ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2707 by tim, Thu Apr 13 22:17:13 2006 UTC vs.
Revision 2720 by tim, Wed Apr 19 19:46:53 2006 UTC

# Line 570 | Line 570 | The free rigid body is an example of Poisson system (a
570   \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571   \end{equation}
572   The most obvious change being that matrix $J$ now depends on $x$.
573 The free rigid body is an example of Poisson system (actually a
574 Lie-Poisson system) with Hamiltonian function of angular kinetic
575 energy.
576 \begin{equation}
577 J(\pi ) = \left( {\begin{array}{*{20}c}
578   0 & {\pi _3 } & { - \pi _2 }  \\
579   { - \pi _3 } & 0 & {\pi _1 }  \\
580   {\pi _2 } & { - \pi _1 } & 0  \\
581 \end{array}} \right)
582 \end{equation}
583
584 \begin{equation}
585 H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
586 }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
587 \end{equation}
573  
574   \subsection{\label{introSection:exactFlow}Exact Flow}
575  
# Line 837 | Line 822 | q(\Delta t)} \right]. %
822   %
823   q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
824   q(\Delta t)} \right]. %
825 < \label{introEquation:positionVerlet1}
825 > \label{introEquation:positionVerlet2}
826   \end{align}
827  
828   \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
# Line 898 | Line 883 | As a special discipline of molecular modeling, Molecul
883  
884   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
885  
886 < As a special discipline of molecular modeling, Molecular dynamics
887 < has proven to be a powerful tool for studying the functions of
888 < biological systems, providing structural, thermodynamic and
889 < dynamical information.
890 <
891 < \subsection{\label{introSec:mdInit}Initialization}
892 <
893 < \subsection{\label{introSec:forceEvaluation}Force Evaluation}
886 > As one of the principal tools of molecular modeling, Molecular
887 > dynamics has proven to be a powerful tool for studying the functions
888 > of biological systems, providing structural, thermodynamic and
889 > dynamical information. The basic idea of molecular dynamics is that
890 > macroscopic properties are related to microscopic behavior and
891 > microscopic behavior can be calculated from the trajectories in
892 > simulations. For instance, instantaneous temperature of an
893 > Hamiltonian system of $N$ particle can be measured by
894 > \[
895 > T(t) = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
896 > \]
897 > where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
898 > respectively, $f$ is the number of degrees of freedom, and $k_B$ is
899 > the boltzman constant.
900  
901 < \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
901 > A typical molecular dynamics run consists of three essential steps:
902 > \begin{enumerate}
903 >  \item Initialization
904 >    \begin{enumerate}
905 >    \item Preliminary preparation
906 >    \item Minimization
907 >    \item Heating
908 >    \item Equilibration
909 >    \end{enumerate}
910 >  \item Production
911 >  \item Analysis
912 > \end{enumerate}
913 > These three individual steps will be covered in the following
914 > sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
915 > initialization of a simulation. Sec.~\ref{introSec:production} will
916 > discusses issues in production run, including the force evaluation
917 > and the numerical integration schemes of the equations of motion .
918 > Sec.~\ref{introSection:Analysis} provides the theoretical tools for
919 > trajectory analysis.
920 >
921 > \subsection{\label{introSec:initialSystemSettings}Initialization}
922 >
923 > \subsubsection{Preliminary preparation}
924 >
925 > When selecting the starting structure of a molecule for molecular
926 > simulation, one may retrieve its Cartesian coordinates from public
927 > databases, such as RCSB Protein Data Bank \textit{etc}. Although
928 > thousands of crystal structures of molecules are discovered every
929 > year, many more remain unknown due to the difficulties of
930 > purification and crystallization. Even for the molecule with known
931 > structure, some important information is missing. For example, the
932 > missing hydrogen atom which acts as donor in hydrogen bonding must
933 > be added. Moreover, in order to include electrostatic interaction,
934 > one may need to specify the partial charges for individual atoms.
935 > Under some circumstances, we may even need to prepare the system in
936 > a special setup. For instance, when studying transport phenomenon in
937 > membrane system, we may prepare the lipids in bilayer structure
938 > instead of placing lipids randomly in solvent, since we are not
939 > interested in self-aggregation and it takes a long time to happen.
940 >
941 > \subsubsection{Minimization}
942 >
943 > It is quite possible that some of molecules in the system from
944 > preliminary preparation may be overlapped with each other. This
945 > close proximity leads to high potential energy which consequently
946 > jeopardizes any molecular dynamics simulations. To remove these
947 > steric overlaps, one typically performs energy minimization to find
948 > a more reasonable conformation. Several energy minimization methods
949 > have been developed to exploit the energy surface and to locate the
950 > local minimum. While converging slowly near the minimum, steepest
951 > descent method is extremely robust when systems are far from
952 > harmonic. Thus, it is often used to refine structure from
953 > crystallographic data. Relied on the gradient or hessian, advanced
954 > methods like conjugate gradient and Newton-Raphson converge rapidly
955 > to a local minimum, while become unstable if the energy surface is
956 > far from quadratic. Another factor must be taken into account, when
957 > choosing energy minimization method, is the size of the system.
958 > Steepest descent and conjugate gradient can deal with models of any
959 > size. Because of the limit of computation power to calculate hessian
960 > matrix and insufficient storage capacity to store them, most
961 > Newton-Raphson methods can not be used with very large models.
962 >
963 > \subsubsection{Heating}
964 >
965 > Typically, Heating is performed by assigning random velocities
966 > according to a Gaussian distribution for a temperature. Beginning at
967 > a lower temperature and gradually increasing the temperature by
968 > assigning greater random velocities, we end up with setting the
969 > temperature of the system to a final temperature at which the
970 > simulation will be conducted. In heating phase, we should also keep
971 > the system from drifting or rotating as a whole. Equivalently, the
972 > net linear momentum and angular momentum of the system should be
973 > shifted to zero.
974 >
975 > \subsubsection{Equilibration}
976 >
977 > The purpose of equilibration is to allow the system to evolve
978 > spontaneously for a period of time and reach equilibrium. The
979 > procedure is continued until various statistical properties, such as
980 > temperature, pressure, energy, volume and other structural
981 > properties \textit{etc}, become independent of time. Strictly
982 > speaking, minimization and heating are not necessary, provided the
983 > equilibration process is long enough. However, these steps can serve
984 > as a means to arrive at an equilibrated structure in an effective
985 > way.
986 >
987 > \subsection{\label{introSection:production}Production}
988 >
989 > \subsubsection{\label{introSec:forceCalculation}The Force Calculation}
990 >
991 > \subsubsection{\label{introSection:integrationSchemes} Integration
992 > Schemes}
993  
994 + \subsection{\label{introSection:Analysis} Analysis}
995 +
996   \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
997  
998   Rigid bodies are frequently involved in the modeling of different
# Line 942 | Line 1026 | rotation matrix $A$ and re-formulating Hamiltonian's e
1026   The break through in geometric literature suggests that, in order to
1027   develop a long-term integration scheme, one should preserve the
1028   symplectic structure of the flow. Introducing conjugate momentum to
1029 < rotation matrix $A$ and re-formulating Hamiltonian's equation, a
1029 > rotation matrix $Q$ and re-formulating Hamiltonian's equation, a
1030   symplectic integrator, RSHAKE, was proposed to evolve the
1031   Hamiltonian system in a constraint manifold by iteratively
1032 < satisfying the orthogonality constraint $A_t A = 1$. An alternative
1032 > satisfying the orthogonality constraint $Q_T Q = 1$. An alternative
1033   method using quaternion representation was developed by Omelyan.
1034   However, both of these methods are iterative and inefficient. In
1035   this section, we will present a symplectic Lie-Poisson integrator
1036   for rigid body developed by Dullweber and his
1037 < coworkers\cite{Dullweber1997}.
1037 > coworkers\cite{Dullweber1997} in depth.
1038  
955 \subsection{\label{introSection:lieAlgebra}Lie Algebra}
956
1039   \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
1040 <
1040 > The motion of the rigid body is Hamiltonian with the Hamiltonian
1041 > function
1042   \begin{equation}
1043   H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1044   V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
# Line 1027 | Line 1110 | Hence,
1110   \[
1111   V(q,Q) = V(Q X_0 + q).
1112   \]
1113 < Hence,
1113 > Hence, the force and torque are given by
1114   \[
1115 < \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)}
1115 > \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1116   \]
1117 <
1117 > and
1118   \[
1119   \nabla _Q V(q,Q) = F(q,Q)X_i^t
1120   \]
1121 + respectively.
1122  
1123   As a common choice to describe the rotation dynamics of the rigid
1124   body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
# Line 1080 | Line 1164 | Since $\Lambda$ is symmetric, the last term of Equatio
1164   (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1165   \end{equation}
1166   Since $\Lambda$ is symmetric, the last term of Equation
1167 < \ref{introEquation:skewMatrixPI}, which implies the Lagrange
1168 < multiplier $\Lambda$ is ignored in the integration.
1167 > \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1168 > multiplier $\Lambda$ is absent from the equations of motion. This
1169 > unique property eliminate the requirement of iterations which can
1170 > not be avoided in other methods\cite{}.
1171  
1172 < Hence, applying hat-map isomorphism, we obtain the equation of
1173 < motion for angular momentum on body frame
1174 < \[
1175 < \dot \pi  = \pi  \times I^{ - 1} \pi  + Q^T \sum\limits_i {F_i (r,Q)
1176 < \times X_i }
1177 < \]
1172 > Applying hat-map isomorphism, we obtain the equation of motion for
1173 > angular momentum on body frame
1174 > \begin{equation}
1175 > \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1176 > F_i (r,Q)} \right) \times X_i }.
1177 > \label{introEquation:bodyAngularMotion}
1178 > \end{equation}
1179   In the same manner, the equation of motion for rotation matrix is
1180   given by
1181   \[
1182 < \dot Q = Qskew(M^{ - 1} \pi )
1182 > \dot Q = Qskew(I^{ - 1} \pi )
1183   \]
1184  
1185 < The free rigid body equation is an example of a non-canonical
1186 < Hamiltonian system.
1185 > \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1186 > Lie-Poisson Integrator for Free Rigid Body}
1187  
1188 < \subsection{\label{introSection:symplecticDiscretizationRB}Symplectic Integration of Euler Equations}
1188 > If there is not external forces exerted on the rigid body, the only
1189 > contribution to the rotational is from the kinetic potential (the
1190 > first term of \ref{ introEquation:bodyAngularMotion}). The free
1191 > rigid body is an example of Lie-Poisson system with Hamiltonian
1192 > function
1193 > \begin{equation}
1194 > T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1195 > \label{introEquation:rotationalKineticRB}
1196 > \end{equation}
1197 > where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1198 > Lie-Poisson structure matrix,
1199 > \begin{equation}
1200 > J(\pi ) = \left( {\begin{array}{*{20}c}
1201 >   0 & {\pi _3 } & { - \pi _2 }  \\
1202 >   { - \pi _3 } & 0 & {\pi _1 }  \\
1203 >   {\pi _2 } & { - \pi _1 } & 0  \\
1204 > \end{array}} \right)
1205 > \end{equation}
1206 > Thus, the dynamics of free rigid body is governed by
1207 > \begin{equation}
1208 > \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi )
1209 > \end{equation}
1210  
1211 + One may notice that each $T_i^r$ in Equation
1212 + \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1213 + instance, the equations of motion due to $T_1^r$ are given by
1214 + \begin{equation}
1215 + \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1216 + \label{introEqaution:RBMotionSingleTerm}
1217 + \end{equation}
1218 + where
1219 + \[ R_1  = \left( {\begin{array}{*{20}c}
1220 +   0 & 0 & 0  \\
1221 +   0 & 0 & {\pi _1 }  \\
1222 +   0 & { - \pi _1 } & 0  \\
1223 + \end{array}} \right).
1224 + \]
1225 + The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1226   \[
1227 < \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1228 < _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}
1227 > \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1228 > Q(0)e^{\Delta tR_1 }
1229   \]
1230 <
1230 > with
1231   \[
1232 < \varphi _{\Delta t,T}  = \varphi _{\Delta t,R}  \circ \varphi
1233 < _{\Delta t,\pi }
1232 > e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1233 >   0 & 0 & 0  \\
1234 >   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1235 >   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1236 > \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1237   \]
1238 + To reduce the cost of computing expensive functions in $e^{\Delta
1239 + tR_1 }$, we can use Cayley transformation,
1240 + \[
1241 + e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1242 + )
1243 + \]
1244 + The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1245 + manner.
1246  
1247 + In order to construct a second-order symplectic method, we split the
1248 + angular kinetic Hamiltonian function can into five terms
1249   \[
1250 < \varphi _{\Delta t,\pi }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1251 < \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1252 < \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1253 < _1 }
1250 > T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1251 > ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1252 > (\pi _1 )
1253 > \].
1254 > Concatenating flows corresponding to these five terms, we can obtain
1255 > an symplectic integrator,
1256 > \[
1257 > \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1258 > \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1259 > \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1260 > _1 }.
1261   \]
1262  
1263 + The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1264 + $F(\pi )$ and $G(\pi )$ is defined by
1265   \[
1266 + \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1267 + )
1268 + \]
1269 + If the Poisson bracket of a function $F$ with an arbitrary smooth
1270 + function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1271 + conserved quantity in Poisson system. We can easily verify that the
1272 + norm of the angular momentum, $\parallel \pi
1273 + \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1274 + \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1275 + then by the chain rule
1276 + \[
1277 + \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1278 + }}{2})\pi
1279 + \]
1280 + Thus $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel \pi
1281 + \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1282 + Lie-Poisson integrator is found to be extremely efficient and stable
1283 + which can be explained by the fact the small angle approximation is
1284 + used and the norm of the angular momentum is conserved.
1285 +
1286 + \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1287 + Splitting for Rigid Body}
1288 +
1289 + The Hamiltonian of rigid body can be separated in terms of kinetic
1290 + energy and potential energy,
1291 + \[
1292 + H = T(p,\pi ) + V(q,Q)
1293 + \]
1294 + The equations of motion corresponding to potential energy and
1295 + kinetic energy are listed in the below table,
1296 + \begin{center}
1297 + \begin{tabular}{|l|l|}
1298 +  \hline
1299 +  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1300 +  Potential & Kinetic \\
1301 +  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1302 +  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1303 +  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1304 +  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1305 +  \hline
1306 + \end{tabular}
1307 + \end{center}
1308 + A second-order symplectic method is now obtained by the composition
1309 + of the flow maps,
1310 + \[
1311 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1312 + _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1313 + \]
1314 + Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1315 + sub-flows which corresponding to force and torque respectively,
1316 + \[
1317   \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1318 < _{\Delta t/2,\tau }
1318 > _{\Delta t/2,\tau }.
1319   \]
1320 + Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1321 + $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1322 + order inside $\varphi _{\Delta t/2,V}$ does not matter.
1323  
1324 + Furthermore, kinetic potential can be separated to translational
1325 + kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1326 + \begin{equation}
1327 + T(p,\pi ) =T^t (p) + T^r (\pi ).
1328 + \end{equation}
1329 + where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1330 + defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1331 + corresponding flow maps are given by
1332 + \[
1333 + \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1334 + _{\Delta t,T^r }.
1335 + \]
1336 + Finally, we obtain the overall symplectic flow maps for free moving
1337 + rigid body
1338 + \begin{equation}
1339 + \begin{array}{c}
1340 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \\
1341 +  \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \\
1342 +  \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1343 + \end{array}
1344 + \label{introEquation:overallRBFlowMaps}
1345 + \end{equation}
1346  
1347   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1348 + As an alternative to newtonian dynamics, Langevin dynamics, which
1349 + mimics a simple heat bath with stochastic and dissipative forces,
1350 + has been applied in a variety of studies. This section will review
1351 + the theory of Langevin dynamics simulation. A brief derivation of
1352 + generalized Langevin equation will be given first. Follow that, we
1353 + will discuss the physical meaning of the terms appearing in the
1354 + equation as well as the calculation of friction tensor from
1355 + hydrodynamics theory.
1356  
1357 < \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
1357 > \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1358  
1359 < \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
1360 <
1359 > Harmonic bath model, in which an effective set of harmonic
1360 > oscillators are used to mimic the effect of a linearly responding
1361 > environment, has been widely used in quantum chemistry and
1362 > statistical mechanics. One of the successful applications of
1363 > Harmonic bath model is the derivation of Deriving Generalized
1364 > Langevin Dynamics. Lets consider a system, in which the degree of
1365 > freedom $x$ is assumed to couple to the bath linearly, giving a
1366 > Hamiltonian of the form
1367   \begin{equation}
1368   H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1369 < \label{introEquation:bathGLE}
1369 > \label{introEquation:bathGLE}.
1370   \end{equation}
1371 < where $H_B$ is harmonic bath Hamiltonian,
1371 > Here $p$ is a momentum conjugate to $q$, $m$ is the mass associated
1372 > with this degree of freedom, $H_B$ is harmonic bath Hamiltonian,
1373   \[
1374 < H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1375 < }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
1374 > H_B  = \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1375 > }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  \omega _\alpha ^2 }
1376 > \right\}}
1377   \]
1378 < and $\Delta U$ is bilinear system-bath coupling,
1378 > where the index $\alpha$ runs over all the bath degrees of freedom,
1379 > $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1380 > the harmonic bath masses, and $\Delta U$ is bilinear system-bath
1381 > coupling,
1382   \[
1383   \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1384   \]
1385 < Completing the square,
1385 > where $g_\alpha$ are the coupling constants between the bath and the
1386 > coordinate $x$. Introducing
1387   \[
1388 < H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
1389 < {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1390 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1391 < w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
1392 < 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1152 < \]
1153 < and putting it back into Eq.~\ref{introEquation:bathGLE},
1388 > W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1389 > }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1390 > \] and combining the last two terms in Equation
1391 > \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1392 > Hamiltonian as
1393   \[
1394   H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1395   {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1396   w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1397   w_\alpha ^2 }}x} \right)^2 } \right\}}
1398   \]
1160 where
1161 \[
1162 W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1163 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1164 \]
1399   Since the first two terms of the new Hamiltonian depend only on the
1400   system coordinates, we can get the equations of motion for
1401   Generalized Langevin Dynamics by Hamilton's equations
1402   \ref{introEquation:motionHamiltonianCoordinate,
1403   introEquation:motionHamiltonianMomentum},
1404 < \begin{align}
1405 < \dot p &=  - \frac{{\partial H}}{{\partial x}}
1406 <       &= m\ddot x
1407 <       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
1408 < \label{introEquation:Lp5}
1409 < \end{align}
1410 < , and
1411 < \begin{align}
1412 < \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
1413 <                &= m\ddot x_\alpha
1414 <                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
1415 < \end{align}
1404 > \begin{equation}
1405 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1406 > \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   -
1407 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)},
1408 > \label{introEquation:coorMotionGLE}
1409 > \end{equation}
1410 > and
1411 > \begin{equation}
1412 > m\ddot x_\alpha   =  - m_\alpha  w_\alpha ^2 \left( {x_\alpha   -
1413 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right).
1414 > \label{introEquation:bathMotionGLE}
1415 > \end{equation}
1416  
1417 < \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
1417 > In order to derive an equation for $x$, the dynamics of the bath
1418 > variables $x_\alpha$ must be solved exactly first. As an integral
1419 > transform which is particularly useful in solving linear ordinary
1420 > differential equations, Laplace transform is the appropriate tool to
1421 > solve this problem. The basic idea is to transform the difficult
1422 > differential equations into simple algebra problems which can be
1423 > solved easily. Then applying inverse Laplace transform, also known
1424 > as the Bromwich integral, we can retrieve the solutions of the
1425 > original problems.
1426  
1427 + Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1428 + transform of f(t) is a new function defined as
1429   \[
1430 < L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
1430 > L(f(t)) \equiv F(p) = \int_0^\infty  {f(t)e^{ - pt} dt}
1431   \]
1432 + where  $p$ is real and  $L$ is called the Laplace Transform
1433 + Operator. Below are some important properties of Laplace transform
1434 + \begin{equation}
1435 + \begin{array}{c}
1436 + L(x + y) = L(x) + L(y) \\
1437 + L(ax) = aL(x) \\
1438 + L(\dot x) = pL(x) - px(0) \\
1439 + L(\ddot x) = p^2 L(x) - px(0) - \dot x(0) \\
1440 + L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p) \\
1441 + \end{array}
1442 + \end{equation}
1443  
1444 + Applying Laplace transform to the bath coordinates, we obtain
1445   \[
1446 < L(x + y) = L(x) + L(y)
1446 > \begin{array}{c}
1447 > p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) \\
1448 > L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }} \\
1449 > \end{array}
1450   \]
1451 <
1451 > By the same way, the system coordinates become
1452   \[
1453 < L(ax) = aL(x)
1453 > \begin{array}{c}
1454 > mL(\ddot x) =  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1455 >  - \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0) - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}  \\
1456 > \end{array}
1457   \]
1458  
1459 + With the help of some relatively important inverse Laplace
1460 + transformations:
1461   \[
1462 < L(\dot x) = pL(x) - px(0)
1463 < \]
1464 <
1465 < \[
1466 < L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
1462 > \begin{array}{c}
1463 > L(\cos at) = \frac{p}{{p^2  + a^2 }} \\
1464 > L(\sin at) = \frac{a}{{p^2  + a^2 }} \\
1465 > L(1) = \frac{1}{p} \\
1466 > \end{array}
1467   \]
1468 <
1205 < \[
1206 < L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
1207 < \]
1208 <
1209 < Some relatively important transformation,
1210 < \[
1211 < L(\cos at) = \frac{p}{{p^2  + a^2 }}
1212 < \]
1213 <
1214 < \[
1215 < L(\sin at) = \frac{a}{{p^2  + a^2 }}
1216 < \]
1217 <
1218 < \[
1219 < L(1) = \frac{1}{p}
1220 < \]
1221 <
1222 < First, the bath coordinates,
1223 < \[
1224 < p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
1225 < _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
1226 < }}L(x)
1227 < \]
1228 < \[
1229 < L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
1230 < px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
1231 < \]
1232 < Then, the system coordinates,
1468 > , we obtain
1469   \begin{align}
1234 mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1235 \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
1236 }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
1237 (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
1238 }}\omega _\alpha ^2 L(x)} \right\}}
1239 %
1240 &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1241 \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
1242 - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
1243 - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
1244 \end{align}
1245 Then, the inverse transform,
1246
1247 \begin{align}
1470   m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
1471   \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1472   }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
# Line 1263 | Line 1485 | t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  =
1485   (\omega _\alpha  t)} \right\}}
1486   \end{align}
1487  
1488 + Introducing a \emph{dynamic friction kernel}
1489   \begin{equation}
1490 + \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1491 + }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1492 + \label{introEquation:dynamicFrictionKernelDefinition}
1493 + \end{equation}
1494 + and \emph{a random force}
1495 + \begin{equation}
1496 + R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1497 + - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1498 + \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1499 + (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t),
1500 + \label{introEquation:randomForceDefinition}
1501 + \end{equation}
1502 + the equation of motion can be rewritten as
1503 + \begin{equation}
1504   m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1505   (t)\dot x(t - \tau )d\tau }  + R(t)
1506   \label{introEuqation:GeneralizedLangevinDynamics}
1507   \end{equation}
1508 < %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1509 < %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
1508 > which is known as the \emph{generalized Langevin equation}.
1509 >
1510 > \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}Random Force and Dynamic Friction Kernel}
1511 >
1512 > One may notice that $R(t)$ depends only on initial conditions, which
1513 > implies it is completely deterministic within the context of a
1514 > harmonic bath. However, it is easy to verify that $R(t)$ is totally
1515 > uncorrelated to $x$ and $\dot x$,
1516   \[
1517 < \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1518 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1517 > \begin{array}{l}
1518 > \left\langle {x(t)R(t)} \right\rangle  = 0, \\
1519 > \left\langle {\dot x(t)R(t)} \right\rangle  = 0. \\
1520 > \end{array}
1521   \]
1522 < For an infinite harmonic bath, we can use the spectral density and
1523 < an integral over frequencies.
1522 > This property is what we expect from a truly random process. As long
1523 > as the model, which is gaussian distribution in general, chosen for
1524 > $R(t)$ is a truly random process, the stochastic nature of the GLE
1525 > still remains.
1526  
1527 + %dynamic friction kernel
1528 + The convolution integral
1529   \[
1530 < R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1282 < - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1283 < \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1284 < (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
1530 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1531   \]
1532 < The random forces depend only on initial conditions.
1532 > depends on the entire history of the evolution of $x$, which implies
1533 > that the bath retains memory of previous motions. In other words,
1534 > the bath requires a finite time to respond to change in the motion
1535 > of the system. For a sluggish bath which responds slowly to changes
1536 > in the system coordinate, we may regard $\xi(t)$ as a constant
1537 > $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1538 > \[
1539 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = \xi _0 (x(t) - x(0))
1540 > \]
1541 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1542 > \[
1543 > m\ddot x =  - \frac{\partial }{{\partial x}}\left( {W(x) +
1544 > \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1545 > \]
1546 > which can be used to describe dynamic caging effect. The other
1547 > extreme is the bath that responds infinitely quickly to motions in
1548 > the system. Thus, $\xi (t)$ can be taken as a $delta$ function in
1549 > time:
1550 > \[
1551 > \xi (t) = 2\xi _0 \delta (t)
1552 > \]
1553 > Hence, the convolution integral becomes
1554 > \[
1555 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = 2\xi _0 \int_0^t
1556 > {\delta (t)\dot x(t - \tau )d\tau }  = \xi _0 \dot x(t),
1557 > \]
1558 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1559 > \begin{equation}
1560 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1561 > x(t) + R(t) \label{introEquation:LangevinEquation}
1562 > \end{equation}
1563 > which is known as the Langevin equation. The static friction
1564 > coefficient $\xi _0$ can either be calculated from spectral density
1565 > or be determined by Stokes' law for regular shaped particles.A
1566 > briefly review on calculating friction tensor for arbitrary shaped
1567 > particles is given in Sec.~\ref{introSection:frictionTensor}.
1568  
1569   \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1570 < So we can define a new set of coordinates,
1570 >
1571 > Defining a new set of coordinates,
1572   \[
1573   q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1574   ^2 }}x(0)
1575 < \]
1576 < This makes
1575 > \],
1576 > we can rewrite $R(T)$ as
1577   \[
1578 < R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
1578 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}.
1579   \]
1580   And since the $q$ coordinates are harmonic oscillators,
1581   \[
1582 < \begin{array}{l}
1582 > \begin{array}{c}
1583 > \left\langle {q_\alpha ^2 } \right\rangle  = \frac{{kT}}{{m_\alpha  \omega _\alpha ^2 }} \\
1584   \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1585   \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1586 + \left\langle {R(t)R(0)} \right\rangle  = \sum\limits_\alpha  {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle } }  \\
1587 +  = \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t)}  \\
1588 +  = kT\xi (t) \\
1589   \end{array}
1590   \]
1591 <
1306 < \begin{align}
1307 < \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
1308 < {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
1309 < (t)q_\beta  (0)} \right\rangle } }
1310 < %
1311 < &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
1312 < \right\rangle \cos (\omega _\alpha  t)}
1313 < %
1314 < &= kT\xi (t)
1315 < \end{align}
1316 <
1591 > Thus, we recover the \emph{second fluctuation dissipation theorem}
1592   \begin{equation}
1593   \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1594 < \label{introEquation:secondFluctuationDissipation}
1594 > \label{introEquation:secondFluctuationDissipation}.
1595   \end{equation}
1596 + In effect, it acts as a constraint on the possible ways in which one
1597 + can model the random force and friction kernel.
1598  
1322 \section{\label{introSection:hydroynamics}Hydrodynamics}
1323
1599   \subsection{\label{introSection:frictionTensor} Friction Tensor}
1600 < \subsection{\label{introSection:analyticalApproach}Analytical
1601 < Approach}
1600 > Theoretically, the friction kernel can be determined using velocity
1601 > autocorrelation function. However, this approach become impractical
1602 > when the system become more and more complicate. Instead, various
1603 > approaches based on hydrodynamics have been developed to calculate
1604 > the friction coefficients. The friction effect is isotropic in
1605 > Equation, \zeta can be taken as a scalar. In general, friction
1606 > tensor \Xi is a $6\times 6$ matrix given by
1607 > \[
1608 > \Xi  = \left( {\begin{array}{*{20}c}
1609 >   {\Xi _{}^{tt} } & {\Xi _{}^{rt} }  \\
1610 >   {\Xi _{}^{tr} } & {\Xi _{}^{rr} }  \\
1611 > \end{array}} \right).
1612 > \]
1613 > Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1614 > tensor and rotational resistance (friction) tensor respectively,
1615 > while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1616 > {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1617 > particle moves in a fluid, it may experience friction force or
1618 > torque along the opposite direction of the velocity or angular
1619 > velocity,
1620 > \[
1621 > \left( \begin{array}{l}
1622 > F_R  \\
1623 > \tau _R  \\
1624 > \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1625 >   {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1626 >   {\Xi ^{tr} } & {\Xi ^{rr} }  \\
1627 > \end{array}} \right)\left( \begin{array}{l}
1628 > v \\
1629 > w \\
1630 > \end{array} \right)
1631 > \]
1632 > where $F_r$ is the friction force and $\tau _R$ is the friction
1633 > toque.
1634  
1635 < \subsection{\label{introSection:approximationApproach}Approximation
1329 < Approach}
1635 > \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1636  
1637 < \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1638 < Body}
1637 > For a spherical particle, the translational and rotational friction
1638 > constant can be calculated from Stoke's law,
1639 > \[
1640 > \Xi ^{tt}  = \left( {\begin{array}{*{20}c}
1641 >   {6\pi \eta R} & 0 & 0  \\
1642 >   0 & {6\pi \eta R} & 0  \\
1643 >   0 & 0 & {6\pi \eta R}  \\
1644 > \end{array}} \right)
1645 > \]
1646 > and
1647 > \[
1648 > \Xi ^{rr}  = \left( {\begin{array}{*{20}c}
1649 >   {8\pi \eta R^3 } & 0 & 0  \\
1650 >   0 & {8\pi \eta R^3 } & 0  \\
1651 >   0 & 0 & {8\pi \eta R^3 }  \\
1652 > \end{array}} \right)
1653 > \]
1654 > where $\eta$ is the viscosity of the solvent and $R$ is the
1655 > hydrodynamics radius.
1656  
1657 < \section{\label{introSection:correlationFunctions}Correlation Functions}
1657 > Other non-spherical shape, such as cylinder and ellipsoid
1658 > \textit{etc}, are widely used as reference for developing new
1659 > hydrodynamics theory, because their properties can be calculated
1660 > exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1661 > also called a triaxial ellipsoid, which is given in Cartesian
1662 > coordinates by
1663 > \[
1664 > \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1665 > }} = 1
1666 > \]
1667 > where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1668 > due to the complexity of the elliptic integral, only the ellipsoid
1669 > with the restriction of two axes having to be equal, \textit{i.e.}
1670 > prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1671 > exactly. Introducing an elliptic integral parameter $S$ for prolate,
1672 > \[
1673 > S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1674 > } }}{b},
1675 > \]
1676 > and oblate,
1677 > \[
1678 > S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1679 > }}{a}
1680 > \],
1681 > one can write down the translational and rotational resistance
1682 > tensors
1683 > \[
1684 > \begin{array}{l}
1685 > \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1686 > \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1687 > \end{array},
1688 > \]
1689 > and
1690 > \[
1691 > \begin{array}{l}
1692 > \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1693 > \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1694 > \end{array}.
1695 > \]
1696 >
1697 > \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1698 >
1699 > Unlike spherical and other regular shaped molecules, there is not
1700 > analytical solution for friction tensor of any arbitrary shaped
1701 > rigid molecules. The ellipsoid of revolution model and general
1702 > triaxial ellipsoid model have been used to approximate the
1703 > hydrodynamic properties of rigid bodies. However, since the mapping
1704 > from all possible ellipsoidal space, $r$-space, to all possible
1705 > combination of rotational diffusion coefficients, $D$-space is not
1706 > unique\cite{Wegener79} as well as the intrinsic coupling between
1707 > translational and rotational motion of rigid body\cite{}, general
1708 > ellipsoid is not always suitable for modeling arbitrarily shaped
1709 > rigid molecule. A number of studies have been devoted to determine
1710 > the friction tensor for irregularly shaped rigid bodies using more
1711 > advanced method\cite{} where the molecule of interest was modeled by
1712 > combinations of spheres(beads)\cite{} and the hydrodynamics
1713 > properties of the molecule can be calculated using the hydrodynamic
1714 > interaction tensor. Let us consider a rigid assembly of $N$ beads
1715 > immersed in a continuous medium. Due to hydrodynamics interaction,
1716 > the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1717 > unperturbed velocity $v_i$,
1718 > \[
1719 > v'_i  = v_i  - \sum\limits_{j \ne i} {T_{ij} F_j }
1720 > \]
1721 > where $F_i$ is the frictional force, and $T_{ij}$ is the
1722 > hydrodynamic interaction tensor. The friction force of $i$th bead is
1723 > proportional to its ``net'' velocity
1724 > \begin{equation}
1725 > F_i  = \zeta _i v_i  - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1726 > \label{introEquation:tensorExpression}
1727 > \end{equation}
1728 > This equation is the basis for deriving the hydrodynamic tensor. In
1729 > 1930, Oseen and Burgers gave a simple solution to Equation
1730 > \ref{introEquation:tensorExpression}
1731 > \begin{equation}
1732 > T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1733 > R_{ij}^T }}{{R_{ij}^2 }}} \right).
1734 > \label{introEquation:oseenTensor}
1735 > \end{equation}
1736 > Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1737 > A second order expression for element of different size was
1738 > introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1739 > la Torre and Bloomfield,
1740 > \begin{equation}
1741 > T_{ij}  = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1742 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1743 > _i^2  + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1744 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1745 > \label{introEquation:RPTensorNonOverlapped}
1746 > \end{equation}
1747 > Both of the Equation \ref{introEquation:oseenTensor} and Equation
1748 > \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1749 > \ge \sigma _i  + \sigma _j$. An alternative expression for
1750 > overlapping beads with the same radius, $\sigma$, is given by
1751 > \begin{equation}
1752 > T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1753 > \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1754 > \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1755 > \label{introEquation:RPTensorOverlapped}
1756 > \end{equation}
1757 >
1758 > To calculate the resistance tensor at an arbitrary origin $O$, we
1759 > construct a $3N \times 3N$ matrix consisting of $N \times N$
1760 > $B_{ij}$ blocks
1761 > \begin{equation}
1762 > B = \left( {\begin{array}{*{20}c}
1763 >   {B_{11} } &  \ldots  & {B_{1N} }  \\
1764 >    \vdots  &  \ddots  &  \vdots   \\
1765 >   {B_{N1} } &  \cdots  & {B_{NN} }  \\
1766 > \end{array}} \right),
1767 > \end{equation}
1768 > where $B_{ij}$ is given by
1769 > \[
1770 > B_{ij}  = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1771 > )T_{ij}
1772 > \]
1773 > where $\delta _{ij}$ is Kronecker delta function. Inverting matrix
1774 > $B$, we obtain
1775 >
1776 > \[
1777 > C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1778 >   {C_{11} } &  \ldots  & {C_{1N} }  \\
1779 >    \vdots  &  \ddots  &  \vdots   \\
1780 >   {C_{N1} } &  \cdots  & {C_{NN} }  \\
1781 > \end{array}} \right)
1782 > \]
1783 > , which can be partitioned into $N \times N$ $3 \times 3$ block
1784 > $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1785 > \[
1786 > U_i  = \left( {\begin{array}{*{20}c}
1787 >   0 & { - z_i } & {y_i }  \\
1788 >   {z_i } & 0 & { - x_i }  \\
1789 >   { - y_i } & {x_i } & 0  \\
1790 > \end{array}} \right)
1791 > \]
1792 > where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1793 > bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1794 > arbitrary origin $O$ can be written as
1795 > \begin{equation}
1796 > \begin{array}{l}
1797 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1798 > \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1799 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1800 > \end{array}
1801 > \label{introEquation:ResistanceTensorArbitraryOrigin}
1802 > \end{equation}
1803 >
1804 > The resistance tensor depends on the origin to which they refer. The
1805 > proper location for applying friction force is the center of
1806 > resistance (reaction), at which the trace of rotational resistance
1807 > tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1808 > resistance is defined as an unique point of the rigid body at which
1809 > the translation-rotation coupling tensor are symmetric,
1810 > \begin{equation}
1811 > \Xi^{tr}  = \left( {\Xi^{tr} } \right)^T
1812 > \label{introEquation:definitionCR}
1813 > \end{equation}
1814 > Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
1815 > we can easily find out that the translational resistance tensor is
1816 > origin independent, while the rotational resistance tensor and
1817 > translation-rotation coupling resistance tensor depend on the
1818 > origin. Given resistance tensor at an arbitrary origin $O$, and a
1819 > vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
1820 > obtain the resistance tensor at $P$ by
1821 > \begin{equation}
1822 > \begin{array}{l}
1823 > \Xi _P^{tt}  = \Xi _O^{tt}  \\
1824 > \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
1825 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{tr} ^{^T }  \\
1826 > \end{array}
1827 > \label{introEquation:resistanceTensorTransformation}
1828 > \end{equation}
1829 > where
1830 > \[
1831 > U_{OP}  = \left( {\begin{array}{*{20}c}
1832 >   0 & { - z_{OP} } & {y_{OP} }  \\
1833 >   {z_i } & 0 & { - x_{OP} }  \\
1834 >   { - y_{OP} } & {x_{OP} } & 0  \\
1835 > \end{array}} \right)
1836 > \]
1837 > Using Equations \ref{introEquation:definitionCR} and
1838 > \ref{introEquation:resistanceTensorTransformation}, one can locate
1839 > the position of center of resistance,
1840 > \[
1841 > \left( \begin{array}{l}
1842 > x_{OR}  \\
1843 > y_{OR}  \\
1844 > z_{OR}  \\
1845 > \end{array} \right) = \left( {\begin{array}{*{20}c}
1846 >   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
1847 >   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
1848 >   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
1849 > \end{array}} \right)^{ - 1} \left( \begin{array}{l}
1850 > (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
1851 > (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
1852 > (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
1853 > \end{array} \right).
1854 > \]
1855 > where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
1856 > joining center of resistance $R$ and origin $O$.
1857 >
1858 > %\section{\label{introSection:correlationFunctions}Correlation Functions}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines