ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2716 by tim, Mon Apr 17 20:39:26 2006 UTC vs.
Revision 2718 by tim, Tue Apr 18 04:11:56 2006 UTC

# Line 1463 | Line 1463 | tensor and rotational friction tensor respectively, wh
1463   \end{array}} \right).
1464   \]
1465   Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1466 < tensor and rotational friction tensor respectively, while ${\Xi^{tr}
1467 < }$ is translation-rotation coupling tensor and $ {\Xi^{rt} }$ is
1468 < rotation-translation coupling tensor.
1469 <
1466 > tensor and rotational resistance (friction) tensor respectively,
1467 > while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1468 > {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1469 > particle moves in a fluid, it may experience friction force or
1470 > torque along the opposite direction of the velocity or angular
1471 > velocity,
1472   \[
1473   \left( \begin{array}{l}
1474 < F_t  \\
1475 < \tau  \\
1474 > F_R  \\
1475 > \tau _R  \\
1476   \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1477     {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1478     {\Xi ^{tr} } & {\Xi ^{rr} }  \\
# Line 1479 | Line 1481 | rotation-translation coupling tensor.
1481   w \\
1482   \end{array} \right)
1483   \]
1484 + where $F_r$ is the friction force and $\tau _R$ is the friction
1485 + toque.
1486  
1487 < \subsubsection{\label{introSection:analyticalApproach}The Friction Tensor for Regular Shape}
1487 > \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1488 >
1489   For a spherical particle, the translational and rotational friction
1490   constant can be calculated from Stoke's law,
1491   \[
# Line 1501 | Line 1506 | Other non-spherical particles have more complex proper
1506   where $\eta$ is the viscosity of the solvent and $R$ is the
1507   hydrodynamics radius.
1508  
1509 < Other non-spherical particles have more complex properties.
1510 <
1509 > Other non-spherical shape, such as cylinder and ellipsoid
1510 > \textit{etc}, are widely used as reference for developing new
1511 > hydrodynamics theory, because their properties can be calculated
1512 > exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1513 > also called a triaxial ellipsoid, which is given in Cartesian
1514 > coordinates by
1515   \[
1516 + \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1517 + }} = 1
1518 + \]
1519 + where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1520 + due to the complexity of the elliptic integral, only the ellipsoid
1521 + with the restriction of two axes having to be equal, \textit{i.e.}
1522 + prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1523 + exactly. Introducing an elliptic integral parameter $S$ for prolate,
1524 + \[
1525   S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1526 < } }}{b}
1526 > } }}{b},
1527   \]
1528 <
1511 <
1528 > and oblate,
1529   \[
1530   S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1531   }}{a}
1532 < \]
1533 <
1532 > \],
1533 > one can write down the translational and rotational resistance
1534 > tensors
1535   \[
1536   \begin{array}{l}
1537   \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1538   \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1539 < \end{array}
1539 > \end{array},
1540   \]
1541 <
1541 > and
1542   \[
1543   \begin{array}{l}
1544   \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1545   \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1546 < \end{array}
1546 > \end{array}.
1547   \]
1548  
1549 + \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1550  
1532 \subsubsection{\label{introSection:approximationApproach}The Friction Tensor for Arbitrary Shape}
1551   Unlike spherical and other regular shaped molecules, there is not
1552   analytical solution for friction tensor of any arbitrary shaped
1553   rigid molecules. The ellipsoid of revolution model and general
# Line 1589 | Line 1607 | T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left(
1607   \label{introEquation:RPTensorOverlapped}
1608   \end{equation}
1609  
1610 < %Bead Modeling
1611 <
1612 < \[
1610 > To calculate the resistance tensor at an arbitrary origin $O$, we
1611 > construct a $3N \times 3N$ matrix consisting of $N \times N$
1612 > $B_{ij}$ blocks
1613 > \begin{equation}
1614   B = \left( {\begin{array}{*{20}c}
1615 <   {T_{11} } &  \ldots  & {T_{1N} }  \\
1615 >   {B_{11} } &  \ldots  & {B_{1N} }  \\
1616      \vdots  &  \ddots  &  \vdots   \\
1617 <   {T_{N1} } &  \cdots  & {T_{NN} }  \\
1618 < \end{array}} \right)
1617 >   {B_{N1} } &  \cdots  & {B_{NN} }  \\
1618 > \end{array}} \right),
1619 > \end{equation}
1620 > where $B_{ij}$ is given by
1621 > \[
1622 > B_{ij}  = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1623 > )T_{ij}
1624   \]
1625 + where \delta _{ij} is Kronecker delta function. Inverting matrix
1626 + $B$, we obtain
1627  
1628   \[
1629   C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
# Line 1606 | Line 1632 | C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1632     {C_{N1} } &  \cdots  & {C_{NN} }  \\
1633   \end{array}} \right)
1634   \]
1635 <
1635 > , which can be partitioned into $N \times N$ $3 \times 3$ block
1636 > $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1637 > \[
1638 > U_i  = \left( {\begin{array}{*{20}c}
1639 >   0 & { - z_i } & {y_i }  \\
1640 >   {z_i } & 0 & { - x_i }  \\
1641 >   { - y_i } & {x_i } & 0  \\
1642 > \end{array}} \right)
1643 > \]
1644 > where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1645 > bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1646 > arbitrary origin $O$ can be written as
1647   \begin{equation}
1648   \begin{array}{l}
1649   \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1650   \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1651   \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1652   \end{array}
1653 + \label{introEquation:ResistanceTensorArbitraryOrigin}
1654   \end{equation}
1655 +
1656 + The resistance tensor depends on the origin to which they refer. The
1657 + proper location for applying friction force is the center of
1658 + resistance (reaction), at which the trace of rotational resistance
1659 + tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1660 + resistance is defined as an unique point of the rigid body at which
1661 + the translation-rotation coupling tensor are symmetric,
1662 + \begin{equation}
1663 + \Xi^{tr}  = \left( {\Xi^{tr} } \right)^T
1664 + \label{introEquation:definitionCR}
1665 + \end{equation}
1666 + Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
1667 + we can easily find out that the translational resistance tensor is
1668 + origin independent, while the rotational resistance tensor and
1669 + translation-rotation coupling resistance tensor do depend on the
1670 + origin. Given resistance tensor at an arbitrary origin $O$, and a
1671 + vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
1672 + obtain the resistance tensor at $P$ by
1673 + \begin{equation}
1674 + \begin{array}{l}
1675 + \Xi _P^{tt}  = \Xi _O^{tt}  \\
1676 + \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
1677 + \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{tr} ^{^T }  \\
1678 + \end{array}
1679 + \label{introEquation:resistanceTensorTransformation}
1680 + \end{equation}
1681   where
1682   \[
1683 < U_i  = \left( {\begin{array}{*{20}c}
1684 <   0 & { - z_i } & {y_i }  \\
1685 <   {z_i } & 0 & { - x_i }  \\
1686 <   { - y_i } & {x_i } & 0  \\
1683 > U_{OP}  = \left( {\begin{array}{*{20}c}
1684 >   0 & { - z_{OP} } & {y_{OP} }  \\
1685 >   {z_i } & 0 & { - x_{OP} }  \\
1686 >   { - y_{OP} } & {x_{OP} } & 0  \\
1687   \end{array}} \right)
1688   \]
1689 <
1689 > Using Equations \ref{introEquation:definitionCR} and
1690 > \ref{introEquation:resistanceTensorTransformation}, one can locate
1691 > the position of center of resistance,
1692   \[
1693 < r_{OR}  = \left( \begin{array}{l}
1693 > \left( \begin{array}{l}
1694   x_{OR}  \\
1695   y_{OR}  \\
1696   z_{OR}  \\
1697   \end{array} \right) = \left( {\begin{array}{*{20}c}
1698 <   {\Xi _{yy}^{rr}  + \Xi _{zz}^{rr} } & { - \Xi _{xy}^{rr} } & { - \Xi _{xz}^{rr} }  \\
1699 <   { - \Xi _{yx}^{rr} } & {\Xi _{zz}^{rr}  + \Xi _{xx}^{rr} } & { - \Xi _{yz}^{rr} }  \\
1700 <   { - \Xi _{zx}^{rr} } & { - \Xi _{yz}^{rr} } & {\Xi _{xx}^{rr}  + \Xi _{yy}^{rr} }  \\
1698 >   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
1699 >   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
1700 >   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
1701   \end{array}} \right)^{ - 1} \left( \begin{array}{l}
1702 < \Xi _{yz}^{tr}  - \Xi _{zy}^{tr}  \\
1703 < \Xi _{zx}^{tr}  - \Xi _{xz}^{tr}  \\
1704 < \Xi _{xy}^{tr}  - \Xi _{yx}^{tr}  \\
1705 < \end{array} \right)
1702 > (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
1703 > (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
1704 > (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
1705 > \end{array} \right).
1706   \]
1707 + where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
1708 + joining center of resistance $R$ and origin $O$.
1709  
1642 \[
1643 U_{OR}  = \left( {\begin{array}{*{20}c}
1644   0 & { - z_{OR} } & {y_{OR} }  \\
1645   {z_i } & 0 & { - x_{OR} }  \\
1646   { - y_{OR} } & {x_{OR} } & 0  \\
1647 \end{array}} \right)
1648 \]
1649
1650 \[
1651 \begin{array}{l}
1652 \Xi _R^{tt}  = \Xi _{}^{tt}  \\
1653 \Xi _R^{tr}  = \Xi _R^{rt}  = \Xi _{}^{tr}  - U_{OR} \Xi _{}^{tt}  \\
1654 \Xi _R^{rr}  = \Xi _{}^{rr}  - U_{OR} \Xi _{}^{tt} U_{OR}  + \Xi _{}^{tr} U_{OR}  - U_{OR} \Xi _{}^{tr} ^{^T }  \\
1655 \end{array}
1656 \]
1657
1658 \[
1659 D_R  = \left( {\begin{array}{*{20}c}
1660   {D_R^{tt} } & {D_R^{rt} }  \\
1661   {D_R^{tr} } & {D_R^{rr} }  \\
1662 \end{array}} \right) = k_b T\left( {\begin{array}{*{20}c}
1663   {\Xi _R^{tt} } & {\Xi _R^{rt} }  \\
1664   {\Xi _R^{tr} } & {\Xi _R^{rr} }  \\
1665 \end{array}} \right)^{ - 1}
1666 \]
1667
1668
1669 %Approximation Methods
1670
1710   %\section{\label{introSection:correlationFunctions}Correlation Functions}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines