ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2706 by tim, Thu Apr 13 04:47:47 2006 UTC vs.
Revision 2718 by tim, Tue Apr 18 04:11:56 2006 UTC

# Line 570 | Line 570 | The free rigid body is an example of Poisson system (a
570   \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571   \end{equation}
572   The most obvious change being that matrix $J$ now depends on $x$.
573 The free rigid body is an example of Poisson system (actually a
574 Lie-Poisson system) with Hamiltonian function of angular kinetic
575 energy.
576 \begin{equation}
577 J(\pi ) = \left( {\begin{array}{*{20}c}
578   0 & {\pi _3 } & { - \pi _2 }  \\
579   { - \pi _3 } & 0 & {\pi _1 }  \\
580   {\pi _2 } & { - \pi _1 } & 0  \\
581 \end{array}} \right)
582 \end{equation}
583
584 \begin{equation}
585 H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
586 }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
587 \end{equation}
573  
574   \subsection{\label{introSection:exactFlow}Exact Flow}
575  
# Line 949 | Line 934 | for rigid body developed by Dullweber and his coworker
934   method using quaternion representation was developed by Omelyan.
935   However, both of these methods are iterative and inefficient. In
936   this section, we will present a symplectic Lie-Poisson integrator
937 < for rigid body developed by Dullweber and his coworkers\cite{}.
938 <
954 < \subsection{\label{introSection:lieAlgebra}Lie Algebra}
937 > for rigid body developed by Dullweber and his
938 > coworkers\cite{Dullweber1997} in depth.
939  
940   \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
941 <
941 > The motion of the rigid body is Hamiltonian with the Hamiltonian
942 > function
943   \begin{equation}
944   H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
945   V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
# Line 975 | Line 960 | Q^t PJ^{ - 1}  + J^{ - 1} P^t Q = 0 . \\
960   Differentiating \ref{introEquation:orthogonalConstraint} and using
961   Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
962   \begin{equation}
963 < Q^t PJ^{ - 1}  + J^{ - 1} P^t Q = 0 . \\
963 > Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
964   \label{introEquation:RBFirstOrderConstraint}
965   \end{equation}
966  
# Line 987 | Line 972 | the equations of motion,
972   \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
973   \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
974   \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
975 < \frac{{dP}}{{dt}} =  - \nabla _q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
975 > \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
976   \end{array}
977   \]
978  
979 + In general, there are two ways to satisfy the holonomic constraints.
980 + We can use constraint force provided by lagrange multiplier on the
981 + normal manifold to keep the motion on constraint space. Or we can
982 + simply evolve the system in constraint manifold. The two method are
983 + proved to be equivalent. The holonomic constraint and equations of
984 + motions define a constraint manifold for rigid body
985 + \[
986 + M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
987 + \right\}.
988 + \]
989  
990 + Unfortunately, this constraint manifold is not the cotangent bundle
991 + $T_{\star}SO(3)$. However, it turns out that under symplectic
992 + transformation, the cotangent space and the phase space are
993 + diffeomorphic. Introducing
994   \[
995 < M = \left\{ {(Q,P):Q^T Q = 1,Q^t PJ^{ - 1}  + J^{ - 1} P^t Q = 0}
997 < \right\} .
995 > \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
996   \]
997 + the mechanical system subject to a holonomic constraint manifold $M$
998 + can be re-formulated as a Hamiltonian system on the cotangent space
999 + \[
1000 + T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1001 + 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1002 + \]
1003  
1004 < \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
1004 > For a body fixed vector $X_i$ with respect to the center of mass of
1005 > the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1006 > given as
1007 > \begin{equation}
1008 > X_i^{lab} = Q X_i + q.
1009 > \end{equation}
1010 > Therefore, potential energy $V(q,Q)$ is defined by
1011 > \[
1012 > V(q,Q) = V(Q X_0 + q).
1013 > \]
1014 > Hence, the force and torque are given by
1015 > \[
1016 > \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1017 > \]
1018 > and
1019 > \[
1020 > \nabla _Q V(q,Q) = F(q,Q)X_i^t
1021 > \]
1022 > respectively.
1023  
1024 < \subsection{\label{introSection:symplecticDiscretizationRB}Symplectic Discretization of Euler Equations}
1024 > As a common choice to describe the rotation dynamics of the rigid
1025 > body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
1026 > rewrite the equations of motion,
1027 > \begin{equation}
1028 > \begin{array}{l}
1029 > \mathop \Pi \limits^ \bullet   = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda  \\
1030 > \mathop Q\limits^{{\rm{   }} \bullet }  = Q\Pi {\rm{ }}J^{ - 1}  \\
1031 > \end{array}
1032 > \label{introEqaution:RBMotionPI}
1033 > \end{equation}
1034 > , as well as holonomic constraints,
1035 > \[
1036 > \begin{array}{l}
1037 > \Pi J^{ - 1}  + J^{ - 1} \Pi ^t  = 0 \\
1038 > Q^T Q = 1 \\
1039 > \end{array}
1040 > \]
1041  
1042 + For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1043 + so(3)^ \star$, the hat-map isomorphism,
1044 + \begin{equation}
1045 + v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1046 + {\begin{array}{*{20}c}
1047 +   0 & { - v_3 } & {v_2 }  \\
1048 +   {v_3 } & 0 & { - v_1 }  \\
1049 +   { - v_2 } & {v_1 } & 0  \\
1050 + \end{array}} \right),
1051 + \label{introEquation:hatmapIsomorphism}
1052 + \end{equation}
1053 + will let us associate the matrix products with traditional vector
1054 + operations
1055 + \[
1056 + \hat vu = v \times u
1057 + \]
1058  
1059 < \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1059 > Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1060 > matrix,
1061 > \begin{equation}
1062 > (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ \bullet  ^T
1063 > ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1064 > - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1065 > (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1066 > \end{equation}
1067 > Since $\Lambda$ is symmetric, the last term of Equation
1068 > \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1069 > multiplier $\Lambda$ is absent from the equations of motion. This
1070 > unique property eliminate the requirement of iterations which can
1071 > not be avoided in other methods\cite{}.
1072  
1073 < \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
1073 > Applying hat-map isomorphism, we obtain the equation of motion for
1074 > angular momentum on body frame
1075 > \begin{equation}
1076 > \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1077 > F_i (r,Q)} \right) \times X_i }.
1078 > \label{introEquation:bodyAngularMotion}
1079 > \end{equation}
1080 > In the same manner, the equation of motion for rotation matrix is
1081 > given by
1082 > \[
1083 > \dot Q = Qskew(I^{ - 1} \pi )
1084 > \]
1085 >
1086 > \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1087 > Lie-Poisson Integrator for Free Rigid Body}
1088 >
1089 > If there is not external forces exerted on the rigid body, the only
1090 > contribution to the rotational is from the kinetic potential (the
1091 > first term of \ref{ introEquation:bodyAngularMotion}). The free
1092 > rigid body is an example of Lie-Poisson system with Hamiltonian
1093 > function
1094 > \begin{equation}
1095 > T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1096 > \label{introEquation:rotationalKineticRB}
1097 > \end{equation}
1098 > where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1099 > Lie-Poisson structure matrix,
1100 > \begin{equation}
1101 > J(\pi ) = \left( {\begin{array}{*{20}c}
1102 >   0 & {\pi _3 } & { - \pi _2 }  \\
1103 >   { - \pi _3 } & 0 & {\pi _1 }  \\
1104 >   {\pi _2 } & { - \pi _1 } & 0  \\
1105 > \end{array}} \right)
1106 > \end{equation}
1107 > Thus, the dynamics of free rigid body is governed by
1108 > \begin{equation}
1109 > \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi )
1110 > \end{equation}
1111  
1112 + One may notice that each $T_i^r$ in Equation
1113 + \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1114 + instance, the equations of motion due to $T_1^r$ are given by
1115 + \begin{equation}
1116 + \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1117 + \label{introEqaution:RBMotionSingleTerm}
1118 + \end{equation}
1119 + where
1120 + \[ R_1  = \left( {\begin{array}{*{20}c}
1121 +   0 & 0 & 0  \\
1122 +   0 & 0 & {\pi _1 }  \\
1123 +   0 & { - \pi _1 } & 0  \\
1124 + \end{array}} \right).
1125 + \]
1126 + The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1127 + \[
1128 + \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1129 + Q(0)e^{\Delta tR_1 }
1130 + \]
1131 + with
1132 + \[
1133 + e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1134 +   0 & 0 & 0  \\
1135 +   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1136 +   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1137 + \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1138 + \]
1139 + To reduce the cost of computing expensive functions in e^{\Delta
1140 + tR_1 }, we can use Cayley transformation,
1141 + \[
1142 + e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1143 + )
1144 + \]
1145 +
1146 + The flow maps for $T_2^r$ and $T_2^r$ can be found in the same
1147 + manner.
1148 +
1149 + In order to construct a second-order symplectic method, we split the
1150 + angular kinetic Hamiltonian function can into five terms
1151 + \[
1152 + T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1153 + ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1154 + (\pi _1 )
1155 + \].
1156 + Concatenating flows corresponding to these five terms, we can obtain
1157 + an symplectic integrator,
1158 + \[
1159 + \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1160 + \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1161 + \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1162 + _1 }.
1163 + \]
1164 +
1165 + The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1166 + $F(\pi )$ and $G(\pi )$ is defined by
1167 + \[
1168 + \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1169 + )
1170 + \]
1171 + If the Poisson bracket of a function $F$ with an arbitrary smooth
1172 + function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1173 + conserved quantity in Poisson system. We can easily verify that the
1174 + norm of the angular momentum, $\parallel \pi
1175 + \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1176 + \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1177 + then by the chain rule
1178 + \[
1179 + \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1180 + }}{2})\pi
1181 + \]
1182 + Thus $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel \pi
1183 + \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1184 + Lie-Poisson integrator is found to be extremely efficient and stable
1185 + which can be explained by the fact the small angle approximation is
1186 + used and the norm of the angular momentum is conserved.
1187 +
1188 + \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1189 + Splitting for Rigid Body}
1190 +
1191 + The Hamiltonian of rigid body can be separated in terms of kinetic
1192 + energy and potential energy,
1193 + \[
1194 + H = T(p,\pi ) + V(q,Q)
1195 + \]
1196 + The equations of motion corresponding to potential energy and
1197 + kinetic energy are listed in the below table,
1198 + \begin{center}
1199 + \begin{tabular}{|l|l|}
1200 +  \hline
1201 +  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1202 +  Potential & Kinetic \\
1203 +  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1204 +  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1205 +  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1206 +  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1207 +  \hline
1208 + \end{tabular}
1209 + \end{center}
1210 + A second-order symplectic method is now obtained by the composition
1211 + of the flow maps,
1212 + \[
1213 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1214 + _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1215 + \]
1216 + Moreover, \varphi _{\Delta t/2,V} can be divided into two sub-flows
1217 + which corresponding to force and torque respectively,
1218 + \[
1219 + \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1220 + _{\Delta t/2,\tau }.
1221 + \]
1222 + Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1223 + $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1224 + order inside \varphi _{\Delta t/2,V} does not matter.
1225 +
1226 + Furthermore, kinetic potential can be separated to translational
1227 + kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1228 + \begin{equation}
1229 + T(p,\pi ) =T^t (p) + T^r (\pi ).
1230 + \end{equation}
1231 + where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1232 + defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1233 + corresponding flow maps are given by
1234 + \[
1235 + \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1236 + _{\Delta t,T^r }.
1237 + \]
1238 + Finally, we obtain the overall symplectic flow maps for free moving
1239 + rigid body
1240 + \begin{equation}
1241 + \begin{array}{c}
1242 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \\
1243 +  \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \\
1244 +  \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1245 + \end{array}
1246 + \label{introEquation:overallRBFlowMaps}
1247 + \end{equation}
1248 +
1249 + \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1250 + As an alternative to newtonian dynamics, Langevin dynamics, which
1251 + mimics a simple heat bath with stochastic and dissipative forces,
1252 + has been applied in a variety of studies. This section will review
1253 + the theory of Langevin dynamics simulation. A brief derivation of
1254 + generalized Langevin Dynamics will be given first. Follow that, we
1255 + will discuss the physical meaning of the terms appearing in the
1256 + equation as well as the calculation of friction tensor from
1257 + hydrodynamics theory.
1258 +
1259   \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
1260  
1261   \begin{equation}
# Line 1198 | Line 1448 | And since the $q$ coordinates are harmonic oscillators
1448   \label{introEquation:secondFluctuationDissipation}
1449   \end{equation}
1450  
1201 \section{\label{introSection:hydroynamics}Hydrodynamics}
1202
1451   \subsection{\label{introSection:frictionTensor} Friction Tensor}
1452 < \subsection{\label{introSection:analyticalApproach}Analytical
1453 < Approach}
1452 > Theoretically, the friction kernel can be determined using velocity
1453 > autocorrelation function. However, this approach become impractical
1454 > when the system become more and more complicate. Instead, various
1455 > approaches based on hydrodynamics have been developed to calculate
1456 > the friction coefficients. The friction effect is isotropic in
1457 > Equation, \zeta can be taken as a scalar. In general, friction
1458 > tensor \Xi is a $6\times 6$ matrix given by
1459 > \[
1460 > \Xi  = \left( {\begin{array}{*{20}c}
1461 >   {\Xi _{}^{tt} } & {\Xi _{}^{rt} }  \\
1462 >   {\Xi _{}^{tr} } & {\Xi _{}^{rr} }  \\
1463 > \end{array}} \right).
1464 > \]
1465 > Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1466 > tensor and rotational resistance (friction) tensor respectively,
1467 > while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1468 > {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1469 > particle moves in a fluid, it may experience friction force or
1470 > torque along the opposite direction of the velocity or angular
1471 > velocity,
1472 > \[
1473 > \left( \begin{array}{l}
1474 > F_R  \\
1475 > \tau _R  \\
1476 > \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1477 >   {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1478 >   {\Xi ^{tr} } & {\Xi ^{rr} }  \\
1479 > \end{array}} \right)\left( \begin{array}{l}
1480 > v \\
1481 > w \\
1482 > \end{array} \right)
1483 > \]
1484 > where $F_r$ is the friction force and $\tau _R$ is the friction
1485 > toque.
1486  
1487 < \subsection{\label{introSection:approximationApproach}Approximation
1208 < Approach}
1487 > \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1488  
1489 < \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1490 < Body}
1489 > For a spherical particle, the translational and rotational friction
1490 > constant can be calculated from Stoke's law,
1491 > \[
1492 > \Xi ^{tt}  = \left( {\begin{array}{*{20}c}
1493 >   {6\pi \eta R} & 0 & 0  \\
1494 >   0 & {6\pi \eta R} & 0  \\
1495 >   0 & 0 & {6\pi \eta R}  \\
1496 > \end{array}} \right)
1497 > \]
1498 > and
1499 > \[
1500 > \Xi ^{rr}  = \left( {\begin{array}{*{20}c}
1501 >   {8\pi \eta R^3 } & 0 & 0  \\
1502 >   0 & {8\pi \eta R^3 } & 0  \\
1503 >   0 & 0 & {8\pi \eta R^3 }  \\
1504 > \end{array}} \right)
1505 > \]
1506 > where $\eta$ is the viscosity of the solvent and $R$ is the
1507 > hydrodynamics radius.
1508  
1509 < \section{\label{introSection:correlationFunctions}Correlation Functions}
1509 > Other non-spherical shape, such as cylinder and ellipsoid
1510 > \textit{etc}, are widely used as reference for developing new
1511 > hydrodynamics theory, because their properties can be calculated
1512 > exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1513 > also called a triaxial ellipsoid, which is given in Cartesian
1514 > coordinates by
1515 > \[
1516 > \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1517 > }} = 1
1518 > \]
1519 > where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1520 > due to the complexity of the elliptic integral, only the ellipsoid
1521 > with the restriction of two axes having to be equal, \textit{i.e.}
1522 > prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1523 > exactly. Introducing an elliptic integral parameter $S$ for prolate,
1524 > \[
1525 > S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1526 > } }}{b},
1527 > \]
1528 > and oblate,
1529 > \[
1530 > S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1531 > }}{a}
1532 > \],
1533 > one can write down the translational and rotational resistance
1534 > tensors
1535 > \[
1536 > \begin{array}{l}
1537 > \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1538 > \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1539 > \end{array},
1540 > \]
1541 > and
1542 > \[
1543 > \begin{array}{l}
1544 > \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1545 > \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1546 > \end{array}.
1547 > \]
1548 >
1549 > \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1550 >
1551 > Unlike spherical and other regular shaped molecules, there is not
1552 > analytical solution for friction tensor of any arbitrary shaped
1553 > rigid molecules. The ellipsoid of revolution model and general
1554 > triaxial ellipsoid model have been used to approximate the
1555 > hydrodynamic properties of rigid bodies. However, since the mapping
1556 > from all possible ellipsoidal space, $r$-space, to all possible
1557 > combination of rotational diffusion coefficients, $D$-space is not
1558 > unique\cite{Wegener79} as well as the intrinsic coupling between
1559 > translational and rotational motion of rigid body\cite{}, general
1560 > ellipsoid is not always suitable for modeling arbitrarily shaped
1561 > rigid molecule. A number of studies have been devoted to determine
1562 > the friction tensor for irregularly shaped rigid bodies using more
1563 > advanced method\cite{} where the molecule of interest was modeled by
1564 > combinations of spheres(beads)\cite{} and the hydrodynamics
1565 > properties of the molecule can be calculated using the hydrodynamic
1566 > interaction tensor. Let us consider a rigid assembly of $N$ beads
1567 > immersed in a continuous medium. Due to hydrodynamics interaction,
1568 > the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1569 > unperturbed velocity $v_i$,
1570 > \[
1571 > v'_i  = v_i  - \sum\limits_{j \ne i} {T_{ij} F_j }
1572 > \]
1573 > where $F_i$ is the frictional force, and $T_{ij}$ is the
1574 > hydrodynamic interaction tensor. The friction force of $i$th bead is
1575 > proportional to its ``net'' velocity
1576 > \begin{equation}
1577 > F_i  = \zeta _i v_i  - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1578 > \label{introEquation:tensorExpression}
1579 > \end{equation}
1580 > This equation is the basis for deriving the hydrodynamic tensor. In
1581 > 1930, Oseen and Burgers gave a simple solution to Equation
1582 > \ref{introEquation:tensorExpression}
1583 > \begin{equation}
1584 > T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1585 > R_{ij}^T }}{{R_{ij}^2 }}} \right).
1586 > \label{introEquation:oseenTensor}
1587 > \end{equation}
1588 > Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1589 > A second order expression for element of different size was
1590 > introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1591 > la Torre and Bloomfield,
1592 > \begin{equation}
1593 > T_{ij}  = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1594 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1595 > _i^2  + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1596 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1597 > \label{introEquation:RPTensorNonOverlapped}
1598 > \end{equation}
1599 > Both of the Equation \ref{introEquation:oseenTensor} and Equation
1600 > \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1601 > \ge \sigma _i  + \sigma _j$. An alternative expression for
1602 > overlapping beads with the same radius, $\sigma$, is given by
1603 > \begin{equation}
1604 > T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1605 > \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1606 > \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1607 > \label{introEquation:RPTensorOverlapped}
1608 > \end{equation}
1609 >
1610 > To calculate the resistance tensor at an arbitrary origin $O$, we
1611 > construct a $3N \times 3N$ matrix consisting of $N \times N$
1612 > $B_{ij}$ blocks
1613 > \begin{equation}
1614 > B = \left( {\begin{array}{*{20}c}
1615 >   {B_{11} } &  \ldots  & {B_{1N} }  \\
1616 >    \vdots  &  \ddots  &  \vdots   \\
1617 >   {B_{N1} } &  \cdots  & {B_{NN} }  \\
1618 > \end{array}} \right),
1619 > \end{equation}
1620 > where $B_{ij}$ is given by
1621 > \[
1622 > B_{ij}  = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1623 > )T_{ij}
1624 > \]
1625 > where \delta _{ij} is Kronecker delta function. Inverting matrix
1626 > $B$, we obtain
1627 >
1628 > \[
1629 > C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1630 >   {C_{11} } &  \ldots  & {C_{1N} }  \\
1631 >    \vdots  &  \ddots  &  \vdots   \\
1632 >   {C_{N1} } &  \cdots  & {C_{NN} }  \\
1633 > \end{array}} \right)
1634 > \]
1635 > , which can be partitioned into $N \times N$ $3 \times 3$ block
1636 > $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1637 > \[
1638 > U_i  = \left( {\begin{array}{*{20}c}
1639 >   0 & { - z_i } & {y_i }  \\
1640 >   {z_i } & 0 & { - x_i }  \\
1641 >   { - y_i } & {x_i } & 0  \\
1642 > \end{array}} \right)
1643 > \]
1644 > where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1645 > bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1646 > arbitrary origin $O$ can be written as
1647 > \begin{equation}
1648 > \begin{array}{l}
1649 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1650 > \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1651 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1652 > \end{array}
1653 > \label{introEquation:ResistanceTensorArbitraryOrigin}
1654 > \end{equation}
1655 >
1656 > The resistance tensor depends on the origin to which they refer. The
1657 > proper location for applying friction force is the center of
1658 > resistance (reaction), at which the trace of rotational resistance
1659 > tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1660 > resistance is defined as an unique point of the rigid body at which
1661 > the translation-rotation coupling tensor are symmetric,
1662 > \begin{equation}
1663 > \Xi^{tr}  = \left( {\Xi^{tr} } \right)^T
1664 > \label{introEquation:definitionCR}
1665 > \end{equation}
1666 > Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
1667 > we can easily find out that the translational resistance tensor is
1668 > origin independent, while the rotational resistance tensor and
1669 > translation-rotation coupling resistance tensor do depend on the
1670 > origin. Given resistance tensor at an arbitrary origin $O$, and a
1671 > vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
1672 > obtain the resistance tensor at $P$ by
1673 > \begin{equation}
1674 > \begin{array}{l}
1675 > \Xi _P^{tt}  = \Xi _O^{tt}  \\
1676 > \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
1677 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{tr} ^{^T }  \\
1678 > \end{array}
1679 > \label{introEquation:resistanceTensorTransformation}
1680 > \end{equation}
1681 > where
1682 > \[
1683 > U_{OP}  = \left( {\begin{array}{*{20}c}
1684 >   0 & { - z_{OP} } & {y_{OP} }  \\
1685 >   {z_i } & 0 & { - x_{OP} }  \\
1686 >   { - y_{OP} } & {x_{OP} } & 0  \\
1687 > \end{array}} \right)
1688 > \]
1689 > Using Equations \ref{introEquation:definitionCR} and
1690 > \ref{introEquation:resistanceTensorTransformation}, one can locate
1691 > the position of center of resistance,
1692 > \[
1693 > \left( \begin{array}{l}
1694 > x_{OR}  \\
1695 > y_{OR}  \\
1696 > z_{OR}  \\
1697 > \end{array} \right) = \left( {\begin{array}{*{20}c}
1698 >   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
1699 >   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
1700 >   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
1701 > \end{array}} \right)^{ - 1} \left( \begin{array}{l}
1702 > (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
1703 > (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
1704 > (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
1705 > \end{array} \right).
1706 > \]
1707 > where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
1708 > joining center of resistance $R$ and origin $O$.
1709 >
1710 > %\section{\label{introSection:correlationFunctions}Correlation Functions}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines