ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2713 by tim, Sat Apr 15 01:08:18 2006 UTC vs.
Revision 2716 by tim, Mon Apr 17 20:39:26 2006 UTC

# Line 1247 | Line 1247 | rigid body
1247   \end{equation}
1248  
1249   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1250 <
1251 < \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
1250 > As an alternative to newtonian dynamics, Langevin dynamics, which
1251 > mimics a simple heat bath with stochastic and dissipative forces,
1252 > has been applied in a variety of studies. This section will review
1253 > the theory of Langevin dynamics simulation. A brief derivation of
1254 > generalized Langevin Dynamics will be given first. Follow that, we
1255 > will discuss the physical meaning of the terms appearing in the
1256 > equation as well as the calculation of friction tensor from
1257 > hydrodynamics theory.
1258  
1259   \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
1260  
# Line 1442 | Line 1448 | And since the $q$ coordinates are harmonic oscillators
1448   \label{introEquation:secondFluctuationDissipation}
1449   \end{equation}
1450  
1445 \section{\label{introSection:hydroynamics}Hydrodynamics}
1446
1451   \subsection{\label{introSection:frictionTensor} Friction Tensor}
1452 < \subsection{\label{introSection:analyticalApproach}Analytical
1453 < Approach}
1454 <
1455 < \subsection{\label{introSection:approximationApproach}Approximation
1456 < Approach}
1452 > Theoretically, the friction kernel can be determined using velocity
1453 > autocorrelation function. However, this approach become impractical
1454 > when the system become more and more complicate. Instead, various
1455 > approaches based on hydrodynamics have been developed to calculate
1456 > the friction coefficients. The friction effect is isotropic in
1457 > Equation, \zeta can be taken as a scalar. In general, friction
1458 > tensor \Xi is a $6\times 6$ matrix given by
1459 > \[
1460 > \Xi  = \left( {\begin{array}{*{20}c}
1461 >   {\Xi _{}^{tt} } & {\Xi _{}^{rt} }  \\
1462 >   {\Xi _{}^{tr} } & {\Xi _{}^{rr} }  \\
1463 > \end{array}} \right).
1464 > \]
1465 > Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1466 > tensor and rotational friction tensor respectively, while ${\Xi^{tr}
1467 > }$ is translation-rotation coupling tensor and $ {\Xi^{rt} }$ is
1468 > rotation-translation coupling tensor.
1469  
1470 < \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1471 < Body}
1470 > \[
1471 > \left( \begin{array}{l}
1472 > F_t  \\
1473 > \tau  \\
1474 > \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1475 >   {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1476 >   {\Xi ^{tr} } & {\Xi ^{rr} }  \\
1477 > \end{array}} \right)\left( \begin{array}{l}
1478 > v \\
1479 > w \\
1480 > \end{array} \right)
1481 > \]
1482 >
1483 > \subsubsection{\label{introSection:analyticalApproach}The Friction Tensor for Regular Shape}
1484 > For a spherical particle, the translational and rotational friction
1485 > constant can be calculated from Stoke's law,
1486 > \[
1487 > \Xi ^{tt}  = \left( {\begin{array}{*{20}c}
1488 >   {6\pi \eta R} & 0 & 0  \\
1489 >   0 & {6\pi \eta R} & 0  \\
1490 >   0 & 0 & {6\pi \eta R}  \\
1491 > \end{array}} \right)
1492 > \]
1493 > and
1494 > \[
1495 > \Xi ^{rr}  = \left( {\begin{array}{*{20}c}
1496 >   {8\pi \eta R^3 } & 0 & 0  \\
1497 >   0 & {8\pi \eta R^3 } & 0  \\
1498 >   0 & 0 & {8\pi \eta R^3 }  \\
1499 > \end{array}} \right)
1500 > \]
1501 > where $\eta$ is the viscosity of the solvent and $R$ is the
1502 > hydrodynamics radius.
1503  
1504 < \section{\label{introSection:correlationFunctions}Correlation Functions}
1504 > Other non-spherical particles have more complex properties.
1505 >
1506 > \[
1507 > S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1508 > } }}{b}
1509 > \]
1510 >
1511 >
1512 > \[
1513 > S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1514 > }}{a}
1515 > \]
1516 >
1517 > \[
1518 > \begin{array}{l}
1519 > \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1520 > \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1521 > \end{array}
1522 > \]
1523 >
1524 > \[
1525 > \begin{array}{l}
1526 > \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1527 > \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1528 > \end{array}
1529 > \]
1530 >
1531 >
1532 > \subsubsection{\label{introSection:approximationApproach}The Friction Tensor for Arbitrary Shape}
1533 > Unlike spherical and other regular shaped molecules, there is not
1534 > analytical solution for friction tensor of any arbitrary shaped
1535 > rigid molecules. The ellipsoid of revolution model and general
1536 > triaxial ellipsoid model have been used to approximate the
1537 > hydrodynamic properties of rigid bodies. However, since the mapping
1538 > from all possible ellipsoidal space, $r$-space, to all possible
1539 > combination of rotational diffusion coefficients, $D$-space is not
1540 > unique\cite{Wegener79} as well as the intrinsic coupling between
1541 > translational and rotational motion of rigid body\cite{}, general
1542 > ellipsoid is not always suitable for modeling arbitrarily shaped
1543 > rigid molecule. A number of studies have been devoted to determine
1544 > the friction tensor for irregularly shaped rigid bodies using more
1545 > advanced method\cite{} where the molecule of interest was modeled by
1546 > combinations of spheres(beads)\cite{} and the hydrodynamics
1547 > properties of the molecule can be calculated using the hydrodynamic
1548 > interaction tensor. Let us consider a rigid assembly of $N$ beads
1549 > immersed in a continuous medium. Due to hydrodynamics interaction,
1550 > the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1551 > unperturbed velocity $v_i$,
1552 > \[
1553 > v'_i  = v_i  - \sum\limits_{j \ne i} {T_{ij} F_j }
1554 > \]
1555 > where $F_i$ is the frictional force, and $T_{ij}$ is the
1556 > hydrodynamic interaction tensor. The friction force of $i$th bead is
1557 > proportional to its ``net'' velocity
1558 > \begin{equation}
1559 > F_i  = \zeta _i v_i  - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1560 > \label{introEquation:tensorExpression}
1561 > \end{equation}
1562 > This equation is the basis for deriving the hydrodynamic tensor. In
1563 > 1930, Oseen and Burgers gave a simple solution to Equation
1564 > \ref{introEquation:tensorExpression}
1565 > \begin{equation}
1566 > T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1567 > R_{ij}^T }}{{R_{ij}^2 }}} \right).
1568 > \label{introEquation:oseenTensor}
1569 > \end{equation}
1570 > Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1571 > A second order expression for element of different size was
1572 > introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1573 > la Torre and Bloomfield,
1574 > \begin{equation}
1575 > T_{ij}  = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1576 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1577 > _i^2  + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1578 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1579 > \label{introEquation:RPTensorNonOverlapped}
1580 > \end{equation}
1581 > Both of the Equation \ref{introEquation:oseenTensor} and Equation
1582 > \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1583 > \ge \sigma _i  + \sigma _j$. An alternative expression for
1584 > overlapping beads with the same radius, $\sigma$, is given by
1585 > \begin{equation}
1586 > T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1587 > \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1588 > \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1589 > \label{introEquation:RPTensorOverlapped}
1590 > \end{equation}
1591 >
1592 > %Bead Modeling
1593 >
1594 > \[
1595 > B = \left( {\begin{array}{*{20}c}
1596 >   {T_{11} } &  \ldots  & {T_{1N} }  \\
1597 >    \vdots  &  \ddots  &  \vdots   \\
1598 >   {T_{N1} } &  \cdots  & {T_{NN} }  \\
1599 > \end{array}} \right)
1600 > \]
1601 >
1602 > \[
1603 > C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1604 >   {C_{11} } &  \ldots  & {C_{1N} }  \\
1605 >    \vdots  &  \ddots  &  \vdots   \\
1606 >   {C_{N1} } &  \cdots  & {C_{NN} }  \\
1607 > \end{array}} \right)
1608 > \]
1609 >
1610 > \begin{equation}
1611 > \begin{array}{l}
1612 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1613 > \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1614 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1615 > \end{array}
1616 > \end{equation}
1617 > where
1618 > \[
1619 > U_i  = \left( {\begin{array}{*{20}c}
1620 >   0 & { - z_i } & {y_i }  \\
1621 >   {z_i } & 0 & { - x_i }  \\
1622 >   { - y_i } & {x_i } & 0  \\
1623 > \end{array}} \right)
1624 > \]
1625 >
1626 > \[
1627 > r_{OR}  = \left( \begin{array}{l}
1628 > x_{OR}  \\
1629 > y_{OR}  \\
1630 > z_{OR}  \\
1631 > \end{array} \right) = \left( {\begin{array}{*{20}c}
1632 >   {\Xi _{yy}^{rr}  + \Xi _{zz}^{rr} } & { - \Xi _{xy}^{rr} } & { - \Xi _{xz}^{rr} }  \\
1633 >   { - \Xi _{yx}^{rr} } & {\Xi _{zz}^{rr}  + \Xi _{xx}^{rr} } & { - \Xi _{yz}^{rr} }  \\
1634 >   { - \Xi _{zx}^{rr} } & { - \Xi _{yz}^{rr} } & {\Xi _{xx}^{rr}  + \Xi _{yy}^{rr} }  \\
1635 > \end{array}} \right)^{ - 1} \left( \begin{array}{l}
1636 > \Xi _{yz}^{tr}  - \Xi _{zy}^{tr}  \\
1637 > \Xi _{zx}^{tr}  - \Xi _{xz}^{tr}  \\
1638 > \Xi _{xy}^{tr}  - \Xi _{yx}^{tr}  \\
1639 > \end{array} \right)
1640 > \]
1641 >
1642 > \[
1643 > U_{OR}  = \left( {\begin{array}{*{20}c}
1644 >   0 & { - z_{OR} } & {y_{OR} }  \\
1645 >   {z_i } & 0 & { - x_{OR} }  \\
1646 >   { - y_{OR} } & {x_{OR} } & 0  \\
1647 > \end{array}} \right)
1648 > \]
1649 >
1650 > \[
1651 > \begin{array}{l}
1652 > \Xi _R^{tt}  = \Xi _{}^{tt}  \\
1653 > \Xi _R^{tr}  = \Xi _R^{rt}  = \Xi _{}^{tr}  - U_{OR} \Xi _{}^{tt}  \\
1654 > \Xi _R^{rr}  = \Xi _{}^{rr}  - U_{OR} \Xi _{}^{tt} U_{OR}  + \Xi _{}^{tr} U_{OR}  - U_{OR} \Xi _{}^{tr} ^{^T }  \\
1655 > \end{array}
1656 > \]
1657 >
1658 > \[
1659 > D_R  = \left( {\begin{array}{*{20}c}
1660 >   {D_R^{tt} } & {D_R^{rt} }  \\
1661 >   {D_R^{tr} } & {D_R^{rr} }  \\
1662 > \end{array}} \right) = k_b T\left( {\begin{array}{*{20}c}
1663 >   {\Xi _R^{tt} } & {\Xi _R^{rt} }  \\
1664 >   {\Xi _R^{tr} } & {\Xi _R^{rr} }  \\
1665 > \end{array}} \right)^{ - 1}
1666 > \]
1667 >
1668 >
1669 > %Approximation Methods
1670 >
1671 > %\section{\label{introSection:correlationFunctions}Correlation Functions}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines