ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2707 by tim, Thu Apr 13 22:17:13 2006 UTC vs.
Revision 2786 by tim, Sun Jun 4 20:18:07 2006 UTC

# Line 93 | Line 93 | the kinetic, $K$, and potential energies, $U$ \cite{to
93   The actual trajectory, along which a dynamical system may move from
94   one point to another within a specified time, is derived by finding
95   the path which minimizes the time integral of the difference between
96 < the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
96 > the kinetic, $K$, and potential energies, $U$ \cite{Tolman1979}.
97   \begin{equation}
98   \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
99   \label{introEquation:halmitonianPrinciple1}
# Line 189 | Line 189 | known as the canonical equations of motions \cite{Gold
189   Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
190   Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
191   equation of motion. Due to their symmetrical formula, they are also
192 < known as the canonical equations of motions \cite{Goldstein01}.
192 > known as the canonical equations of motions \cite{Goldstein2001}.
193  
194   An important difference between Lagrangian approach and the
195   Hamiltonian approach is that the Lagrangian is considered to be a
# Line 200 | Line 200 | equations\cite{Marion90}.
200   appropriate for application to statistical mechanics and quantum
201   mechanics, since it treats the coordinate and its time derivative as
202   independent variables and it only works with 1st-order differential
203 < equations\cite{Marion90}.
203 > equations\cite{Marion1990}.
204  
205   In Newtonian Mechanics, a system described by conservative forces
206   conserves the total energy \ref{introEquation:energyConservation}.
# Line 470 | Line 470 | statistical ensemble are identical \cite{Frenkel1996,
470   many-body system in Statistical Mechanics. Fortunately, Ergodic
471   Hypothesis is proposed to make a connection between time average and
472   ensemble average. It states that time average and average over the
473 < statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
473 > statistical ensemble are identical \cite{Frenkel1996, Leach2001}.
474   \begin{equation}
475   \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476   \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
# Line 484 | Line 484 | reasonable, the Monte Carlo techniques\cite{metropolis
484   a properly weighted statistical average. This allows the researcher
485   freedom of choice when deciding how best to measure a given
486   observable. In case an ensemble averaged approach sounds most
487 < reasonable, the Monte Carlo techniques\cite{metropolis:1949} can be
487 > reasonable, the Monte Carlo techniques\cite{Metropolis1949} can be
488   utilized. Or if the system lends itself to a time averaging
489   approach, the Molecular Dynamics techniques in
490   Sec.~\ref{introSection:molecularDynamics} will be the best
# Line 498 | Line 498 | issue. The velocity verlet method, which happens to be
498   within the equations. Since 1990, geometric integrators, which
499   preserve various phase-flow invariants such as symplectic structure,
500   volume and time reversal symmetry, are developed to address this
501 < issue. The velocity verlet method, which happens to be a simple
502 < example of symplectic integrator, continues to gain its popularity
503 < in molecular dynamics community. This fact can be partly explained
504 < by its geometric nature.
501 > issue\cite{}. The velocity verlet method, which happens to be a
502 > simple example of symplectic integrator, continues to gain its
503 > popularity in molecular dynamics community. This fact can be partly
504 > explained by its geometric nature.
505  
506   \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
507   A \emph{manifold} is an abstract mathematical space. It locally
# Line 570 | Line 570 | The free rigid body is an example of Poisson system (a
570   \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571   \end{equation}
572   The most obvious change being that matrix $J$ now depends on $x$.
573 The free rigid body is an example of Poisson system (actually a
574 Lie-Poisson system) with Hamiltonian function of angular kinetic
575 energy.
576 \begin{equation}
577 J(\pi ) = \left( {\begin{array}{*{20}c}
578   0 & {\pi _3 } & { - \pi _2 }  \\
579   { - \pi _3 } & 0 & {\pi _1 }  \\
580   {\pi _2 } & { - \pi _1 } & 0  \\
581 \end{array}} \right)
582 \end{equation}
573  
584 \begin{equation}
585 H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
586 }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
587 \end{equation}
588
574   \subsection{\label{introSection:exactFlow}Exact Flow}
575  
576   Let $x(t)$ be the exact solution of the ODE system,
# Line 723 | Line 708 | the system\cite{Tuckerman92}.
708   implementing the Runge-Kutta methods, they do not attract too much
709   attention from Molecular Dynamics community. Instead, splitting have
710   been widely accepted since they exploit natural decompositions of
711 < the system\cite{Tuckerman92}.
711 > the system\cite{Tuckerman1992}.
712  
713   \subsubsection{\label{introSection:splittingMethod}Splitting Method}
714  
# Line 837 | Line 822 | q(\Delta t)} \right]. %
822   %
823   q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
824   q(\Delta t)} \right]. %
825 < \label{introEquation:positionVerlet1}
825 > \label{introEquation:positionVerlet2}
826   \end{align}
827  
828   \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
# Line 846 | Line 831 | $\varphi_1(t)$ and $\varphi_2(t$ respectively , we hav
831   error of splitting method in terms of commutator of the
832   operators(\ref{introEquation:exponentialOperator}) associated with
833   the sub-flow. For operators $hX$ and $hY$ which are associate to
834 < $\varphi_1(t)$ and $\varphi_2(t$ respectively , we have
834 > $\varphi_1(t)$ and $\varphi_2(t)$ respectively , we have
835   \begin{equation}
836   \exp (hX + hY) = \exp (hZ)
837   \end{equation}
# Line 862 | Line 847 | can obtain
847   Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
848   can obtain
849   \begin{eqnarray*}
850 < \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
851 < [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
852 < & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 & & \mbox{} +
868 < \ldots )
850 > \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2 [X,Y]/4 + h^2 [Y,X]/4 \\
851 >                                   &   & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
852 >                                   &   & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3[X,[X,Y]]/24 + \ldots )
853   \end{eqnarray*}
854   Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
855   error of Spring splitting is proportional to $h^3$. The same
# Line 874 | Line 858 | Careful choice of coefficient $a_1 ,\ldot , b_m$ will
858   \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
859   1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
860   \end{equation}
861 < Careful choice of coefficient $a_1 ,\ldot , b_m$ will lead to higher
861 > Careful choice of coefficient $a_1 \ldot b_m$ will lead to higher
862   order method. Yoshida proposed an elegant way to compose higher
863   order methods based on symmetric splitting. Given a symmetric second
864   order base method $ \varphi _h^{(2)} $, a fourth-order symmetric
# Line 898 | Line 882 | As a special discipline of molecular modeling, Molecul
882  
883   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
884  
885 < As a special discipline of molecular modeling, Molecular dynamics
886 < has proven to be a powerful tool for studying the functions of
887 < biological systems, providing structural, thermodynamic and
888 < dynamical information.
885 > As one of the principal tools of molecular modeling, Molecular
886 > dynamics has proven to be a powerful tool for studying the functions
887 > of biological systems, providing structural, thermodynamic and
888 > dynamical information. The basic idea of molecular dynamics is that
889 > macroscopic properties are related to microscopic behavior and
890 > microscopic behavior can be calculated from the trajectories in
891 > simulations. For instance, instantaneous temperature of an
892 > Hamiltonian system of $N$ particle can be measured by
893 > \[
894 > T = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
895 > \]
896 > where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
897 > respectively, $f$ is the number of degrees of freedom, and $k_B$ is
898 > the boltzman constant.
899  
900 < \subsection{\label{introSec:mdInit}Initialization}
901 <
902 < \subsection{\label{introSec:forceEvaluation}Force Evaluation}
900 > A typical molecular dynamics run consists of three essential steps:
901 > \begin{enumerate}
902 >  \item Initialization
903 >    \begin{enumerate}
904 >    \item Preliminary preparation
905 >    \item Minimization
906 >    \item Heating
907 >    \item Equilibration
908 >    \end{enumerate}
909 >  \item Production
910 >  \item Analysis
911 > \end{enumerate}
912 > These three individual steps will be covered in the following
913 > sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
914 > initialization of a simulation. Sec.~\ref{introSec:production} will
915 > discusses issues in production run. Sec.~\ref{introSection:Analysis}
916 > provides the theoretical tools for trajectory analysis.
917  
918 < \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
918 > \subsection{\label{introSec:initialSystemSettings}Initialization}
919 >
920 > \subsubsection{Preliminary preparation}
921 >
922 > When selecting the starting structure of a molecule for molecular
923 > simulation, one may retrieve its Cartesian coordinates from public
924 > databases, such as RCSB Protein Data Bank \textit{etc}. Although
925 > thousands of crystal structures of molecules are discovered every
926 > year, many more remain unknown due to the difficulties of
927 > purification and crystallization. Even for the molecule with known
928 > structure, some important information is missing. For example, the
929 > missing hydrogen atom which acts as donor in hydrogen bonding must
930 > be added. Moreover, in order to include electrostatic interaction,
931 > one may need to specify the partial charges for individual atoms.
932 > Under some circumstances, we may even need to prepare the system in
933 > a special setup. For instance, when studying transport phenomenon in
934 > membrane system, we may prepare the lipids in bilayer structure
935 > instead of placing lipids randomly in solvent, since we are not
936 > interested in self-aggregation and it takes a long time to happen.
937 >
938 > \subsubsection{Minimization}
939 >
940 > It is quite possible that some of molecules in the system from
941 > preliminary preparation may be overlapped with each other. This
942 > close proximity leads to high potential energy which consequently
943 > jeopardizes any molecular dynamics simulations. To remove these
944 > steric overlaps, one typically performs energy minimization to find
945 > a more reasonable conformation. Several energy minimization methods
946 > have been developed to exploit the energy surface and to locate the
947 > local minimum. While converging slowly near the minimum, steepest
948 > descent method is extremely robust when systems are far from
949 > harmonic. Thus, it is often used to refine structure from
950 > crystallographic data. Relied on the gradient or hessian, advanced
951 > methods like conjugate gradient and Newton-Raphson converge rapidly
952 > to a local minimum, while become unstable if the energy surface is
953 > far from quadratic. Another factor must be taken into account, when
954 > choosing energy minimization method, is the size of the system.
955 > Steepest descent and conjugate gradient can deal with models of any
956 > size. Because of the limit of computation power to calculate hessian
957 > matrix and insufficient storage capacity to store them, most
958 > Newton-Raphson methods can not be used with very large models.
959 >
960 > \subsubsection{Heating}
961 >
962 > Typically, Heating is performed by assigning random velocities
963 > according to a Gaussian distribution for a temperature. Beginning at
964 > a lower temperature and gradually increasing the temperature by
965 > assigning greater random velocities, we end up with setting the
966 > temperature of the system to a final temperature at which the
967 > simulation will be conducted. In heating phase, we should also keep
968 > the system from drifting or rotating as a whole. Equivalently, the
969 > net linear momentum and angular momentum of the system should be
970 > shifted to zero.
971 >
972 > \subsubsection{Equilibration}
973 >
974 > The purpose of equilibration is to allow the system to evolve
975 > spontaneously for a period of time and reach equilibrium. The
976 > procedure is continued until various statistical properties, such as
977 > temperature, pressure, energy, volume and other structural
978 > properties \textit{etc}, become independent of time. Strictly
979 > speaking, minimization and heating are not necessary, provided the
980 > equilibration process is long enough. However, these steps can serve
981 > as a means to arrive at an equilibrated structure in an effective
982 > way.
983 >
984 > \subsection{\label{introSection:production}Production}
985 >
986 > Production run is the most important steps of the simulation, in
987 > which the equilibrated structure is used as a starting point and the
988 > motions of the molecules are collected for later analysis. In order
989 > to capture the macroscopic properties of the system, the molecular
990 > dynamics simulation must be performed in correct and efficient way.
991 >
992 > The most expensive part of a molecular dynamics simulation is the
993 > calculation of non-bonded forces, such as van der Waals force and
994 > Coulombic forces \textit{etc}. For a system of $N$ particles, the
995 > complexity of the algorithm for pair-wise interactions is $O(N^2 )$,
996 > which making large simulations prohibitive in the absence of any
997 > computation saving techniques.
998 >
999 > A natural approach to avoid system size issue is to represent the
1000 > bulk behavior by a finite number of the particles. However, this
1001 > approach will suffer from the surface effect. To offset this,
1002 > \textit{Periodic boundary condition} is developed to simulate bulk
1003 > properties with a relatively small number of particles. In this
1004 > method, the simulation box is replicated throughout space to form an
1005 > infinite lattice. During the simulation, when a particle moves in
1006 > the primary cell, its image in other cells move in exactly the same
1007 > direction with exactly the same orientation. Thus, as a particle
1008 > leaves the primary cell, one of its images will enter through the
1009 > opposite face.
1010 > %\begin{figure}
1011 > %\centering
1012 > %\includegraphics[width=\linewidth]{pbcFig.eps}
1013 > %\caption[An illustration of periodic boundary conditions]{A 2-D
1014 > %illustration of periodic boundary conditions. As one particle leaves
1015 > %the right of the simulation box, an image of it enters the left.}
1016 > %\label{introFig:pbc}
1017 > %\end{figure}
1018 >
1019 > %cutoff and minimum image convention
1020 > Another important technique to improve the efficiency of force
1021 > evaluation is to apply cutoff where particles farther than a
1022 > predetermined distance, are not included in the calculation
1023 > \cite{Frenkel1996}. The use of a cutoff radius will cause a
1024 > discontinuity in the potential energy curve. Fortunately, one can
1025 > shift the potential to ensure the potential curve go smoothly to
1026 > zero at the cutoff radius. Cutoff strategy works pretty well for
1027 > Lennard-Jones interaction because of its short range nature.
1028 > However, simply truncating the electrostatic interaction with the
1029 > use of cutoff has been shown to lead to severe artifacts in
1030 > simulations. Ewald summation, in which the slowly conditionally
1031 > convergent Coulomb potential is transformed into direct and
1032 > reciprocal sums with rapid and absolute convergence, has proved to
1033 > minimize the periodicity artifacts in liquid simulations. Taking the
1034 > advantages of the fast Fourier transform (FFT) for calculating
1035 > discrete Fourier transforms, the particle mesh-based methods are
1036 > accelerated from $O(N^{3/2})$ to $O(N logN)$. An alternative
1037 > approach is \emph{fast multipole method}, which treats Coulombic
1038 > interaction exactly at short range, and approximate the potential at
1039 > long range through multipolar expansion. In spite of their wide
1040 > acceptances at the molecular simulation community, these two methods
1041 > are hard to be implemented correctly and efficiently. Instead, we
1042 > use a damped and charge-neutralized Coulomb potential method
1043 > developed by Wolf and his coworkers. The shifted Coulomb potential
1044 > for particle $i$ and particle $j$ at distance $r_{rj}$ is given by:
1045 > \begin{equation}
1046 > V(r_{ij})= \frac{q_i q_j \textrm{erfc}(\alpha
1047 > r_{ij})}{r_{ij}}-\lim_{r_{ij}\rightarrow
1048 > R_\textrm{c}}\left\{\frac{q_iq_j \textrm{erfc}(\alpha
1049 > r_{ij})}{r_{ij}}\right\}. \label{introEquation:shiftedCoulomb}
1050 > \end{equation}
1051 > where $\alpha$ is the convergence parameter. Due to the lack of
1052 > inherent periodicity and rapid convergence,this method is extremely
1053 > efficient and easy to implement.
1054 > %\begin{figure}
1055 > %\centering
1056 > %\includegraphics[width=\linewidth]{pbcFig.eps}
1057 > %\caption[An illustration of shifted Coulomb potential]{An illustration of shifted Coulomb potential.}
1058 > %\label{introFigure:shiftedCoulomb}
1059 > %\end{figure}
1060 >
1061 > %multiple time step
1062 >
1063 > \subsection{\label{introSection:Analysis} Analysis}
1064 >
1065 > Recently, advanced visualization technique are widely applied to
1066 > monitor the motions of molecules. Although the dynamics of the
1067 > system can be described qualitatively from animation, quantitative
1068 > trajectory analysis are more appreciable. According to the
1069 > principles of Statistical Mechanics,
1070 > Sec.~\ref{introSection:statisticalMechanics}, one can compute
1071 > thermodynamics properties, analyze fluctuations of structural
1072 > parameters, and investigate time-dependent processes of the molecule
1073 > from the trajectories.
1074 >
1075 > \subsubsection{\label{introSection:thermodynamicsProperties}Thermodynamics Properties}
1076 >
1077 > Thermodynamics properties, which can be expressed in terms of some
1078 > function of the coordinates and momenta of all particles in the
1079 > system, can be directly computed from molecular dynamics. The usual
1080 > way to measure the pressure is based on virial theorem of Clausius
1081 > which states that the virial is equal to $-3Nk_BT$. For a system
1082 > with forces between particles, the total virial, $W$, contains the
1083 > contribution from external pressure and interaction between the
1084 > particles:
1085 > \[
1086 > W =  - 3PV + \left\langle {\sum\limits_{i < j} {r{}_{ij} \cdot
1087 > f_{ij} } } \right\rangle
1088 > \]
1089 > where $f_{ij}$ is the force between particle $i$ and $j$ at a
1090 > distance $r_{ij}$. Thus, the expression for the pressure is given
1091 > by:
1092 > \begin{equation}
1093 > P = \frac{{Nk_B T}}{V} - \frac{1}{{3V}}\left\langle {\sum\limits_{i
1094 > < j} {r{}_{ij} \cdot f_{ij} } } \right\rangle
1095 > \end{equation}
1096 >
1097 > \subsubsection{\label{introSection:structuralProperties}Structural Properties}
1098 >
1099 > Structural Properties of a simple fluid can be described by a set of
1100 > distribution functions. Among these functions,\emph{pair
1101 > distribution function}, also known as \emph{radial distribution
1102 > function}, is of most fundamental importance to liquid-state theory.
1103 > Pair distribution function can be gathered by Fourier transforming
1104 > raw data from a series of neutron diffraction experiments and
1105 > integrating over the surface factor \cite{Powles1973}. The
1106 > experiment result can serve as a criterion to justify the
1107 > correctness of the theory. Moreover, various equilibrium
1108 > thermodynamic and structural properties can also be expressed in
1109 > terms of radial distribution function \cite{Allen1987}.
1110 >
1111 > A pair distribution functions $g(r)$ gives the probability that a
1112 > particle $i$ will be located at a distance $r$ from a another
1113 > particle $j$ in the system
1114 > \[
1115 > g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1116 > \ne i} {\delta (r - r_{ij} )} } } \right\rangle.
1117 > \]
1118 > Note that the delta function can be replaced by a histogram in
1119 > computer simulation. Figure
1120 > \ref{introFigure:pairDistributionFunction} shows a typical pair
1121 > distribution function for the liquid argon system. The occurrence of
1122 > several peaks in the plot of $g(r)$ suggests that it is more likely
1123 > to find particles at certain radial values than at others. This is a
1124 > result of the attractive interaction at such distances. Because of
1125 > the strong repulsive forces at short distance, the probability of
1126 > locating particles at distances less than about 2.5{\AA} from each
1127 > other is essentially zero.
1128 >
1129 > %\begin{figure}
1130 > %\centering
1131 > %\includegraphics[width=\linewidth]{pdf.eps}
1132 > %\caption[Pair distribution function for the liquid argon
1133 > %]{Pair distribution function for the liquid argon}
1134 > %\label{introFigure:pairDistributionFunction}
1135 > %\end{figure}
1136  
1137 + \subsubsection{\label{introSection:timeDependentProperties}Time-dependent
1138 + Properties}
1139 +
1140 + Time-dependent properties are usually calculated using \emph{time
1141 + correlation function}, which correlates random variables $A$ and $B$
1142 + at two different time
1143 + \begin{equation}
1144 + C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1145 + \label{introEquation:timeCorrelationFunction}
1146 + \end{equation}
1147 + If $A$ and $B$ refer to same variable, this kind of correlation
1148 + function is called \emph{auto correlation function}. One example of
1149 + auto correlation function is velocity auto-correlation function
1150 + which is directly related to transport properties of molecular
1151 + liquids:
1152 + \[
1153 + D = \frac{1}{3}\int\limits_0^\infty  {\left\langle {v(t) \cdot v(0)}
1154 + \right\rangle } dt
1155 + \]
1156 + where $D$ is diffusion constant. Unlike velocity autocorrelation
1157 + function which is averaging over time origins and over all the
1158 + atoms, dipole autocorrelation are calculated for the entire system.
1159 + The dipole autocorrelation function is given by:
1160 + \[
1161 + c_{dipole}  = \left\langle {u_{tot} (t) \cdot u_{tot} (t)}
1162 + \right\rangle
1163 + \]
1164 + Here $u_{tot}$ is the net dipole of the entire system and is given
1165 + by
1166 + \[
1167 + u_{tot} (t) = \sum\limits_i {u_i (t)}
1168 + \]
1169 + In principle, many time correlation functions can be related with
1170 + Fourier transforms of the infrared, Raman, and inelastic neutron
1171 + scattering spectra of molecular liquids. In practice, one can
1172 + extract the IR spectrum from the intensity of dipole fluctuation at
1173 + each frequency using the following relationship:
1174 + \[
1175 + \hat c_{dipole} (v) = \int_{ - \infty }^\infty  {c_{dipole} (t)e^{ -
1176 + i2\pi vt} dt}
1177 + \]
1178 +
1179   \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1180  
1181   Rigid bodies are frequently involved in the modeling of different
# Line 917 | Line 1184 | protein-protein docking study{\cite{Gray03}}.
1184   movement of the objects in 3D gaming engine or other physics
1185   simulator is governed by the rigid body dynamics. In molecular
1186   simulation, rigid body is used to simplify the model in
1187 < protein-protein docking study{\cite{Gray03}}.
1187 > protein-protein docking study{\cite{Gray2003}}.
1188  
1189   It is very important to develop stable and efficient methods to
1190   integrate the equations of motion of orientational degrees of
# Line 942 | Line 1209 | rotation matrix $A$ and re-formulating Hamiltonian's e
1209   The break through in geometric literature suggests that, in order to
1210   develop a long-term integration scheme, one should preserve the
1211   symplectic structure of the flow. Introducing conjugate momentum to
1212 < rotation matrix $A$ and re-formulating Hamiltonian's equation, a
1212 > rotation matrix $Q$ and re-formulating Hamiltonian's equation, a
1213   symplectic integrator, RSHAKE, was proposed to evolve the
1214   Hamiltonian system in a constraint manifold by iteratively
1215 < satisfying the orthogonality constraint $A_t A = 1$. An alternative
1215 > satisfying the orthogonality constraint $Q_T Q = 1$. An alternative
1216   method using quaternion representation was developed by Omelyan.
1217   However, both of these methods are iterative and inefficient. In
1218   this section, we will present a symplectic Lie-Poisson integrator
1219   for rigid body developed by Dullweber and his
1220 < coworkers\cite{Dullweber1997}.
1220 > coworkers\cite{Dullweber1997} in depth.
1221  
955 \subsection{\label{introSection:lieAlgebra}Lie Algebra}
956
1222   \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
1223 <
1223 > The motion of the rigid body is Hamiltonian with the Hamiltonian
1224 > function
1225   \begin{equation}
1226   H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1227   V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
# Line 970 | Line 1236 | Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
1236   where $I_{ii}$ is the diagonal element of the inertia tensor. This
1237   constrained Hamiltonian equation subjects to a holonomic constraint,
1238   \begin{equation}
1239 < Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
1239 > Q^T Q = 1, \label{introEquation:orthogonalConstraint}
1240   \end{equation}
1241   which is used to ensure rotation matrix's orthogonality.
1242   Differentiating \ref{introEquation:orthogonalConstraint} and using
# Line 995 | Line 1261 | simply evolve the system in constraint manifold. The t
1261   In general, there are two ways to satisfy the holonomic constraints.
1262   We can use constraint force provided by lagrange multiplier on the
1263   normal manifold to keep the motion on constraint space. Or we can
1264 < simply evolve the system in constraint manifold. The two method are
1265 < proved to be equivalent. The holonomic constraint and equations of
1266 < motions define a constraint manifold for rigid body
1264 > simply evolve the system in constraint manifold. These two methods
1265 > are proved to be equivalent. The holonomic constraint and equations
1266 > of motions define a constraint manifold for rigid body
1267   \[
1268   M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
1269   \right\}.
# Line 1027 | Line 1293 | Hence,
1293   \[
1294   V(q,Q) = V(Q X_0 + q).
1295   \]
1296 < Hence,
1296 > Hence, the force and torque are given by
1297   \[
1298 < \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)}
1298 > \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1299   \]
1300 <
1300 > and
1301   \[
1302   \nabla _Q V(q,Q) = F(q,Q)X_i^t
1303   \]
1304 + respectively.
1305  
1306   As a common choice to describe the rotation dynamics of the rigid
1307   body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
# Line 1080 | Line 1347 | Since $\Lambda$ is symmetric, the last term of Equatio
1347   (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1348   \end{equation}
1349   Since $\Lambda$ is symmetric, the last term of Equation
1350 < \ref{introEquation:skewMatrixPI}, which implies the Lagrange
1351 < multiplier $\Lambda$ is ignored in the integration.
1350 > \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1351 > multiplier $\Lambda$ is absent from the equations of motion. This
1352 > unique property eliminate the requirement of iterations which can
1353 > not be avoided in other methods\cite{}.
1354  
1355 < Hence, applying hat-map isomorphism, we obtain the equation of
1356 < motion for angular momentum on body frame
1357 < \[
1358 < \dot \pi  = \pi  \times I^{ - 1} \pi  + Q^T \sum\limits_i {F_i (r,Q)
1359 < \times X_i }
1360 < \]
1355 > Applying hat-map isomorphism, we obtain the equation of motion for
1356 > angular momentum on body frame
1357 > \begin{equation}
1358 > \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1359 > F_i (r,Q)} \right) \times X_i }.
1360 > \label{introEquation:bodyAngularMotion}
1361 > \end{equation}
1362   In the same manner, the equation of motion for rotation matrix is
1363   given by
1364   \[
1365 < \dot Q = Qskew(M^{ - 1} \pi )
1365 > \dot Q = Qskew(I^{ - 1} \pi )
1366   \]
1367  
1368 < The free rigid body equation is an example of a non-canonical
1369 < Hamiltonian system.
1368 > \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1369 > Lie-Poisson Integrator for Free Rigid Body}
1370  
1371 < \subsection{\label{introSection:symplecticDiscretizationRB}Symplectic Integration of Euler Equations}
1371 > If there is not external forces exerted on the rigid body, the only
1372 > contribution to the rotational is from the kinetic potential (the
1373 > first term of \ref{ introEquation:bodyAngularMotion}). The free
1374 > rigid body is an example of Lie-Poisson system with Hamiltonian
1375 > function
1376 > \begin{equation}
1377 > T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1378 > \label{introEquation:rotationalKineticRB}
1379 > \end{equation}
1380 > where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1381 > Lie-Poisson structure matrix,
1382 > \begin{equation}
1383 > J(\pi ) = \left( {\begin{array}{*{20}c}
1384 >   0 & {\pi _3 } & { - \pi _2 }  \\
1385 >   { - \pi _3 } & 0 & {\pi _1 }  \\
1386 >   {\pi _2 } & { - \pi _1 } & 0  \\
1387 > \end{array}} \right)
1388 > \end{equation}
1389 > Thus, the dynamics of free rigid body is governed by
1390 > \begin{equation}
1391 > \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi )
1392 > \end{equation}
1393  
1394 < \[
1395 < \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1396 < _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}
1394 > One may notice that each $T_i^r$ in Equation
1395 > \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1396 > instance, the equations of motion due to $T_1^r$ are given by
1397 > \begin{equation}
1398 > \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1399 > \label{introEqaution:RBMotionSingleTerm}
1400 > \end{equation}
1401 > where
1402 > \[ R_1  = \left( {\begin{array}{*{20}c}
1403 >   0 & 0 & 0  \\
1404 >   0 & 0 & {\pi _1 }  \\
1405 >   0 & { - \pi _1 } & 0  \\
1406 > \end{array}} \right).
1407   \]
1408 <
1408 > The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1409   \[
1410 < \varphi _{\Delta t,T}  = \varphi _{\Delta t,R}  \circ \varphi
1411 < _{\Delta t,\pi }
1410 > \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1411 > Q(0)e^{\Delta tR_1 }
1412 > \]
1413 > with
1414 > \[
1415 > e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1416 >   0 & 0 & 0  \\
1417 >   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1418 >   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1419 > \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1420   \]
1421 + To reduce the cost of computing expensive functions in $e^{\Delta
1422 + tR_1 }$, we can use Cayley transformation,
1423 + \[
1424 + e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1425 + )
1426 + \]
1427 + The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1428 + manner.
1429  
1430 + In order to construct a second-order symplectic method, we split the
1431 + angular kinetic Hamiltonian function can into five terms
1432   \[
1433 < \varphi _{\Delta t,\pi }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1433 > T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1434 > ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1435 > (\pi _1 )
1436 > \].
1437 > Concatenating flows corresponding to these five terms, we can obtain
1438 > an symplectic integrator,
1439 > \[
1440 > \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1441   \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1442   \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1443 < _1 }
1443 > _1 }.
1444   \]
1445  
1446 + The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1447 + $F(\pi )$ and $G(\pi )$ is defined by
1448   \[
1449 + \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1450 + )
1451 + \]
1452 + If the Poisson bracket of a function $F$ with an arbitrary smooth
1453 + function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1454 + conserved quantity in Poisson system. We can easily verify that the
1455 + norm of the angular momentum, $\parallel \pi
1456 + \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1457 + \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1458 + then by the chain rule
1459 + \[
1460 + \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1461 + }}{2})\pi
1462 + \]
1463 + Thus $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel \pi
1464 + \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1465 + Lie-Poisson integrator is found to be extremely efficient and stable
1466 + which can be explained by the fact the small angle approximation is
1467 + used and the norm of the angular momentum is conserved.
1468 +
1469 + \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1470 + Splitting for Rigid Body}
1471 +
1472 + The Hamiltonian of rigid body can be separated in terms of kinetic
1473 + energy and potential energy,
1474 + \[
1475 + H = T(p,\pi ) + V(q,Q)
1476 + \]
1477 + The equations of motion corresponding to potential energy and
1478 + kinetic energy are listed in the below table,
1479 + \begin{table}
1480 + \caption{Equations of motion due to Potential and Kinetic Energies}
1481 + \begin{center}
1482 + \begin{tabular}{|l|l|}
1483 +  \hline
1484 +  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1485 +  Potential & Kinetic \\
1486 +  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1487 +  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1488 +  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1489 +  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1490 +  \hline
1491 + \end{tabular}
1492 + \end{center}
1493 + \end{table}
1494 + A second-order symplectic method is now obtained by the
1495 + composition of the flow maps,
1496 + \[
1497 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1498 + _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1499 + \]
1500 + Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1501 + sub-flows which corresponding to force and torque respectively,
1502 + \[
1503   \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1504 < _{\Delta t/2,\tau }
1504 > _{\Delta t/2,\tau }.
1505   \]
1506 + Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1507 + $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1508 + order inside $\varphi _{\Delta t/2,V}$ does not matter.
1509  
1510 + Furthermore, kinetic potential can be separated to translational
1511 + kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1512 + \begin{equation}
1513 + T(p,\pi ) =T^t (p) + T^r (\pi ).
1514 + \end{equation}
1515 + where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1516 + defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1517 + corresponding flow maps are given by
1518 + \[
1519 + \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1520 + _{\Delta t,T^r }.
1521 + \]
1522 + Finally, we obtain the overall symplectic flow maps for free moving
1523 + rigid body
1524 + \begin{equation}
1525 + \begin{array}{c}
1526 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \\
1527 +  \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \\
1528 +  \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1529 + \end{array}
1530 + \label{introEquation:overallRBFlowMaps}
1531 + \end{equation}
1532  
1533   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1534 + As an alternative to newtonian dynamics, Langevin dynamics, which
1535 + mimics a simple heat bath with stochastic and dissipative forces,
1536 + has been applied in a variety of studies. This section will review
1537 + the theory of Langevin dynamics simulation. A brief derivation of
1538 + generalized Langevin equation will be given first. Follow that, we
1539 + will discuss the physical meaning of the terms appearing in the
1540 + equation as well as the calculation of friction tensor from
1541 + hydrodynamics theory.
1542  
1543 < \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
1543 > \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1544  
1545 < \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
1546 <
1545 > Harmonic bath model, in which an effective set of harmonic
1546 > oscillators are used to mimic the effect of a linearly responding
1547 > environment, has been widely used in quantum chemistry and
1548 > statistical mechanics. One of the successful applications of
1549 > Harmonic bath model is the derivation of Deriving Generalized
1550 > Langevin Dynamics. Lets consider a system, in which the degree of
1551 > freedom $x$ is assumed to couple to the bath linearly, giving a
1552 > Hamiltonian of the form
1553   \begin{equation}
1554   H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1555 < \label{introEquation:bathGLE}
1555 > \label{introEquation:bathGLE}.
1556   \end{equation}
1557 < where $H_B$ is harmonic bath Hamiltonian,
1557 > Here $p$ is a momentum conjugate to $q$, $m$ is the mass associated
1558 > with this degree of freedom, $H_B$ is harmonic bath Hamiltonian,
1559   \[
1560 < H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1561 < }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
1560 > H_B  = \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1561 > }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  \omega _\alpha ^2 }
1562 > \right\}}
1563   \]
1564 < and $\Delta U$ is bilinear system-bath coupling,
1564 > where the index $\alpha$ runs over all the bath degrees of freedom,
1565 > $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1566 > the harmonic bath masses, and $\Delta U$ is bilinear system-bath
1567 > coupling,
1568   \[
1569   \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1570   \]
1571 < Completing the square,
1571 > where $g_\alpha$ are the coupling constants between the bath and the
1572 > coordinate $x$. Introducing
1573   \[
1574 < H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
1575 < {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1576 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1577 < w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
1578 < 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1152 < \]
1153 < and putting it back into Eq.~\ref{introEquation:bathGLE},
1574 > W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1575 > }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1576 > \] and combining the last two terms in Equation
1577 > \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1578 > Hamiltonian as
1579   \[
1580   H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1581   {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1582   w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1583   w_\alpha ^2 }}x} \right)^2 } \right\}}
1584   \]
1160 where
1161 \[
1162 W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1163 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1164 \]
1585   Since the first two terms of the new Hamiltonian depend only on the
1586   system coordinates, we can get the equations of motion for
1587   Generalized Langevin Dynamics by Hamilton's equations
1588   \ref{introEquation:motionHamiltonianCoordinate,
1589   introEquation:motionHamiltonianMomentum},
1590 < \begin{align}
1591 < \dot p &=  - \frac{{\partial H}}{{\partial x}}
1592 <       &= m\ddot x
1593 <       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
1594 < \label{introEquation:Lp5}
1595 < \end{align}
1596 < , and
1597 < \begin{align}
1598 < \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
1599 <                &= m\ddot x_\alpha
1600 <                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
1601 < \end{align}
1590 > \begin{equation}
1591 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1592 > \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   -
1593 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)},
1594 > \label{introEquation:coorMotionGLE}
1595 > \end{equation}
1596 > and
1597 > \begin{equation}
1598 > m\ddot x_\alpha   =  - m_\alpha  w_\alpha ^2 \left( {x_\alpha   -
1599 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right).
1600 > \label{introEquation:bathMotionGLE}
1601 > \end{equation}
1602  
1603 < \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
1603 > In order to derive an equation for $x$, the dynamics of the bath
1604 > variables $x_\alpha$ must be solved exactly first. As an integral
1605 > transform which is particularly useful in solving linear ordinary
1606 > differential equations, Laplace transform is the appropriate tool to
1607 > solve this problem. The basic idea is to transform the difficult
1608 > differential equations into simple algebra problems which can be
1609 > solved easily. Then applying inverse Laplace transform, also known
1610 > as the Bromwich integral, we can retrieve the solutions of the
1611 > original problems.
1612  
1613 + Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1614 + transform of f(t) is a new function defined as
1615   \[
1616 < L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
1616 > L(f(t)) \equiv F(p) = \int_0^\infty  {f(t)e^{ - pt} dt}
1617   \]
1618 + where  $p$ is real and  $L$ is called the Laplace Transform
1619 + Operator. Below are some important properties of Laplace transform
1620 + \begin{equation}
1621 + \begin{array}{c}
1622 + L(x + y) = L(x) + L(y) \\
1623 + L(ax) = aL(x) \\
1624 + L(\dot x) = pL(x) - px(0) \\
1625 + L(\ddot x) = p^2 L(x) - px(0) - \dot x(0) \\
1626 + L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p) \\
1627 + \end{array}
1628 + \end{equation}
1629  
1630 + Applying Laplace transform to the bath coordinates, we obtain
1631   \[
1632 < L(x + y) = L(x) + L(y)
1632 > \begin{array}{c}
1633 > p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) \\
1634 > L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }} \\
1635 > \end{array}
1636   \]
1637 <
1637 > By the same way, the system coordinates become
1638   \[
1639 < L(ax) = aL(x)
1639 > \begin{array}{c}
1640 > mL(\ddot x) =  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1641 >  - \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0) - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}  \\
1642 > \end{array}
1643   \]
1644  
1645 + With the help of some relatively important inverse Laplace
1646 + transformations:
1647   \[
1648 < L(\dot x) = pL(x) - px(0)
1648 > \begin{array}{c}
1649 > L(\cos at) = \frac{p}{{p^2  + a^2 }} \\
1650 > L(\sin at) = \frac{a}{{p^2  + a^2 }} \\
1651 > L(1) = \frac{1}{p} \\
1652 > \end{array}
1653   \]
1654 <
1201 < \[
1202 < L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
1203 < \]
1204 <
1205 < \[
1206 < L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
1207 < \]
1208 <
1209 < Some relatively important transformation,
1210 < \[
1211 < L(\cos at) = \frac{p}{{p^2  + a^2 }}
1212 < \]
1213 <
1214 < \[
1215 < L(\sin at) = \frac{a}{{p^2  + a^2 }}
1216 < \]
1217 <
1218 < \[
1219 < L(1) = \frac{1}{p}
1220 < \]
1221 <
1222 < First, the bath coordinates,
1223 < \[
1224 < p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
1225 < _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
1226 < }}L(x)
1227 < \]
1228 < \[
1229 < L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
1230 < px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
1231 < \]
1232 < Then, the system coordinates,
1654 > , we obtain
1655   \begin{align}
1234 mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1235 \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
1236 }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
1237 (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
1238 }}\omega _\alpha ^2 L(x)} \right\}}
1239 %
1240 &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1241 \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
1242 - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
1243 - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
1244 \end{align}
1245 Then, the inverse transform,
1246
1247 \begin{align}
1656   m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
1657   \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1658   }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
# Line 1263 | Line 1671 | t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  =
1671   (\omega _\alpha  t)} \right\}}
1672   \end{align}
1673  
1674 + Introducing a \emph{dynamic friction kernel}
1675   \begin{equation}
1676 + \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1677 + }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1678 + \label{introEquation:dynamicFrictionKernelDefinition}
1679 + \end{equation}
1680 + and \emph{a random force}
1681 + \begin{equation}
1682 + R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1683 + - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1684 + \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1685 + (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t),
1686 + \label{introEquation:randomForceDefinition}
1687 + \end{equation}
1688 + the equation of motion can be rewritten as
1689 + \begin{equation}
1690   m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1691   (t)\dot x(t - \tau )d\tau }  + R(t)
1692   \label{introEuqation:GeneralizedLangevinDynamics}
1693   \end{equation}
1694 < %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1695 < %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
1694 > which is known as the \emph{generalized Langevin equation}.
1695 >
1696 > \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}Random Force and Dynamic Friction Kernel}
1697 >
1698 > One may notice that $R(t)$ depends only on initial conditions, which
1699 > implies it is completely deterministic within the context of a
1700 > harmonic bath. However, it is easy to verify that $R(t)$ is totally
1701 > uncorrelated to $x$ and $\dot x$,
1702   \[
1703 < \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1704 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1703 > \begin{array}{l}
1704 > \left\langle {x(t)R(t)} \right\rangle  = 0, \\
1705 > \left\langle {\dot x(t)R(t)} \right\rangle  = 0. \\
1706 > \end{array}
1707   \]
1708 < For an infinite harmonic bath, we can use the spectral density and
1709 < an integral over frequencies.
1708 > This property is what we expect from a truly random process. As long
1709 > as the model, which is gaussian distribution in general, chosen for
1710 > $R(t)$ is a truly random process, the stochastic nature of the GLE
1711 > still remains.
1712  
1713 + %dynamic friction kernel
1714 + The convolution integral
1715   \[
1716 < R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1282 < - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1283 < \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1284 < (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
1716 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1717   \]
1718 < The random forces depend only on initial conditions.
1718 > depends on the entire history of the evolution of $x$, which implies
1719 > that the bath retains memory of previous motions. In other words,
1720 > the bath requires a finite time to respond to change in the motion
1721 > of the system. For a sluggish bath which responds slowly to changes
1722 > in the system coordinate, we may regard $\xi(t)$ as a constant
1723 > $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1724 > \[
1725 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = \xi _0 (x(t) - x(0))
1726 > \]
1727 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1728 > \[
1729 > m\ddot x =  - \frac{\partial }{{\partial x}}\left( {W(x) +
1730 > \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1731 > \]
1732 > which can be used to describe dynamic caging effect. The other
1733 > extreme is the bath that responds infinitely quickly to motions in
1734 > the system. Thus, $\xi (t)$ can be taken as a $delta$ function in
1735 > time:
1736 > \[
1737 > \xi (t) = 2\xi _0 \delta (t)
1738 > \]
1739 > Hence, the convolution integral becomes
1740 > \[
1741 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = 2\xi _0 \int_0^t
1742 > {\delta (t)\dot x(t - \tau )d\tau }  = \xi _0 \dot x(t),
1743 > \]
1744 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1745 > \begin{equation}
1746 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1747 > x(t) + R(t) \label{introEquation:LangevinEquation}
1748 > \end{equation}
1749 > which is known as the Langevin equation. The static friction
1750 > coefficient $\xi _0$ can either be calculated from spectral density
1751 > or be determined by Stokes' law for regular shaped particles.A
1752 > briefly review on calculating friction tensor for arbitrary shaped
1753 > particles is given in Sec.~\ref{introSection:frictionTensor}.
1754  
1755   \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1756 < So we can define a new set of coordinates,
1756 >
1757 > Defining a new set of coordinates,
1758   \[
1759   q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1760   ^2 }}x(0)
1761 < \]
1762 < This makes
1761 > \],
1762 > we can rewrite $R(T)$ as
1763   \[
1764 < R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
1764 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}.
1765   \]
1766   And since the $q$ coordinates are harmonic oscillators,
1767   \[
1768 < \begin{array}{l}
1768 > \begin{array}{c}
1769 > \left\langle {q_\alpha ^2 } \right\rangle  = \frac{{kT}}{{m_\alpha  \omega _\alpha ^2 }} \\
1770   \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1771   \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1772 + \left\langle {R(t)R(0)} \right\rangle  = \sum\limits_\alpha  {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle } }  \\
1773 +  = \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t)}  \\
1774 +  = kT\xi (t) \\
1775   \end{array}
1776   \]
1777 <
1306 < \begin{align}
1307 < \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
1308 < {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
1309 < (t)q_\beta  (0)} \right\rangle } }
1310 < %
1311 < &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
1312 < \right\rangle \cos (\omega _\alpha  t)}
1313 < %
1314 < &= kT\xi (t)
1315 < \end{align}
1316 <
1777 > Thus, we recover the \emph{second fluctuation dissipation theorem}
1778   \begin{equation}
1779   \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1780 < \label{introEquation:secondFluctuationDissipation}
1780 > \label{introEquation:secondFluctuationDissipation}.
1781   \end{equation}
1782 + In effect, it acts as a constraint on the possible ways in which one
1783 + can model the random force and friction kernel.
1784  
1322 \section{\label{introSection:hydroynamics}Hydrodynamics}
1323
1785   \subsection{\label{introSection:frictionTensor} Friction Tensor}
1786 < \subsection{\label{introSection:analyticalApproach}Analytical
1787 < Approach}
1786 > Theoretically, the friction kernel can be determined using velocity
1787 > autocorrelation function. However, this approach become impractical
1788 > when the system become more and more complicate. Instead, various
1789 > approaches based on hydrodynamics have been developed to calculate
1790 > the friction coefficients. The friction effect is isotropic in
1791 > Equation, $\zeta$ can be taken as a scalar. In general, friction
1792 > tensor $\Xi$ is a $6\times 6$ matrix given by
1793 > \[
1794 > \Xi  = \left( {\begin{array}{*{20}c}
1795 >   {\Xi _{}^{tt} } & {\Xi _{}^{rt} }  \\
1796 >   {\Xi _{}^{tr} } & {\Xi _{}^{rr} }  \\
1797 > \end{array}} \right).
1798 > \]
1799 > Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1800 > tensor and rotational resistance (friction) tensor respectively,
1801 > while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1802 > {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1803 > particle moves in a fluid, it may experience friction force or
1804 > torque along the opposite direction of the velocity or angular
1805 > velocity,
1806 > \[
1807 > \left( \begin{array}{l}
1808 > F_R  \\
1809 > \tau _R  \\
1810 > \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1811 >   {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1812 >   {\Xi ^{tr} } & {\Xi ^{rr} }  \\
1813 > \end{array}} \right)\left( \begin{array}{l}
1814 > v \\
1815 > w \\
1816 > \end{array} \right)
1817 > \]
1818 > where $F_r$ is the friction force and $\tau _R$ is the friction
1819 > toque.
1820  
1821 < \subsection{\label{introSection:approximationApproach}Approximation
1329 < Approach}
1821 > \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1822  
1823 < \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1824 < Body}
1823 > For a spherical particle, the translational and rotational friction
1824 > constant can be calculated from Stoke's law,
1825 > \[
1826 > \Xi ^{tt}  = \left( {\begin{array}{*{20}c}
1827 >   {6\pi \eta R} & 0 & 0  \\
1828 >   0 & {6\pi \eta R} & 0  \\
1829 >   0 & 0 & {6\pi \eta R}  \\
1830 > \end{array}} \right)
1831 > \]
1832 > and
1833 > \[
1834 > \Xi ^{rr}  = \left( {\begin{array}{*{20}c}
1835 >   {8\pi \eta R^3 } & 0 & 0  \\
1836 >   0 & {8\pi \eta R^3 } & 0  \\
1837 >   0 & 0 & {8\pi \eta R^3 }  \\
1838 > \end{array}} \right)
1839 > \]
1840 > where $\eta$ is the viscosity of the solvent and $R$ is the
1841 > hydrodynamics radius.
1842  
1843 < \section{\label{introSection:correlationFunctions}Correlation Functions}
1843 > Other non-spherical shape, such as cylinder and ellipsoid
1844 > \textit{etc}, are widely used as reference for developing new
1845 > hydrodynamics theory, because their properties can be calculated
1846 > exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1847 > also called a triaxial ellipsoid, which is given in Cartesian
1848 > coordinates by
1849 > \[
1850 > \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1851 > }} = 1
1852 > \]
1853 > where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1854 > due to the complexity of the elliptic integral, only the ellipsoid
1855 > with the restriction of two axes having to be equal, \textit{i.e.}
1856 > prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1857 > exactly. Introducing an elliptic integral parameter $S$ for prolate,
1858 > \[
1859 > S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1860 > } }}{b},
1861 > \]
1862 > and oblate,
1863 > \[
1864 > S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1865 > }}{a}
1866 > \],
1867 > one can write down the translational and rotational resistance
1868 > tensors
1869 > \[
1870 > \begin{array}{l}
1871 > \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1872 > \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1873 > \end{array},
1874 > \]
1875 > and
1876 > \[
1877 > \begin{array}{l}
1878 > \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1879 > \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1880 > \end{array}.
1881 > \]
1882 >
1883 > \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1884 >
1885 > Unlike spherical and other regular shaped molecules, there is not
1886 > analytical solution for friction tensor of any arbitrary shaped
1887 > rigid molecules. The ellipsoid of revolution model and general
1888 > triaxial ellipsoid model have been used to approximate the
1889 > hydrodynamic properties of rigid bodies. However, since the mapping
1890 > from all possible ellipsoidal space, $r$-space, to all possible
1891 > combination of rotational diffusion coefficients, $D$-space is not
1892 > unique\cite{Wegener1979} as well as the intrinsic coupling between
1893 > translational and rotational motion of rigid body\cite{}, general
1894 > ellipsoid is not always suitable for modeling arbitrarily shaped
1895 > rigid molecule. A number of studies have been devoted to determine
1896 > the friction tensor for irregularly shaped rigid bodies using more
1897 > advanced method\cite{} where the molecule of interest was modeled by
1898 > combinations of spheres(beads)\cite{} and the hydrodynamics
1899 > properties of the molecule can be calculated using the hydrodynamic
1900 > interaction tensor. Let us consider a rigid assembly of $N$ beads
1901 > immersed in a continuous medium. Due to hydrodynamics interaction,
1902 > the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1903 > unperturbed velocity $v_i$,
1904 > \[
1905 > v'_i  = v_i  - \sum\limits_{j \ne i} {T_{ij} F_j }
1906 > \]
1907 > where $F_i$ is the frictional force, and $T_{ij}$ is the
1908 > hydrodynamic interaction tensor. The friction force of $i$th bead is
1909 > proportional to its ``net'' velocity
1910 > \begin{equation}
1911 > F_i  = \zeta _i v_i  - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1912 > \label{introEquation:tensorExpression}
1913 > \end{equation}
1914 > This equation is the basis for deriving the hydrodynamic tensor. In
1915 > 1930, Oseen and Burgers gave a simple solution to Equation
1916 > \ref{introEquation:tensorExpression}
1917 > \begin{equation}
1918 > T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1919 > R_{ij}^T }}{{R_{ij}^2 }}} \right).
1920 > \label{introEquation:oseenTensor}
1921 > \end{equation}
1922 > Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1923 > A second order expression for element of different size was
1924 > introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1925 > la Torre and Bloomfield,
1926 > \begin{equation}
1927 > T_{ij}  = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1928 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1929 > _i^2  + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1930 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1931 > \label{introEquation:RPTensorNonOverlapped}
1932 > \end{equation}
1933 > Both of the Equation \ref{introEquation:oseenTensor} and Equation
1934 > \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1935 > \ge \sigma _i  + \sigma _j$. An alternative expression for
1936 > overlapping beads with the same radius, $\sigma$, is given by
1937 > \begin{equation}
1938 > T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1939 > \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1940 > \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1941 > \label{introEquation:RPTensorOverlapped}
1942 > \end{equation}
1943 >
1944 > To calculate the resistance tensor at an arbitrary origin $O$, we
1945 > construct a $3N \times 3N$ matrix consisting of $N \times N$
1946 > $B_{ij}$ blocks
1947 > \begin{equation}
1948 > B = \left( {\begin{array}{*{20}c}
1949 >   {B_{11} } &  \ldots  & {B_{1N} }  \\
1950 >    \vdots  &  \ddots  &  \vdots   \\
1951 >   {B_{N1} } &  \cdots  & {B_{NN} }  \\
1952 > \end{array}} \right),
1953 > \end{equation}
1954 > where $B_{ij}$ is given by
1955 > \[
1956 > B_{ij}  = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1957 > )T_{ij}
1958 > \]
1959 > where $\delta _{ij}$ is Kronecker delta function. Inverting matrix
1960 > $B$, we obtain
1961 >
1962 > \[
1963 > C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1964 >   {C_{11} } &  \ldots  & {C_{1N} }  \\
1965 >    \vdots  &  \ddots  &  \vdots   \\
1966 >   {C_{N1} } &  \cdots  & {C_{NN} }  \\
1967 > \end{array}} \right)
1968 > \]
1969 > , which can be partitioned into $N \times N$ $3 \times 3$ block
1970 > $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1971 > \[
1972 > U_i  = \left( {\begin{array}{*{20}c}
1973 >   0 & { - z_i } & {y_i }  \\
1974 >   {z_i } & 0 & { - x_i }  \\
1975 >   { - y_i } & {x_i } & 0  \\
1976 > \end{array}} \right)
1977 > \]
1978 > where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1979 > bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1980 > arbitrary origin $O$ can be written as
1981 > \begin{equation}
1982 > \begin{array}{l}
1983 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1984 > \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1985 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1986 > \end{array}
1987 > \label{introEquation:ResistanceTensorArbitraryOrigin}
1988 > \end{equation}
1989 >
1990 > The resistance tensor depends on the origin to which they refer. The
1991 > proper location for applying friction force is the center of
1992 > resistance (reaction), at which the trace of rotational resistance
1993 > tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1994 > resistance is defined as an unique point of the rigid body at which
1995 > the translation-rotation coupling tensor are symmetric,
1996 > \begin{equation}
1997 > \Xi^{tr}  = \left( {\Xi^{tr} } \right)^T
1998 > \label{introEquation:definitionCR}
1999 > \end{equation}
2000 > Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
2001 > we can easily find out that the translational resistance tensor is
2002 > origin independent, while the rotational resistance tensor and
2003 > translation-rotation coupling resistance tensor depend on the
2004 > origin. Given resistance tensor at an arbitrary origin $O$, and a
2005 > vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
2006 > obtain the resistance tensor at $P$ by
2007 > \begin{equation}
2008 > \begin{array}{l}
2009 > \Xi _P^{tt}  = \Xi _O^{tt}  \\
2010 > \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
2011 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{tr} ^{^T }  \\
2012 > \end{array}
2013 > \label{introEquation:resistanceTensorTransformation}
2014 > \end{equation}
2015 > where
2016 > \[
2017 > U_{OP}  = \left( {\begin{array}{*{20}c}
2018 >   0 & { - z_{OP} } & {y_{OP} }  \\
2019 >   {z_i } & 0 & { - x_{OP} }  \\
2020 >   { - y_{OP} } & {x_{OP} } & 0  \\
2021 > \end{array}} \right)
2022 > \]
2023 > Using Equations \ref{introEquation:definitionCR} and
2024 > \ref{introEquation:resistanceTensorTransformation}, one can locate
2025 > the position of center of resistance,
2026 > \[
2027 > \left( \begin{array}{l}
2028 > x_{OR}  \\
2029 > y_{OR}  \\
2030 > z_{OR}  \\
2031 > \end{array} \right) = \left( {\begin{array}{*{20}c}
2032 >   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
2033 >   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
2034 >   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
2035 > \end{array}} \right)^{ - 1} \left( \begin{array}{l}
2036 > (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
2037 > (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
2038 > (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
2039 > \end{array} \right).
2040 > \]
2041 > where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
2042 > joining center of resistance $R$ and origin $O$.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines