label{introSection:symplecticDiscretizationRB}Symplectic Integration of Euler Equations}
1089 > If there is not external forces exerted on the rigid body, the only
1090 > contribution to the rotational is from the kinetic potential (the
1091 > first term of \ref{ introEquation:bodyAngularMotion}). The free
1092 > rigid body is an example of Lie-Poisson system with Hamiltonian
1093 > function
1094 > \begin{equation}
1095 > T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1096 > \label{introEquation:rotationalKineticRB}
1097 > \end{equation}
1098 > where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1099 > Lie-Poisson structure matrix,
1100 > \begin{equation}
1101 > J(\pi ) = \left( {\begin{array}{*{20}c}
1102 >   0 & {\pi _3 } & { - \pi _2 }  \\
1103 >   { - \pi _3 } & 0 & {\pi _1 }  \\
1104 >   {\pi _2 } & { - \pi _1 } & 0  \\
1105 > \end{array}} \right)
1106 > \end{equation}
1107 > Thus, the dynamics of free rigid body is governed by
1108 > \begin{equation}
1109 > \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi )
1110 > \end{equation}
1111  
1112 < \[
1113 < \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1114 < _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}
1112 > One may notice that each $T_i^r$ in Equation
1113 > \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1114 > instance, the equations of motion due to $T_1^r$ are given by
1115 > \begin{equation}
1116 > \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1117 > \label{introEqaution:RBMotionSingleTerm}
1118 > \end{equation}
1119 > where
1120 > \[ R_1  = \left( {\begin{array}{*{20}c}
1121 >   0 & 0 & 0  \\
1122 >   0 & 0 & {\pi _1 }  \\
1123 >   0 & { - \pi _1 } & 0  \\
1124 > \end{array}} \right).
1125   \]
1126 <
1126 > The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1127   \[
1128 < \varphi _{\Delta t,T}  = \varphi _{\Delta t,R}  \circ \varphi
1129 < _{\Delta t,\pi }
1128 > \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1129 > Q(0)e^{\Delta tR_1 }
1130   \]
1131 <
1131 > with
1132   \[
1133 < \varphi _{\Delta t,\pi }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1134 < \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1135 < \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1136 < _1 }
1133 > e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1134 >   0 & 0 & 0  \\
1135 >   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1136 >   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1137 > \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1138   \]
1139 + To reduce the cost of computing expensive functions in e^{\Delta
1140 + tR_1 }, we can use Cayley transformation,
1141 + \[
1142 + e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1143 + )
1144 + \]
1145  
1146 + The flow maps for $T_2^r$ and $T_2^r$ can be found in the same
1147 + manner.
1148 +
1149 + In order to construct a second-order symplectic method, we split the
1150 + angular kinetic Hamiltonian function can into five terms
1151   \[
1152 < \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1153 < _{\Delta t/2,\tau }
1152 > T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1153 > ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1154 > (\pi _1 )
1155 > \].
1156 > Concatenating flows corresponding to these five terms, we can obtain
1157 > an symplectic integrator,
1158 > \[
1159 > \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1160 > \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1161 > \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1162 > _1 }.
1163   \]
1164  
1165 + The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1166 + $F(\pi )$ and $G(\pi )$ is defined by
1167 + \[
1168 + \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1169 + )
1170 + \]
1171 + If the Poisson bracket of a function $F$ with an arbitrary smooth
1172 + function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1173 + conserved quantity in Poisson system. We can easily verify that the
1174 + norm of the angular momentum, $\parallel \pi
1175 + \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1176 + \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1177 + then by the chain rule
1178 + \[
1179 + \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1180 + }}{2})\pi
1181 + \]
1182 + Thus $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel \pi
1183 + \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1184 + Lie-Poisson integrator is found to be extremely efficient and stable
1185 + which can be explained by the fact the small angle approximation is
1186 + used and the norm of the angular momentum is conserved.
1187  
1188 + \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1189 + Splitting for Rigid Body}
1190 +
1191 + The Hamiltonian of rigid body can be separated in terms of kinetic
1192 + energy and potential energy,
1193 + \[
1194 + H = T(p,\pi ) + V(q,Q)
1195 + \]
1196 + The equations of motion corresponding to potential energy and
1197 + kinetic energy are listed in the below table,
1198 + \begin{center}
1199 + \begin{tabular}{|l|l|}
1200 +  \hline
1201 +  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1202 +  Potential & Kinetic \\
1203 +  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1204 +  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1205 +  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1206 +  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1207 +  \hline
1208 + \end{tabular}
1209 + \end{center}
1210 + A second-order symplectic method is now obtained by the composition
1211 + of the flow maps,
1212 + \[
1213 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1214 + _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1215 + \]
1216 + Moreover, \varphi _{\Delta t/2,V} can be divided into two sub-flows
1217 + which corresponding to force and torque respectively,
1218 + \[
1219 + \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1220 + _{\Delta t/2,\tau }.
1221 + \]
1222 + Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1223 + $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1224 + order inside \varphi _{\Delta t/2,V} does not matter.
1225 +
1226 + Furthermore, kinetic potential can be separated to translational
1227 + kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1228 + \begin{equation}
1229 + T(p,\pi ) =T^t (p) + T^r (\pi ).
1230 + \end{equation}
1231 + where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1232 + defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1233 + corresponding flow maps are given by
1234 + \[
1235 + \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1236 + _{\Delta t,T^r }.
1237 + \]
1238 + Finally, we obtain the overall symplectic flow maps for free moving
1239 + rigid body
1240 + \begin{equation}
1241 + \begin{array}{c}
1242 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \\
1243 +  \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \\
1244 +  \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1245 + \end{array}
1246 + \label{introEquation:overallRBFlowMaps}
1247 + \end{equation}
1248 +
1249   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1250  
1251   \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines