ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2697 by tim, Fri Apr 7 05:03:54 2006 UTC vs.
Revision 2793 by tim, Mon Jun 5 21:24:52 2006 UTC

# Line 27 | Line 27 | $F_ij$ be the force that particle $i$ exerts on partic
27   \end{equation}
28   A point mass interacting with other bodies moves with the
29   acceleration along the direction of the force acting on it. Let
30 < $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31 < $F_ji$ be the force that particle $j$ exerts on particle $i$.
30 > $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31 > $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32   Newton¡¯s third law states that
33   \begin{equation}
34 < F_ij = -F_ji
34 > F_{ij} = -F_{ji}
35   \label{introEquation:newtonThirdLaw}
36   \end{equation}
37  
# Line 93 | Line 93 | the kinetic, $K$, and potential energies, $U$ \cite{to
93   The actual trajectory, along which a dynamical system may move from
94   one point to another within a specified time, is derived by finding
95   the path which minimizes the time integral of the difference between
96 < the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
96 > the kinetic, $K$, and potential energies, $U$ \cite{Tolman1979}.
97   \begin{equation}
98   \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
99   \label{introEquation:halmitonianPrinciple1}
# Line 117 | Line 117 | for a holonomic system of $f$ degrees of freedom, the
117   \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118   Equations of Motion in Lagrangian Mechanics}
119  
120 < for a holonomic system of $f$ degrees of freedom, the equations of
120 > For a holonomic system of $f$ degrees of freedom, the equations of
121   motion in the Lagrangian form is
122   \begin{equation}
123   \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
# Line 189 | Line 189 | known as the canonical equations of motions \cite{Gold
189   Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
190   Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
191   equation of motion. Due to their symmetrical formula, they are also
192 < known as the canonical equations of motions \cite{Goldstein01}.
192 > known as the canonical equations of motions \cite{Goldstein2001}.
193  
194   An important difference between Lagrangian approach and the
195   Hamiltonian approach is that the Lagrangian is considered to be a
# Line 200 | Line 200 | equations\cite{Marion90}.
200   appropriate for application to statistical mechanics and quantum
201   mechanics, since it treats the coordinate and its time derivative as
202   independent variables and it only works with 1st-order differential
203 < equations\cite{Marion90}.
203 > equations\cite{Marion1990}.
204  
205   In Newtonian Mechanics, a system described by conservative forces
206   conserves the total energy \ref{introEquation:energyConservation}.
# Line 212 | Line 212 | q_i }}} \right) = 0}
212   }}\dot p_i } \right)}  = \sum\limits_i {\left( {\frac{{\partial
213   H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214   \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 < q_i }}} \right) = 0}
216 < \label{introEquation:conserveHalmitonian}
215 > q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
216   \end{equation}
217  
219 When studying Hamiltonian system, it is more convenient to use
220 notation
221 \begin{equation}
222 r = r(q,p)^T
223 \end{equation}
224 and to introduce a $2n \times 2n$ canonical structure matrix $J$,
225 \begin{equation}
226 J = \left( {\begin{array}{*{20}c}
227   0 & I  \\
228   { - I} & 0  \\
229 \end{array}} \right)
230 \label{introEquation:canonicalMatrix}
231 \end{equation}
232 where $I$ is a $n \times n$ identity matrix and $J$ is a
233 skew-symmetric matrix ($ J^T  =  - J $). Thus, Hamiltonian system
234 can be rewritten as,
235 \begin{equation}
236 \frac{d}{{dt}}r = J\nabla _r H(r)
237 \label{introEquation:compactHamiltonian}
238 \end{equation}
239
218   \section{\label{introSection:statisticalMechanics}Statistical
219   Mechanics}
220  
221   The thermodynamic behaviors and properties of Molecular Dynamics
222   simulation are governed by the principle of Statistical Mechanics.
223   The following section will give a brief introduction to some of the
224 < Statistical Mechanics concepts presented in this dissertation.
224 > Statistical Mechanics concepts and theorem presented in this
225 > dissertation.
226 >
227 > \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
228 >
229 > Mathematically, phase space is the space which represents all
230 > possible states. Each possible state of the system corresponds to
231 > one unique point in the phase space. For mechanical systems, the
232 > phase space usually consists of all possible values of position and
233 > momentum variables. Consider a dynamic system in a cartesian space,
234 > where each of the $6f$ coordinates and momenta is assigned to one of
235 > $6f$ mutually orthogonal axes, the phase space of this system is a
236 > $6f$ dimensional space. A point, $x = (q_1 , \ldots ,q_f ,p_1 ,
237 > \ldots ,p_f )$, with a unique set of values of $6f$ coordinates and
238 > momenta is a phase space vector.
239 >
240 > A microscopic state or microstate of a classical system is
241 > specification of the complete phase space vector of a system at any
242 > instant in time. An ensemble is defined as a collection of systems
243 > sharing one or more macroscopic characteristics but each being in a
244 > unique microstate. The complete ensemble is specified by giving all
245 > systems or microstates consistent with the common macroscopic
246 > characteristics of the ensemble. Although the state of each
247 > individual system in the ensemble could be precisely described at
248 > any instance in time by a suitable phase space vector, when using
249 > ensembles for statistical purposes, there is no need to maintain
250 > distinctions between individual systems, since the numbers of
251 > systems at any time in the different states which correspond to
252 > different regions of the phase space are more interesting. Moreover,
253 > in the point of view of statistical mechanics, one would prefer to
254 > use ensembles containing a large enough population of separate
255 > members so that the numbers of systems in such different states can
256 > be regarded as changing continuously as we traverse different
257 > regions of the phase space. The condition of an ensemble at any time
258 > can be regarded as appropriately specified by the density $\rho$
259 > with which representative points are distributed over the phase
260 > space. The density of distribution for an ensemble with $f$ degrees
261 > of freedom is defined as,
262 > \begin{equation}
263 > \rho  = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
264 > \label{introEquation:densityDistribution}
265 > \end{equation}
266 > Governed by the principles of mechanics, the phase points change
267 > their value which would change the density at any time at phase
268 > space. Hence, the density of distribution is also to be taken as a
269 > function of the time.
270 >
271 > The number of systems $\delta N$ at time $t$ can be determined by,
272 > \begin{equation}
273 > \delta N = \rho (q,p,t)dq_1  \ldots dq_f dp_1  \ldots dp_f.
274 > \label{introEquation:deltaN}
275 > \end{equation}
276 > Assuming a large enough population of systems are exploited, we can
277 > sufficiently approximate $\delta N$ without introducing
278 > discontinuity when we go from one region in the phase space to
279 > another. By integrating over the whole phase space,
280 > \begin{equation}
281 > N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
282 > \label{introEquation:totalNumberSystem}
283 > \end{equation}
284 > gives us an expression for the total number of the systems. Hence,
285 > the probability per unit in the phase space can be obtained by,
286 > \begin{equation}
287 > \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
288 > {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
289 > \label{introEquation:unitProbability}
290 > \end{equation}
291 > With the help of Equation(\ref{introEquation:unitProbability}) and
292 > the knowledge of the system, it is possible to calculate the average
293 > value of any desired quantity which depends on the coordinates and
294 > momenta of the system. Even when the dynamics of the real system is
295 > complex, or stochastic, or even discontinuous, the average
296 > properties of the ensemble of possibilities as a whole may still
297 > remain well defined. For a classical system in thermal equilibrium
298 > with its environment, the ensemble average of a mechanical quantity,
299 > $\langle A(q , p) \rangle_t$, takes the form of an integral over the
300 > phase space of the system,
301 > \begin{equation}
302 > \langle  A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
303 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
304 > (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
305 > \label{introEquation:ensembelAverage}
306 > \end{equation}
307 >
308 > There are several different types of ensembles with different
309 > statistical characteristics. As a function of macroscopic
310 > parameters, such as temperature \textit{etc}, partition function can
311 > be used to describe the statistical properties of a system in
312 > thermodynamic equilibrium.
313 >
314 > As an ensemble of systems, each of which is known to be thermally
315 > isolated and conserve energy, Microcanonical ensemble(NVE) has a
316 > partition function like,
317 > \begin{equation}
318 > \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
319 > \end{equation}
320 > A canonical ensemble(NVT)is an ensemble of systems, each of which
321 > can share its energy with a large heat reservoir. The distribution
322 > of the total energy amongst the possible dynamical states is given
323 > by the partition function,
324 > \begin{equation}
325 > \Omega (N,V,T) = e^{ - \beta A}
326 > \label{introEquation:NVTPartition}
327 > \end{equation}
328 > Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
329 > TS$. Since most experiment are carried out under constant pressure
330 > condition, isothermal-isobaric ensemble(NPT) play a very important
331 > role in molecular simulation. The isothermal-isobaric ensemble allow
332 > the system to exchange energy with a heat bath of temperature $T$
333 > and to change the volume as well. Its partition function is given as
334 > \begin{equation}
335 > \Delta (N,P,T) =  - e^{\beta G}.
336 > \label{introEquation:NPTPartition}
337 > \end{equation}
338 > Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
339  
340 < \subsection{\label{introSection:ensemble}Ensemble and Phase Space}
340 > \subsection{\label{introSection:liouville}Liouville's theorem}
341 >
342 > The Liouville's theorem is the foundation on which statistical
343 > mechanics rests. It describes the time evolution of phase space
344 > distribution function. In order to calculate the rate of change of
345 > $\rho$, we begin from Equation(\ref{introEquation:deltaN}). If we
346 > consider the two faces perpendicular to the $q_1$ axis, which are
347 > located at $q_1$ and $q_1 + \delta q_1$, the number of phase points
348 > leaving the opposite face is given by the expression,
349 > \begin{equation}
350 > \left( {\rho  + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
351 > \right)\left( {\dot q_1  + \frac{{\partial \dot q_1 }}{{\partial q_1
352 > }}\delta q_1 } \right)\delta q_2  \ldots \delta q_f \delta p_1
353 > \ldots \delta p_f .
354 > \end{equation}
355 > Summing all over the phase space, we obtain
356 > \begin{equation}
357 > \frac{{d(\delta N)}}{{dt}} =  - \sum\limits_{i = 1}^f {\left[ {\rho
358 > \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
359 > \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
360 > {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  + \frac{{\partial
361 > \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
362 > \ldots \delta q_f \delta p_1  \ldots \delta p_f .
363 > \end{equation}
364 > Differentiating the equations of motion in Hamiltonian formalism
365 > (\ref{introEquation:motionHamiltonianCoordinate},
366 > \ref{introEquation:motionHamiltonianMomentum}), we can show,
367 > \begin{equation}
368 > \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
369 > + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)}  = 0 ,
370 > \end{equation}
371 > which cancels the first terms of the right hand side. Furthermore,
372 > divining $ \delta q_1  \ldots \delta q_f \delta p_1  \ldots \delta
373 > p_f $ in both sides, we can write out Liouville's theorem in a
374 > simple form,
375 > \begin{equation}
376 > \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
377 > {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i  +
378 > \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)}  = 0 .
379 > \label{introEquation:liouvilleTheorem}
380 > \end{equation}
381 >
382 > Liouville's theorem states that the distribution function is
383 > constant along any trajectory in phase space. In classical
384 > statistical mechanics, since the number of particles in the system
385 > is huge, we may be able to believe the system is stationary,
386 > \begin{equation}
387 > \frac{{\partial \rho }}{{\partial t}} = 0.
388 > \label{introEquation:stationary}
389 > \end{equation}
390 > In such stationary system, the density of distribution $\rho$ can be
391 > connected to the Hamiltonian $H$ through Maxwell-Boltzmann
392 > distribution,
393 > \begin{equation}
394 > \rho  \propto e^{ - \beta H}
395 > \label{introEquation:densityAndHamiltonian}
396 > \end{equation}
397 >
398 > \subsubsection{\label{introSection:phaseSpaceConservation}Conservation of Phase Space}
399 > Lets consider a region in the phase space,
400 > \begin{equation}
401 > \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
402 > \end{equation}
403 > If this region is small enough, the density $\rho$ can be regarded
404 > as uniform over the whole phase space. Thus, the number of phase
405 > points inside this region is given by,
406 > \begin{equation}
407 > \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
408 > dp_1 } ..dp_f.
409 > \end{equation}
410 >
411 > \begin{equation}
412 > \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
413 > \frac{d}{{dt}}(\delta v) = 0.
414 > \end{equation}
415 > With the help of stationary assumption
416 > (\ref{introEquation:stationary}), we obtain the principle of the
417 > \emph{conservation of extension in phase space},
418 > \begin{equation}
419 > \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
420 > ...dq_f dp_1 } ..dp_f  = 0.
421 > \label{introEquation:volumePreserving}
422 > \end{equation}
423 >
424 > \subsubsection{\label{introSection:liouvilleInOtherForms}Liouville's Theorem in Other Forms}
425 >
426 > Liouville's theorem can be expresses in a variety of different forms
427 > which are convenient within different contexts. For any two function
428 > $F$ and $G$ of the coordinates and momenta of a system, the Poisson
429 > bracket ${F, G}$ is defined as
430 > \begin{equation}
431 > \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
432 > F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
433 > \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
434 > q_i }}} \right)}.
435 > \label{introEquation:poissonBracket}
436 > \end{equation}
437 > Substituting equations of motion in Hamiltonian formalism(
438 > \ref{introEquation:motionHamiltonianCoordinate} ,
439 > \ref{introEquation:motionHamiltonianMomentum} ) into
440 > (\ref{introEquation:liouvilleTheorem}), we can rewrite Liouville's
441 > theorem using Poisson bracket notion,
442 > \begin{equation}
443 > \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - \left\{
444 > {\rho ,H} \right\}.
445 > \label{introEquation:liouvilleTheromInPoissin}
446 > \end{equation}
447 > Moreover, the Liouville operator is defined as
448 > \begin{equation}
449 > iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
450 > p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
451 > H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
452 > \label{introEquation:liouvilleOperator}
453 > \end{equation}
454 > In terms of Liouville operator, Liouville's equation can also be
455 > expressed as
456 > \begin{equation}
457 > \left( {\frac{{\partial \rho }}{{\partial t}}} \right) =  - iL\rho
458 > \label{introEquation:liouvilleTheoremInOperator}
459 > \end{equation}
460  
461   \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
462  
# Line 259 | Line 470 | statistical ensemble are identical \cite{Frenkel1996,
470   many-body system in Statistical Mechanics. Fortunately, Ergodic
471   Hypothesis is proposed to make a connection between time average and
472   ensemble average. It states that time average and average over the
473 < statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
473 > statistical ensemble are identical \cite{Frenkel1996, Leach2001}.
474   \begin{equation}
475 < \langle A \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476 < \frac{1}{t}\int\limits_0^t {A(p(t),q(t))dt = \int\limits_\Gamma
477 < {A(p(t),q(t))} } \rho (p(t), q(t)) dpdq
475 > \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476 > \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
477 > {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
478   \end{equation}
479 < where $\langle A \rangle_t$ is an equilibrium value of a physical
480 < quantity and $\rho (p(t), q(t))$ is the equilibrium distribution
481 < function. If an observation is averaged over a sufficiently long
482 < time (longer than relaxation time), all accessible microstates in
483 < phase space are assumed to be equally probed, giving a properly
484 < weighted statistical average. This allows the researcher freedom of
485 < choice when deciding how best to measure a given observable. In case
486 < an ensemble averaged approach sounds most reasonable, the Monte
487 < Carlo techniques\cite{metropolis:1949} can be utilized. Or if the
488 < system lends itself to a time averaging approach, the Molecular
489 < Dynamics techniques in Sec.~\ref{introSection:molecularDynamics}
490 < will be the best choice\cite{Frenkel1996}.
479 > where $\langle  A(q , p) \rangle_t$ is an equilibrium value of a
480 > physical quantity and $\rho (p(t), q(t))$ is the equilibrium
481 > distribution function. If an observation is averaged over a
482 > sufficiently long time (longer than relaxation time), all accessible
483 > microstates in phase space are assumed to be equally probed, giving
484 > a properly weighted statistical average. This allows the researcher
485 > freedom of choice when deciding how best to measure a given
486 > observable. In case an ensemble averaged approach sounds most
487 > reasonable, the Monte Carlo techniques\cite{Metropolis1949} can be
488 > utilized. Or if the system lends itself to a time averaging
489 > approach, the Molecular Dynamics techniques in
490 > Sec.~\ref{introSection:molecularDynamics} will be the best
491 > choice\cite{Frenkel1996}.
492  
493   \section{\label{introSection:geometricIntegratos}Geometric Integrators}
494   A variety of numerical integrators were proposed to simulate the
# Line 286 | Line 498 | issue. The velocity verlet method, which happens to be
498   within the equations. Since 1990, geometric integrators, which
499   preserve various phase-flow invariants such as symplectic structure,
500   volume and time reversal symmetry, are developed to address this
501 < issue. The velocity verlet method, which happens to be a simple
502 < example of symplectic integrator, continues to gain its popularity
503 < in molecular dynamics community. This fact can be partly explained
504 < by its geometric nature.
501 > issue\cite{Dullweber1997, McLachlan1998, Leimkuhler1999}. The
502 > velocity verlet method, which happens to be a simple example of
503 > symplectic integrator, continues to gain its popularity in molecular
504 > dynamics community. This fact can be partly explained by its
505 > geometric nature.
506  
507   \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
508   A \emph{manifold} is an abstract mathematical space. It locally
# Line 324 | Line 537 | classical mechanics. According to Liouville's theorem,
537   is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
538   the \emph{pullback} of $\eta$ under f is equal to $\omega$.
539   Canonical transformation is an example of symplectomorphism in
540 < classical mechanics. According to Liouville's theorem, the
328 < Hamiltonian \emph{flow} or \emph{symplectomorphism} generated by the
329 < Hamiltonian vector filed preserves the volume form on the phase
330 < space, which is the basis of classical statistical mechanics.
540 > classical mechanics.
541  
542 < \subsection{\label{introSection:exactFlow}The Exact Flow of ODE}
542 > \subsection{\label{introSection:ODE}Ordinary Differential Equations}
543  
544 < \subsection{\label{introSection:hamiltonianSplitting}Hamiltonian Splitting}
544 > For a ordinary differential system defined as
545 > \begin{equation}
546 > \dot x = f(x)
547 > \end{equation}
548 > where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
549 > \begin{equation}
550 > f(r) = J\nabla _x H(r).
551 > \end{equation}
552 > $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
553 > matrix
554 > \begin{equation}
555 > J = \left( {\begin{array}{*{20}c}
556 >   0 & I  \\
557 >   { - I} & 0  \\
558 > \end{array}} \right)
559 > \label{introEquation:canonicalMatrix}
560 > \end{equation}
561 > where $I$ is an identity matrix. Using this notation, Hamiltonian
562 > system can be rewritten as,
563 > \begin{equation}
564 > \frac{d}{{dt}}x = J\nabla _x H(x)
565 > \label{introEquation:compactHamiltonian}
566 > \end{equation}In this case, $f$ is
567 > called a \emph{Hamiltonian vector field}.
568  
569 < \section{\label{introSection:molecularDynamics}Molecular Dynamics}
569 > Another generalization of Hamiltonian dynamics is Poisson
570 > Dynamics\cite{Olver1986},
571 > \begin{equation}
572 > \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
573 > \end{equation}
574 > The most obvious change being that matrix $J$ now depends on $x$.
575  
576 < As a special discipline of molecular modeling, Molecular dynamics
339 < has proven to be a powerful tool for studying the functions of
340 < biological systems, providing structural, thermodynamic and
341 < dynamical information.
576 > \subsection{\label{introSection:exactFlow}Exact Flow}
577  
578 < \subsection{\label{introSec:mdInit}Initialization}
578 > Let $x(t)$ be the exact solution of the ODE system,
579 > \begin{equation}
580 > \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
581 > \end{equation}
582 > The exact flow(solution) $\varphi_\tau$ is defined by
583 > \[
584 > x(t+\tau) =\varphi_\tau(x(t))
585 > \]
586 > where $\tau$ is a fixed time step and $\varphi$ is a map from phase
587 > space to itself. The flow has the continuous group property,
588 > \begin{equation}
589 > \varphi _{\tau _1 }  \circ \varphi _{\tau _2 }  = \varphi _{\tau _1
590 > + \tau _2 } .
591 > \end{equation}
592 > In particular,
593 > \begin{equation}
594 > \varphi _\tau   \circ \varphi _{ - \tau }  = I
595 > \end{equation}
596 > Therefore, the exact flow is self-adjoint,
597 > \begin{equation}
598 > \varphi _\tau   = \varphi _{ - \tau }^{ - 1}.
599 > \end{equation}
600 > The exact flow can also be written in terms of the of an operator,
601 > \begin{equation}
602 > \varphi _\tau  (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
603 > }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
604 > \label{introEquation:exponentialOperator}
605 > \end{equation}
606  
607 < \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
607 > In most cases, it is not easy to find the exact flow $\varphi_\tau$.
608 > Instead, we use a approximate map, $\psi_\tau$, which is usually
609 > called integrator. The order of an integrator $\psi_\tau$ is $p$, if
610 > the Taylor series of $\psi_\tau$ agree to order $p$,
611 > \begin{equation}
612 > \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
613 > \end{equation}
614  
615 < \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
615 > \subsection{\label{introSection:geometricProperties}Geometric Properties}
616  
617 < A rigid body is a body in which the distance between any two given
618 < points of a rigid body remains constant regardless of external
619 < forces exerted on it. A rigid body therefore conserves its shape
352 < during its motion.
617 > The hidden geometric properties\cite{Budd1999, Marsden1998} of ODE
618 > and its flow play important roles in numerical studies. Many of them
619 > can be found in systems which occur naturally in applications.
620  
621 < Applications of dynamics of rigid bodies.
621 > Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
622 > a \emph{symplectic} flow if it satisfies,
623 > \begin{equation}
624 > {\varphi '}^T J \varphi ' = J.
625 > \end{equation}
626 > According to Liouville's theorem, the symplectic volume is invariant
627 > under a Hamiltonian flow, which is the basis for classical
628 > statistical mechanics. Furthermore, the flow of a Hamiltonian vector
629 > field on a symplectic manifold can be shown to be a
630 > symplectomorphism. As to the Poisson system,
631 > \begin{equation}
632 > {\varphi '}^T J \varphi ' = J \circ \varphi
633 > \end{equation}
634 > is the property must be preserved by the integrator.
635  
636 < \subsection{\label{introSection:lieAlgebra}Lie Algebra}
636 > It is possible to construct a \emph{volume-preserving} flow for a
637 > source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
638 > \det d\varphi  = 1$. One can show easily that a symplectic flow will
639 > be volume-preserving.
640  
641 < \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
641 > Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
642 > will result in a new system,
643 > \[
644 > \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
645 > \]
646 > The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
647 > In other words, the flow of this vector field is reversible if and
648 > only if $ h \circ \varphi ^{ - 1}  = \varphi  \circ h $.
649  
650 < \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
651 <
652 < %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
363 <
364 < \section{\label{introSection:correlationFunctions}Correlation Functions}
365 <
366 < \section{\label{introSection:langevinDynamics}Langevin Dynamics}
367 <
368 < \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
369 <
370 < \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
371 <
372 < \begin{equation}
373 < H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
374 < \label{introEquation:bathGLE}
375 < \end{equation}
376 < where $H_B$ is harmonic bath Hamiltonian,
650 > A \emph{first integral}, or conserved quantity of a general
651 > differential function is a function $ G:R^{2d}  \to R^d $ which is
652 > constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
653   \[
654 < H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
379 < }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
654 > \frac{{dG(x(t))}}{{dt}} = 0.
655   \]
656 < and $\Delta U$ is bilinear system-bath coupling,
656 > Using chain rule, one may obtain,
657   \[
658 < \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
658 > \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
659   \]
660 < Completing the square,
660 > which is the condition for conserving \emph{first integral}. For a
661 > canonical Hamiltonian system, the time evolution of an arbitrary
662 > smooth function $G$ is given by,
663 >
664 > \begin{eqnarray}
665 > \frac{{dG(x(t))}}{{dt}} & = & [\nabla _x G(x(t))]^T \dot x(t) \\
666 >                        & = & [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
667 > \label{introEquation:firstIntegral1}
668 > \end{eqnarray}
669 >
670 >
671 > Using poisson bracket notion, Equation
672 > \ref{introEquation:firstIntegral1} can be rewritten as
673   \[
674 < H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
388 < {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
389 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
390 < w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
391 < 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
674 > \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
675   \]
676 < and putting it back into Eq.~\ref{introEquation:bathGLE},
676 > Therefore, the sufficient condition for $G$ to be the \emph{first
677 > integral} of a Hamiltonian system is
678   \[
679 < H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
396 < {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
397 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
398 < w_\alpha ^2 }}x} \right)^2 } \right\}}
679 > \left\{ {G,H} \right\} = 0.
680   \]
681 < where
681 > As well known, the Hamiltonian (or energy) H of a Hamiltonian system
682 > is a \emph{first integral}, which is due to the fact $\{ H,H\}  =
683 > 0$.
684 >
685 > When designing any numerical methods, one should always try to
686 > preserve the structural properties of the original ODE and its flow.
687 >
688 > \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
689 > A lot of well established and very effective numerical methods have
690 > been successful precisely because of their symplecticities even
691 > though this fact was not recognized when they were first
692 > constructed. The most famous example is leapfrog methods in
693 > molecular dynamics. In general, symplectic integrators can be
694 > constructed using one of four different methods.
695 > \begin{enumerate}
696 > \item Generating functions
697 > \item Variational methods
698 > \item Runge-Kutta methods
699 > \item Splitting methods
700 > \end{enumerate}
701 >
702 > Generating function\cite{Channell1990} tends to lead to methods
703 > which are cumbersome and difficult to use. In dissipative systems,
704 > variational methods can capture the decay of energy
705 > accurately\cite{Kane2000}. Since their geometrically unstable nature
706 > against non-Hamiltonian perturbations, ordinary implicit Runge-Kutta
707 > methods are not suitable for Hamiltonian system. Recently, various
708 > high-order explicit Runge-Kutta methods
709 > \cite{Owren1992,Chen2003}have been developed to overcome this
710 > instability. However, due to computational penalty involved in
711 > implementing the Runge-Kutta methods, they do not attract too much
712 > attention from Molecular Dynamics community. Instead, splitting have
713 > been widely accepted since they exploit natural decompositions of
714 > the system\cite{Tuckerman1992, McLachlan1998}.
715 >
716 > \subsubsection{\label{introSection:splittingMethod}Splitting Method}
717 >
718 > The main idea behind splitting methods is to decompose the discrete
719 > $\varphi_h$ as a composition of simpler flows,
720 > \begin{equation}
721 > \varphi _h  = \varphi _{h_1 }  \circ \varphi _{h_2 }  \ldots  \circ
722 > \varphi _{h_n }
723 > \label{introEquation:FlowDecomposition}
724 > \end{equation}
725 > where each of the sub-flow is chosen such that each represent a
726 > simpler integration of the system.
727 >
728 > Suppose that a Hamiltonian system takes the form,
729   \[
730 < W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
403 < }}{{2m_\alpha  w_\alpha ^2 }}} x^2
730 > H = H_1 + H_2.
731   \]
732 < Since the first two terms of the new Hamiltonian depend only on the
733 < system coordinates, we can get the equations of motion for
734 < Generalized Langevin Dynamics by Hamilton's equations
735 < \ref{introEquation:motionHamiltonianCoordinate,
736 < introEquation:motionHamiltonianMomentum},
732 > Here, $H_1$ and $H_2$ may represent different physical processes of
733 > the system. For instance, they may relate to kinetic and potential
734 > energy respectively, which is a natural decomposition of the
735 > problem. If $H_1$ and $H_2$ can be integrated using exact flows
736 > $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
737 > order is then given by the Lie-Trotter formula
738 > \begin{equation}
739 > \varphi _h  = \varphi _{1,h}  \circ \varphi _{2,h},
740 > \label{introEquation:firstOrderSplitting}
741 > \end{equation}
742 > where $\varphi _h$ is the result of applying the corresponding
743 > continuous $\varphi _i$ over a time $h$. By definition, as
744 > $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
745 > must follow that each operator $\varphi_i(t)$ is a symplectic map.
746 > It is easy to show that any composition of symplectic flows yields a
747 > symplectic map,
748 > \begin{equation}
749 > (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
750 > '\phi ' = \phi '^T J\phi ' = J,
751 > \label{introEquation:SymplecticFlowComposition}
752 > \end{equation}
753 > where $\phi$ and $\psi$ both are symplectic maps. Thus operator
754 > splitting in this context automatically generates a symplectic map.
755 >
756 > The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
757 > introduces local errors proportional to $h^2$, while Strang
758 > splitting gives a second-order decomposition,
759 > \begin{equation}
760 > \varphi _h  = \varphi _{1,h/2}  \circ \varphi _{2,h}  \circ \varphi
761 > _{1,h/2} , \label{introEquation:secondOrderSplitting}
762 > \end{equation}
763 > which has a local error proportional to $h^3$. Sprang splitting's
764 > popularity in molecular simulation community attribute to its
765 > symmetric property,
766 > \begin{equation}
767 > \varphi _h^{ - 1} = \varphi _{ - h}.
768 > \label{introEquation:timeReversible}
769 > \end{equation}
770 >
771 > \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
772 > The classical equation for a system consisting of interacting
773 > particles can be written in Hamiltonian form,
774 > \[
775 > H = T + V
776 > \]
777 > where $T$ is the kinetic energy and $V$ is the potential energy.
778 > Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
779 > obtains the following:
780   \begin{align}
781 < \dot p &=  - \frac{{\partial H}}{{\partial x}}
782 <       &= m\ddot x
783 <       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
784 < \label{introEq:Lp5}
781 > q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
782 >    \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
783 > \label{introEquation:Lp10a} \\%
784 > %
785 > \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
786 >    \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
787 > \label{introEquation:Lp10b}
788   \end{align}
789 < , and
789 > where $F(t)$ is the force at time $t$. This integration scheme is
790 > known as \emph{velocity verlet} which is
791 > symplectic(\ref{introEquation:SymplecticFlowComposition}),
792 > time-reversible(\ref{introEquation:timeReversible}) and
793 > volume-preserving (\ref{introEquation:volumePreserving}). These
794 > geometric properties attribute to its long-time stability and its
795 > popularity in the community. However, the most commonly used
796 > velocity verlet integration scheme is written as below,
797   \begin{align}
798 < \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
799 <                &= m\ddot x_\alpha
800 <                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
798 > \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
799 >    \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
800 > %
801 > q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
802 >    \label{introEquation:Lp9b}\\%
803 > %
804 > \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
805 >    \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
806   \end{align}
807 + From the preceding splitting, one can see that the integration of
808 + the equations of motion would follow:
809 + \begin{enumerate}
810 + \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
811  
812 < \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
812 > \item Use the half step velocities to move positions one whole step, $\Delta t$.
813  
814 < \[
426 < L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
427 < \]
814 > \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
815  
816 < \[
817 < L(x + y) = L(x) + L(y)
431 < \]
816 > \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
817 > \end{enumerate}
818  
819 + Simply switching the order of splitting and composing, a new
820 + integrator, the \emph{position verlet} integrator, can be generated,
821 + \begin{align}
822 + \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
823 + \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
824 + \label{introEquation:positionVerlet1} \\%
825 + %
826 + q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
827 + q(\Delta t)} \right]. %
828 + \label{introEquation:positionVerlet2}
829 + \end{align}
830 +
831 + \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
832 +
833 + Baker-Campbell-Hausdorff formula can be used to determine the local
834 + error of splitting method in terms of commutator of the
835 + operators(\ref{introEquation:exponentialOperator}) associated with
836 + the sub-flow. For operators $hX$ and $hY$ which are associate to
837 + $\varphi_1(t)$ and $\varphi_2(t)$ respectively , we have
838 + \begin{equation}
839 + \exp (hX + hY) = \exp (hZ)
840 + \end{equation}
841 + where
842 + \begin{equation}
843 + hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
844 + {[X,[X,Y]] + [Y,[Y,X]]} \right) +  \ldots .
845 + \end{equation}
846 + Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
847   \[
848 < L(ax) = aL(x)
848 > [X,Y] = XY - YX .
849   \]
850 <
850 > Applying Baker-Campbell-Hausdorff formula\cite{Varadarajan1974} to
851 > Sprang splitting, we can obtain
852 > \begin{eqnarray*}
853 > \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2 [X,Y]/4 + h^2 [Y,X]/4 \\
854 >                                   &   & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
855 >                                   &   & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3[X,[X,Y]]/24 + \ldots )
856 > \end{eqnarray*}
857 > Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
858 > error of Spring splitting is proportional to $h^3$. The same
859 > procedure can be applied to general splitting,  of the form
860 > \begin{equation}
861 > \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
862 > 1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
863 > \end{equation}
864 > Careful choice of coefficient $a_1 \ldot b_m$ will lead to higher
865 > order method. Yoshida proposed an elegant way to compose higher
866 > order methods based on symmetric splitting\cite{Yoshida1990}. Given
867 > a symmetric second order base method $ \varphi _h^{(2)} $, a
868 > fourth-order symmetric method can be constructed by composing,
869   \[
870 < L(\dot x) = pL(x) - px(0)
870 > \varphi _h^{(4)}  = \varphi _{\alpha h}^{(2)}  \circ \varphi _{\beta
871 > h}^{(2)}  \circ \varphi _{\alpha h}^{(2)}
872   \]
873 <
873 > where $ \alpha  =  - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
874 > = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
875 > integrator $ \varphi _h^{(2n + 2)}$ can be composed by
876 > \begin{equation}
877 > \varphi _h^{(2n + 2)}  = \varphi _{\alpha h}^{(2n)}  \circ \varphi
878 > _{\beta h}^{(2n)}  \circ \varphi _{\alpha h}^{(2n)}
879 > \end{equation}
880 > , if the weights are chosen as
881   \[
882 < L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
882 > \alpha  =  - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
883 > \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
884   \]
885  
886 + \section{\label{introSection:molecularDynamics}Molecular Dynamics}
887 +
888 + As one of the principal tools of molecular modeling, Molecular
889 + dynamics has proven to be a powerful tool for studying the functions
890 + of biological systems, providing structural, thermodynamic and
891 + dynamical information. The basic idea of molecular dynamics is that
892 + macroscopic properties are related to microscopic behavior and
893 + microscopic behavior can be calculated from the trajectories in
894 + simulations. For instance, instantaneous temperature of an
895 + Hamiltonian system of $N$ particle can be measured by
896   \[
897 < L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
897 > T = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
898   \]
899 + where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
900 + respectively, $f$ is the number of degrees of freedom, and $k_B$ is
901 + the boltzman constant.
902  
903 < Some relatively important transformation,
904 < \[
905 < L(\cos at) = \frac{p}{{p^2  + a^2 }}
906 < \]
903 > A typical molecular dynamics run consists of three essential steps:
904 > \begin{enumerate}
905 >  \item Initialization
906 >    \begin{enumerate}
907 >    \item Preliminary preparation
908 >    \item Minimization
909 >    \item Heating
910 >    \item Equilibration
911 >    \end{enumerate}
912 >  \item Production
913 >  \item Analysis
914 > \end{enumerate}
915 > These three individual steps will be covered in the following
916 > sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
917 > initialization of a simulation. Sec.~\ref{introSec:production} will
918 > discusses issues in production run. Sec.~\ref{introSection:Analysis}
919 > provides the theoretical tools for trajectory analysis.
920  
921 + \subsection{\label{introSec:initialSystemSettings}Initialization}
922 +
923 + \subsubsection{Preliminary preparation}
924 +
925 + When selecting the starting structure of a molecule for molecular
926 + simulation, one may retrieve its Cartesian coordinates from public
927 + databases, such as RCSB Protein Data Bank \textit{etc}. Although
928 + thousands of crystal structures of molecules are discovered every
929 + year, many more remain unknown due to the difficulties of
930 + purification and crystallization. Even for the molecule with known
931 + structure, some important information is missing. For example, the
932 + missing hydrogen atom which acts as donor in hydrogen bonding must
933 + be added. Moreover, in order to include electrostatic interaction,
934 + one may need to specify the partial charges for individual atoms.
935 + Under some circumstances, we may even need to prepare the system in
936 + a special setup. For instance, when studying transport phenomenon in
937 + membrane system, we may prepare the lipids in bilayer structure
938 + instead of placing lipids randomly in solvent, since we are not
939 + interested in self-aggregation and it takes a long time to happen.
940 +
941 + \subsubsection{Minimization}
942 +
943 + It is quite possible that some of molecules in the system from
944 + preliminary preparation may be overlapped with each other. This
945 + close proximity leads to high potential energy which consequently
946 + jeopardizes any molecular dynamics simulations. To remove these
947 + steric overlaps, one typically performs energy minimization to find
948 + a more reasonable conformation. Several energy minimization methods
949 + have been developed to exploit the energy surface and to locate the
950 + local minimum. While converging slowly near the minimum, steepest
951 + descent method is extremely robust when systems are far from
952 + harmonic. Thus, it is often used to refine structure from
953 + crystallographic data. Relied on the gradient or hessian, advanced
954 + methods like conjugate gradient and Newton-Raphson converge rapidly
955 + to a local minimum, while become unstable if the energy surface is
956 + far from quadratic. Another factor must be taken into account, when
957 + choosing energy minimization method, is the size of the system.
958 + Steepest descent and conjugate gradient can deal with models of any
959 + size. Because of the limit of computation power to calculate hessian
960 + matrix and insufficient storage capacity to store them, most
961 + Newton-Raphson methods can not be used with very large models.
962 +
963 + \subsubsection{Heating}
964 +
965 + Typically, Heating is performed by assigning random velocities
966 + according to a Gaussian distribution for a temperature. Beginning at
967 + a lower temperature and gradually increasing the temperature by
968 + assigning greater random velocities, we end up with setting the
969 + temperature of the system to a final temperature at which the
970 + simulation will be conducted. In heating phase, we should also keep
971 + the system from drifting or rotating as a whole. Equivalently, the
972 + net linear momentum and angular momentum of the system should be
973 + shifted to zero.
974 +
975 + \subsubsection{Equilibration}
976 +
977 + The purpose of equilibration is to allow the system to evolve
978 + spontaneously for a period of time and reach equilibrium. The
979 + procedure is continued until various statistical properties, such as
980 + temperature, pressure, energy, volume and other structural
981 + properties \textit{etc}, become independent of time. Strictly
982 + speaking, minimization and heating are not necessary, provided the
983 + equilibration process is long enough. However, these steps can serve
984 + as a means to arrive at an equilibrated structure in an effective
985 + way.
986 +
987 + \subsection{\label{introSection:production}Production}
988 +
989 + Production run is the most important step of the simulation, in
990 + which the equilibrated structure is used as a starting point and the
991 + motions of the molecules are collected for later analysis. In order
992 + to capture the macroscopic properties of the system, the molecular
993 + dynamics simulation must be performed in correct and efficient way.
994 +
995 + The most expensive part of a molecular dynamics simulation is the
996 + calculation of non-bonded forces, such as van der Waals force and
997 + Coulombic forces \textit{etc}. For a system of $N$ particles, the
998 + complexity of the algorithm for pair-wise interactions is $O(N^2 )$,
999 + which making large simulations prohibitive in the absence of any
1000 + computation saving techniques.
1001 +
1002 + A natural approach to avoid system size issue is to represent the
1003 + bulk behavior by a finite number of the particles. However, this
1004 + approach will suffer from the surface effect. To offset this,
1005 + \textit{Periodic boundary condition} (see Fig.~\ref{introFig:pbc})
1006 + is developed to simulate bulk properties with a relatively small
1007 + number of particles. In this method, the simulation box is
1008 + replicated throughout space to form an infinite lattice. During the
1009 + simulation, when a particle moves in the primary cell, its image in
1010 + other cells move in exactly the same direction with exactly the same
1011 + orientation. Thus, as a particle leaves the primary cell, one of its
1012 + images will enter through the opposite face.
1013 + \begin{figure}
1014 + \centering
1015 + \includegraphics[width=\linewidth]{pbc.eps}
1016 + \caption[An illustration of periodic boundary conditions]{A 2-D
1017 + illustration of periodic boundary conditions. As one particle leaves
1018 + the left of the simulation box, an image of it enters the right.}
1019 + \label{introFig:pbc}
1020 + \end{figure}
1021 +
1022 + %cutoff and minimum image convention
1023 + Another important technique to improve the efficiency of force
1024 + evaluation is to apply cutoff where particles farther than a
1025 + predetermined distance, are not included in the calculation
1026 + \cite{Frenkel1996}. The use of a cutoff radius will cause a
1027 + discontinuity in the potential energy curve. Fortunately, one can
1028 + shift the potential to ensure the potential curve go smoothly to
1029 + zero at the cutoff radius. Cutoff strategy works pretty well for
1030 + Lennard-Jones interaction because of its short range nature.
1031 + However, simply truncating the electrostatic interaction with the
1032 + use of cutoff has been shown to lead to severe artifacts in
1033 + simulations. Ewald summation, in which the slowly conditionally
1034 + convergent Coulomb potential is transformed into direct and
1035 + reciprocal sums with rapid and absolute convergence, has proved to
1036 + minimize the periodicity artifacts in liquid simulations. Taking the
1037 + advantages of the fast Fourier transform (FFT) for calculating
1038 + discrete Fourier transforms, the particle mesh-based
1039 + methods\cite{Hockney1981,Shimada1993, Luty1994} are accelerated from
1040 + $O(N^{3/2})$ to $O(N logN)$. An alternative approach is \emph{fast
1041 + multipole method}\cite{Greengard1987, Greengard1994}, which treats
1042 + Coulombic interaction exactly at short range, and approximate the
1043 + potential at long range through multipolar expansion. In spite of
1044 + their wide acceptances at the molecular simulation community, these
1045 + two methods are hard to be implemented correctly and efficiently.
1046 + Instead, we use a damped and charge-neutralized Coulomb potential
1047 + method developed by Wolf and his coworkers\cite{Wolf1999}. The
1048 + shifted Coulomb potential for particle $i$ and particle $j$ at
1049 + distance $r_{rj}$ is given by:
1050 + \begin{equation}
1051 + V(r_{ij})= \frac{q_i q_j \textrm{erfc}(\alpha
1052 + r_{ij})}{r_{ij}}-\lim_{r_{ij}\rightarrow
1053 + R_\textrm{c}}\left\{\frac{q_iq_j \textrm{erfc}(\alpha
1054 + r_{ij})}{r_{ij}}\right\}. \label{introEquation:shiftedCoulomb}
1055 + \end{equation}
1056 + where $\alpha$ is the convergence parameter. Due to the lack of
1057 + inherent periodicity and rapid convergence,this method is extremely
1058 + efficient and easy to implement.
1059 + \begin{figure}
1060 + \centering
1061 + \includegraphics[width=\linewidth]{shifted_coulomb.eps}
1062 + \caption[An illustration of shifted Coulomb potential]{An
1063 + illustration of shifted Coulomb potential.}
1064 + \label{introFigure:shiftedCoulomb}
1065 + \end{figure}
1066 +
1067 + %multiple time step
1068 +
1069 + \subsection{\label{introSection:Analysis} Analysis}
1070 +
1071 + Recently, advanced visualization technique are widely applied to
1072 + monitor the motions of molecules. Although the dynamics of the
1073 + system can be described qualitatively from animation, quantitative
1074 + trajectory analysis are more appreciable. According to the
1075 + principles of Statistical Mechanics,
1076 + Sec.~\ref{introSection:statisticalMechanics}, one can compute
1077 + thermodynamics properties, analyze fluctuations of structural
1078 + parameters, and investigate time-dependent processes of the molecule
1079 + from the trajectories.
1080 +
1081 + \subsubsection{\label{introSection:thermodynamicsProperties}Thermodynamics Properties}
1082 +
1083 + Thermodynamics properties, which can be expressed in terms of some
1084 + function of the coordinates and momenta of all particles in the
1085 + system, can be directly computed from molecular dynamics. The usual
1086 + way to measure the pressure is based on virial theorem of Clausius
1087 + which states that the virial is equal to $-3Nk_BT$. For a system
1088 + with forces between particles, the total virial, $W$, contains the
1089 + contribution from external pressure and interaction between the
1090 + particles:
1091   \[
1092 < L(\sin at) = \frac{a}{{p^2  + a^2 }}
1092 > W =  - 3PV + \left\langle {\sum\limits_{i < j} {r{}_{ij} \cdot
1093 > f_{ij} } } \right\rangle
1094   \]
1095 + where $f_{ij}$ is the force between particle $i$ and $j$ at a
1096 + distance $r_{ij}$. Thus, the expression for the pressure is given
1097 + by:
1098 + \begin{equation}
1099 + P = \frac{{Nk_B T}}{V} - \frac{1}{{3V}}\left\langle {\sum\limits_{i
1100 + < j} {r{}_{ij} \cdot f_{ij} } } \right\rangle
1101 + \end{equation}
1102  
1103 + \subsubsection{\label{introSection:structuralProperties}Structural Properties}
1104 +
1105 + Structural Properties of a simple fluid can be described by a set of
1106 + distribution functions. Among these functions,\emph{pair
1107 + distribution function}, also known as \emph{radial distribution
1108 + function}, is of most fundamental importance to liquid-state theory.
1109 + Pair distribution function can be gathered by Fourier transforming
1110 + raw data from a series of neutron diffraction experiments and
1111 + integrating over the surface factor \cite{Powles1973}. The
1112 + experiment result can serve as a criterion to justify the
1113 + correctness of the theory. Moreover, various equilibrium
1114 + thermodynamic and structural properties can also be expressed in
1115 + terms of radial distribution function \cite{Allen1987}.
1116 +
1117 + A pair distribution functions $g(r)$ gives the probability that a
1118 + particle $i$ will be located at a distance $r$ from a another
1119 + particle $j$ in the system
1120   \[
1121 < L(1) = \frac{1}{p}
1121 > g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1122 > \ne i} {\delta (r - r_{ij} )} } } \right\rangle.
1123   \]
1124 + Note that the delta function can be replaced by a histogram in
1125 + computer simulation. Figure
1126 + \ref{introFigure:pairDistributionFunction} shows a typical pair
1127 + distribution function for the liquid argon system. The occurrence of
1128 + several peaks in the plot of $g(r)$ suggests that it is more likely
1129 + to find particles at certain radial values than at others. This is a
1130 + result of the attractive interaction at such distances. Because of
1131 + the strong repulsive forces at short distance, the probability of
1132 + locating particles at distances less than about 2.5{\AA} from each
1133 + other is essentially zero.
1134  
1135 < First, the bath coordinates,
1135 > %\begin{figure}
1136 > %\centering
1137 > %\includegraphics[width=\linewidth]{pdf.eps}
1138 > %\caption[Pair distribution function for the liquid argon
1139 > %]{Pair distribution function for the liquid argon}
1140 > %\label{introFigure:pairDistributionFunction}
1141 > %\end{figure}
1142 >
1143 > \subsubsection{\label{introSection:timeDependentProperties}Time-dependent
1144 > Properties}
1145 >
1146 > Time-dependent properties are usually calculated using \emph{time
1147 > correlation function}, which correlates random variables $A$ and $B$
1148 > at two different time
1149 > \begin{equation}
1150 > C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1151 > \label{introEquation:timeCorrelationFunction}
1152 > \end{equation}
1153 > If $A$ and $B$ refer to same variable, this kind of correlation
1154 > function is called \emph{auto correlation function}. One example of
1155 > auto correlation function is velocity auto-correlation function
1156 > which is directly related to transport properties of molecular
1157 > liquids:
1158   \[
1159 < p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
1160 < _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
466 < }}L(x)
1159 > D = \frac{1}{3}\int\limits_0^\infty  {\left\langle {v(t) \cdot v(0)}
1160 > \right\rangle } dt
1161   \]
1162 + where $D$ is diffusion constant. Unlike velocity autocorrelation
1163 + function which is averaging over time origins and over all the
1164 + atoms, dipole autocorrelation are calculated for the entire system.
1165 + The dipole autocorrelation function is given by:
1166   \[
1167 < L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
1168 < px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
1167 > c_{dipole}  = \left\langle {u_{tot} (t) \cdot u_{tot} (t)}
1168 > \right\rangle
1169   \]
1170 < Then, the system coordinates,
1171 < \begin{align}
1172 < mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1173 < \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
1174 < }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
1175 < (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
1176 < }}\omega _\alpha ^2 L(x)} \right\}}
1177 < %
1178 < &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1179 < \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
1180 < - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
1181 < - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
1182 < \end{align}
1183 < Then, the inverse transform,
1170 > Here $u_{tot}$ is the net dipole of the entire system and is given
1171 > by
1172 > \[
1173 > u_{tot} (t) = \sum\limits_i {u_i (t)}
1174 > \]
1175 > In principle, many time correlation functions can be related with
1176 > Fourier transforms of the infrared, Raman, and inelastic neutron
1177 > scattering spectra of molecular liquids. In practice, one can
1178 > extract the IR spectrum from the intensity of dipole fluctuation at
1179 > each frequency using the following relationship:
1180 > \[
1181 > \hat c_{dipole} (v) = \int_{ - \infty }^\infty  {c_{dipole} (t)e^{ -
1182 > i2\pi vt} dt}
1183 > \]
1184  
1185 < \begin{align}
1186 < m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
1185 > \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1186 >
1187 > Rigid bodies are frequently involved in the modeling of different
1188 > areas, from engineering, physics, to chemistry. For example,
1189 > missiles and vehicle are usually modeled by rigid bodies.  The
1190 > movement of the objects in 3D gaming engine or other physics
1191 > simulator is governed by the rigid body dynamics. In molecular
1192 > simulation, rigid body is used to simplify the model in
1193 > protein-protein docking study\cite{Gray2003}.
1194 >
1195 > It is very important to develop stable and efficient methods to
1196 > integrate the equations of motion of orientational degrees of
1197 > freedom. Euler angles are the nature choice to describe the
1198 > rotational degrees of freedom. However, due to its singularity, the
1199 > numerical integration of corresponding equations of motion is very
1200 > inefficient and inaccurate. Although an alternative integrator using
1201 > different sets of Euler angles can overcome this
1202 > difficulty\cite{Barojas1973}, the computational penalty and the lost
1203 > of angular momentum conservation still remain. A singularity free
1204 > representation utilizing quaternions was developed by Evans in
1205 > 1977\cite{Evans1977}. Unfortunately, this approach suffer from the
1206 > nonseparable Hamiltonian resulted from quaternion representation,
1207 > which prevents the symplectic algorithm to be utilized. Another
1208 > different approach is to apply holonomic constraints to the atoms
1209 > belonging to the rigid body. Each atom moves independently under the
1210 > normal forces deriving from potential energy and constraint forces
1211 > which are used to guarantee the rigidness. However, due to their
1212 > iterative nature, SHAKE and Rattle algorithm converge very slowly
1213 > when the number of constraint increases\cite{Ryckaert1977,
1214 > Andersen1983}.
1215 >
1216 > The break through in geometric literature suggests that, in order to
1217 > develop a long-term integration scheme, one should preserve the
1218 > symplectic structure of the flow. Introducing conjugate momentum to
1219 > rotation matrix $Q$ and re-formulating Hamiltonian's equation, a
1220 > symplectic integrator, RSHAKE\cite{Kol1997}, was proposed to evolve
1221 > the Hamiltonian system in a constraint manifold by iteratively
1222 > satisfying the orthogonality constraint $Q_T Q = 1$. An alternative
1223 > method using quaternion representation was developed by
1224 > Omelyan\cite{Omelyan1998}. However, both of these methods are
1225 > iterative and inefficient. In this section, we will present a
1226 > symplectic Lie-Poisson integrator for rigid body developed by
1227 > Dullweber and his coworkers\cite{Dullweber1997} in depth.
1228 >
1229 > \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
1230 > The motion of the rigid body is Hamiltonian with the Hamiltonian
1231 > function
1232 > \begin{equation}
1233 > H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1234 > V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
1235 > \label{introEquation:RBHamiltonian}
1236 > \end{equation}
1237 > Here, $q$ and $Q$  are the position and rotation matrix for the
1238 > rigid-body, $p$ and $P$  are conjugate momenta to $q$  and $Q$ , and
1239 > $J$, a diagonal matrix, is defined by
1240 > \[
1241 > I_{ii}^{ - 1}  = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
1242 > \]
1243 > where $I_{ii}$ is the diagonal element of the inertia tensor. This
1244 > constrained Hamiltonian equation subjects to a holonomic constraint,
1245 > \begin{equation}
1246 > Q^T Q = 1, \label{introEquation:orthogonalConstraint}
1247 > \end{equation}
1248 > which is used to ensure rotation matrix's orthogonality.
1249 > Differentiating \ref{introEquation:orthogonalConstraint} and using
1250 > Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
1251 > \begin{equation}
1252 > Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
1253 > \label{introEquation:RBFirstOrderConstraint}
1254 > \end{equation}
1255 >
1256 > Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
1257 > \ref{introEquation:motionHamiltonianMomentum}), one can write down
1258 > the equations of motion,
1259 > \[
1260 > \begin{array}{c}
1261 > \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1262 > \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1263 > \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1264 > \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
1265 > \end{array}
1266 > \]
1267 >
1268 > In general, there are two ways to satisfy the holonomic constraints.
1269 > We can use constraint force provided by lagrange multiplier on the
1270 > normal manifold to keep the motion on constraint space. Or we can
1271 > simply evolve the system in constraint manifold. These two methods
1272 > are proved to be equivalent. The holonomic constraint and equations
1273 > of motions define a constraint manifold for rigid body
1274 > \[
1275 > M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
1276 > \right\}.
1277 > \]
1278 >
1279 > Unfortunately, this constraint manifold is not the cotangent bundle
1280 > $T_{\star}SO(3)$. However, it turns out that under symplectic
1281 > transformation, the cotangent space and the phase space are
1282 > diffeomorphic. Introducing
1283 > \[
1284 > \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1285 > \]
1286 > the mechanical system subject to a holonomic constraint manifold $M$
1287 > can be re-formulated as a Hamiltonian system on the cotangent space
1288 > \[
1289 > T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1290 > 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1291 > \]
1292 >
1293 > For a body fixed vector $X_i$ with respect to the center of mass of
1294 > the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1295 > given as
1296 > \begin{equation}
1297 > X_i^{lab} = Q X_i + q.
1298 > \end{equation}
1299 > Therefore, potential energy $V(q,Q)$ is defined by
1300 > \[
1301 > V(q,Q) = V(Q X_0 + q).
1302 > \]
1303 > Hence, the force and torque are given by
1304 > \[
1305 > \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1306 > \]
1307 > and
1308 > \[
1309 > \nabla _Q V(q,Q) = F(q,Q)X_i^t
1310 > \]
1311 > respectively.
1312 >
1313 > As a common choice to describe the rotation dynamics of the rigid
1314 > body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
1315 > rewrite the equations of motion,
1316 > \begin{equation}
1317 > \begin{array}{l}
1318 > \mathop \Pi \limits^ \bullet   = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda  \\
1319 > \mathop Q\limits^{{\rm{   }} \bullet }  = Q\Pi {\rm{ }}J^{ - 1}  \\
1320 > \end{array}
1321 > \label{introEqaution:RBMotionPI}
1322 > \end{equation}
1323 > , as well as holonomic constraints,
1324 > \[
1325 > \begin{array}{l}
1326 > \Pi J^{ - 1}  + J^{ - 1} \Pi ^t  = 0 \\
1327 > Q^T Q = 1 \\
1328 > \end{array}
1329 > \]
1330 >
1331 > For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1332 > so(3)^ \star$, the hat-map isomorphism,
1333 > \begin{equation}
1334 > v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1335 > {\begin{array}{*{20}c}
1336 >   0 & { - v_3 } & {v_2 }  \\
1337 >   {v_3 } & 0 & { - v_1 }  \\
1338 >   { - v_2 } & {v_1 } & 0  \\
1339 > \end{array}} \right),
1340 > \label{introEquation:hatmapIsomorphism}
1341 > \end{equation}
1342 > will let us associate the matrix products with traditional vector
1343 > operations
1344 > \[
1345 > \hat vu = v \times u
1346 > \]
1347 >
1348 > Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1349 > matrix,
1350 > \begin{equation}
1351 > (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ \bullet  ^T
1352 > ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1353 > - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1354 > (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1355 > \end{equation}
1356 > Since $\Lambda$ is symmetric, the last term of Equation
1357 > \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1358 > multiplier $\Lambda$ is absent from the equations of motion. This
1359 > unique property eliminate the requirement of iterations which can
1360 > not be avoided in other methods\cite{Kol1997, Omelyan1998}.
1361 >
1362 > Applying hat-map isomorphism, we obtain the equation of motion for
1363 > angular momentum on body frame
1364 > \begin{equation}
1365 > \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1366 > F_i (r,Q)} \right) \times X_i }.
1367 > \label{introEquation:bodyAngularMotion}
1368 > \end{equation}
1369 > In the same manner, the equation of motion for rotation matrix is
1370 > given by
1371 > \[
1372 > \dot Q = Qskew(I^{ - 1} \pi )
1373 > \]
1374 >
1375 > \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1376 > Lie-Poisson Integrator for Free Rigid Body}
1377 >
1378 > If there is not external forces exerted on the rigid body, the only
1379 > contribution to the rotational is from the kinetic potential (the
1380 > first term of \ref{ introEquation:bodyAngularMotion}). The free
1381 > rigid body is an example of Lie-Poisson system with Hamiltonian
1382 > function
1383 > \begin{equation}
1384 > T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1385 > \label{introEquation:rotationalKineticRB}
1386 > \end{equation}
1387 > where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1388 > Lie-Poisson structure matrix,
1389 > \begin{equation}
1390 > J(\pi ) = \left( {\begin{array}{*{20}c}
1391 >   0 & {\pi _3 } & { - \pi _2 }  \\
1392 >   { - \pi _3 } & 0 & {\pi _1 }  \\
1393 >   {\pi _2 } & { - \pi _1 } & 0  \\
1394 > \end{array}} \right)
1395 > \end{equation}
1396 > Thus, the dynamics of free rigid body is governed by
1397 > \begin{equation}
1398 > \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi )
1399 > \end{equation}
1400 >
1401 > One may notice that each $T_i^r$ in Equation
1402 > \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1403 > instance, the equations of motion due to $T_1^r$ are given by
1404 > \begin{equation}
1405 > \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1406 > \label{introEqaution:RBMotionSingleTerm}
1407 > \end{equation}
1408 > where
1409 > \[ R_1  = \left( {\begin{array}{*{20}c}
1410 >   0 & 0 & 0  \\
1411 >   0 & 0 & {\pi _1 }  \\
1412 >   0 & { - \pi _1 } & 0  \\
1413 > \end{array}} \right).
1414 > \]
1415 > The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1416 > \[
1417 > \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1418 > Q(0)e^{\Delta tR_1 }
1419 > \]
1420 > with
1421 > \[
1422 > e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1423 >   0 & 0 & 0  \\
1424 >   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1425 >   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1426 > \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1427 > \]
1428 > To reduce the cost of computing expensive functions in $e^{\Delta
1429 > tR_1 }$, we can use Cayley transformation,
1430 > \[
1431 > e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1432 > )
1433 > \]
1434 > The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1435 > manner.
1436 >
1437 > In order to construct a second-order symplectic method, we split the
1438 > angular kinetic Hamiltonian function can into five terms
1439 > \[
1440 > T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1441 > ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1442 > (\pi _1 )
1443 > \].
1444 > Concatenating flows corresponding to these five terms, we can obtain
1445 > an symplectic integrator,
1446 > \[
1447 > \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1448 > \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1449 > \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1450 > _1 }.
1451 > \]
1452 >
1453 > The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1454 > $F(\pi )$ and $G(\pi )$ is defined by
1455 > \[
1456 > \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1457 > )
1458 > \]
1459 > If the Poisson bracket of a function $F$ with an arbitrary smooth
1460 > function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1461 > conserved quantity in Poisson system. We can easily verify that the
1462 > norm of the angular momentum, $\parallel \pi
1463 > \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1464 > \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1465 > then by the chain rule
1466 > \[
1467 > \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1468 > }}{2})\pi
1469 > \]
1470 > Thus $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel \pi
1471 > \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1472 > Lie-Poisson integrator is found to be extremely efficient and stable
1473 > which can be explained by the fact the small angle approximation is
1474 > used and the norm of the angular momentum is conserved.
1475 >
1476 > \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1477 > Splitting for Rigid Body}
1478 >
1479 > The Hamiltonian of rigid body can be separated in terms of kinetic
1480 > energy and potential energy,
1481 > \[
1482 > H = T(p,\pi ) + V(q,Q)
1483 > \]
1484 > The equations of motion corresponding to potential energy and
1485 > kinetic energy are listed in the below table,
1486 > \begin{table}
1487 > \caption{Equations of motion due to Potential and Kinetic Energies}
1488 > \begin{center}
1489 > \begin{tabular}{|l|l|}
1490 >  \hline
1491 >  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1492 >  Potential & Kinetic \\
1493 >  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1494 >  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1495 >  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1496 >  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1497 >  \hline
1498 > \end{tabular}
1499 > \end{center}
1500 > \end{table}
1501 > A second-order symplectic method is now obtained by the
1502 > composition of the flow maps,
1503 > \[
1504 > \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1505 > _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1506 > \]
1507 > Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1508 > sub-flows which corresponding to force and torque respectively,
1509 > \[
1510 > \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1511 > _{\Delta t/2,\tau }.
1512 > \]
1513 > Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1514 > $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1515 > order inside $\varphi _{\Delta t/2,V}$ does not matter.
1516 >
1517 > Furthermore, kinetic potential can be separated to translational
1518 > kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1519 > \begin{equation}
1520 > T(p,\pi ) =T^t (p) + T^r (\pi ).
1521 > \end{equation}
1522 > where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1523 > defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1524 > corresponding flow maps are given by
1525 > \[
1526 > \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1527 > _{\Delta t,T^r }.
1528 > \]
1529 > Finally, we obtain the overall symplectic flow maps for free moving
1530 > rigid body
1531 > \begin{equation}
1532 > \begin{array}{c}
1533 > \varphi _{\Delta t}  = \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \\
1534 >  \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \\
1535 >  \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1536 > \end{array}
1537 > \label{introEquation:overallRBFlowMaps}
1538 > \end{equation}
1539 >
1540 > \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1541 > As an alternative to newtonian dynamics, Langevin dynamics, which
1542 > mimics a simple heat bath with stochastic and dissipative forces,
1543 > has been applied in a variety of studies. This section will review
1544 > the theory of Langevin dynamics simulation. A brief derivation of
1545 > generalized Langevin equation will be given first. Follow that, we
1546 > will discuss the physical meaning of the terms appearing in the
1547 > equation as well as the calculation of friction tensor from
1548 > hydrodynamics theory.
1549 >
1550 > \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1551 >
1552 > Harmonic bath model, in which an effective set of harmonic
1553 > oscillators are used to mimic the effect of a linearly responding
1554 > environment, has been widely used in quantum chemistry and
1555 > statistical mechanics. One of the successful applications of
1556 > Harmonic bath model is the derivation of Deriving Generalized
1557 > Langevin Dynamics. Lets consider a system, in which the degree of
1558 > freedom $x$ is assumed to couple to the bath linearly, giving a
1559 > Hamiltonian of the form
1560 > \begin{equation}
1561 > H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1562 > \label{introEquation:bathGLE}.
1563 > \end{equation}
1564 > Here $p$ is a momentum conjugate to $q$, $m$ is the mass associated
1565 > with this degree of freedom, $H_B$ is harmonic bath Hamiltonian,
1566 > \[
1567 > H_B  = \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1568 > }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  \omega _\alpha ^2 }
1569 > \right\}}
1570 > \]
1571 > where the index $\alpha$ runs over all the bath degrees of freedom,
1572 > $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1573 > the harmonic bath masses, and $\Delta U$ is bilinear system-bath
1574 > coupling,
1575 > \[
1576 > \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1577 > \]
1578 > where $g_\alpha$ are the coupling constants between the bath and the
1579 > coordinate $x$. Introducing
1580 > \[
1581 > W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1582 > }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1583 > \] and combining the last two terms in Equation
1584 > \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1585 > Hamiltonian as
1586 > \[
1587 > H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1588 > {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1589 > w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1590 > w_\alpha ^2 }}x} \right)^2 } \right\}}
1591 > \]
1592 > Since the first two terms of the new Hamiltonian depend only on the
1593 > system coordinates, we can get the equations of motion for
1594 > Generalized Langevin Dynamics by Hamilton's equations
1595 > \ref{introEquation:motionHamiltonianCoordinate,
1596 > introEquation:motionHamiltonianMomentum},
1597 > \begin{equation}
1598 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1599 > \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   -
1600 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)},
1601 > \label{introEquation:coorMotionGLE}
1602 > \end{equation}
1603 > and
1604 > \begin{equation}
1605 > m\ddot x_\alpha   =  - m_\alpha  w_\alpha ^2 \left( {x_\alpha   -
1606 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right).
1607 > \label{introEquation:bathMotionGLE}
1608 > \end{equation}
1609 >
1610 > In order to derive an equation for $x$, the dynamics of the bath
1611 > variables $x_\alpha$ must be solved exactly first. As an integral
1612 > transform which is particularly useful in solving linear ordinary
1613 > differential equations, Laplace transform is the appropriate tool to
1614 > solve this problem. The basic idea is to transform the difficult
1615 > differential equations into simple algebra problems which can be
1616 > solved easily. Then applying inverse Laplace transform, also known
1617 > as the Bromwich integral, we can retrieve the solutions of the
1618 > original problems.
1619 >
1620 > Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1621 > transform of f(t) is a new function defined as
1622 > \[
1623 > L(f(t)) \equiv F(p) = \int_0^\infty  {f(t)e^{ - pt} dt}
1624 > \]
1625 > where  $p$ is real and  $L$ is called the Laplace Transform
1626 > Operator. Below are some important properties of Laplace transform
1627 >
1628 > \begin{eqnarray*}
1629 > L(x + y)  & = & L(x) + L(y) \\
1630 > L(ax)     & = & aL(x) \\
1631 > L(\dot x) & = & pL(x) - px(0) \\
1632 > L(\ddot x)& = & p^2 L(x) - px(0) - \dot x(0) \\
1633 > L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right)& = & G(p)H(p) \\
1634 > \end{eqnarray*}
1635 >
1636 >
1637 > Applying Laplace transform to the bath coordinates, we obtain
1638 > \begin{eqnarray*}
1639 > p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) & = & - \omega _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) \\
1640 > L(x_\alpha  ) & = & \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }} \\
1641 > \end{eqnarray*}
1642 >
1643 > By the same way, the system coordinates become
1644 > \begin{eqnarray*}
1645 > mL(\ddot x) & = & - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1646 >  & & \mbox{} - \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0) - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}  \\
1647 > \end{eqnarray*}
1648 >
1649 > With the help of some relatively important inverse Laplace
1650 > transformations:
1651 > \[
1652 > \begin{array}{c}
1653 > L(\cos at) = \frac{p}{{p^2  + a^2 }} \\
1654 > L(\sin at) = \frac{a}{{p^2  + a^2 }} \\
1655 > L(1) = \frac{1}{p} \\
1656 > \end{array}
1657 > \]
1658 > , we obtain
1659 > \[
1660 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1661   \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1662   }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1663   _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
1664   - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
1665   (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
1666   _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
1667 < %
1668 < &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1667 > \]
1668 > \[
1669 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1670   {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1671   }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1672   t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
# Line 501 | Line 1674 | t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  =
1674   \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
1675   \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
1676   (\omega _\alpha  t)} \right\}}
1677 < \end{align}
1677 > \]
1678  
1679 + Introducing a \emph{dynamic friction kernel}
1680   \begin{equation}
1681 + \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1682 + }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1683 + \label{introEquation:dynamicFrictionKernelDefinition}
1684 + \end{equation}
1685 + and \emph{a random force}
1686 + \begin{equation}
1687 + R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1688 + - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1689 + \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1690 + (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t),
1691 + \label{introEquation:randomForceDefinition}
1692 + \end{equation}
1693 + the equation of motion can be rewritten as
1694 + \begin{equation}
1695   m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1696   (t)\dot x(t - \tau )d\tau }  + R(t)
1697   \label{introEuqation:GeneralizedLangevinDynamics}
1698   \end{equation}
1699 < %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1700 < %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
1699 > which is known as the \emph{generalized Langevin equation}.
1700 >
1701 > \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}Random Force and Dynamic Friction Kernel}
1702 >
1703 > One may notice that $R(t)$ depends only on initial conditions, which
1704 > implies it is completely deterministic within the context of a
1705 > harmonic bath. However, it is easy to verify that $R(t)$ is totally
1706 > uncorrelated to $x$ and $\dot x$,
1707   \[
1708 < \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1709 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1708 > \begin{array}{l}
1709 > \left\langle {x(t)R(t)} \right\rangle  = 0, \\
1710 > \left\langle {\dot x(t)R(t)} \right\rangle  = 0. \\
1711 > \end{array}
1712   \]
1713 < For an infinite harmonic bath, we can use the spectral density and
1714 < an integral over frequencies.
1713 > This property is what we expect from a truly random process. As long
1714 > as the model, which is gaussian distribution in general, chosen for
1715 > $R(t)$ is a truly random process, the stochastic nature of the GLE
1716 > still remains.
1717  
1718 + %dynamic friction kernel
1719 + The convolution integral
1720   \[
1721 < R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
522 < - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
523 < \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
524 < (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
1721 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1722   \]
1723 < The random forces depend only on initial conditions.
1723 > depends on the entire history of the evolution of $x$, which implies
1724 > that the bath retains memory of previous motions. In other words,
1725 > the bath requires a finite time to respond to change in the motion
1726 > of the system. For a sluggish bath which responds slowly to changes
1727 > in the system coordinate, we may regard $\xi(t)$ as a constant
1728 > $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1729 > \[
1730 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = \xi _0 (x(t) - x(0))
1731 > \]
1732 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1733 > \[
1734 > m\ddot x =  - \frac{\partial }{{\partial x}}\left( {W(x) +
1735 > \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1736 > \]
1737 > which can be used to describe dynamic caging effect. The other
1738 > extreme is the bath that responds infinitely quickly to motions in
1739 > the system. Thus, $\xi (t)$ can be taken as a $delta$ function in
1740 > time:
1741 > \[
1742 > \xi (t) = 2\xi _0 \delta (t)
1743 > \]
1744 > Hence, the convolution integral becomes
1745 > \[
1746 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = 2\xi _0 \int_0^t
1747 > {\delta (t)\dot x(t - \tau )d\tau }  = \xi _0 \dot x(t),
1748 > \]
1749 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1750 > \begin{equation}
1751 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1752 > x(t) + R(t) \label{introEquation:LangevinEquation}
1753 > \end{equation}
1754 > which is known as the Langevin equation. The static friction
1755 > coefficient $\xi _0$ can either be calculated from spectral density
1756 > or be determined by Stokes' law for regular shaped particles.A
1757 > briefly review on calculating friction tensor for arbitrary shaped
1758 > particles is given in Sec.~\ref{introSection:frictionTensor}.
1759  
1760   \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1761 < So we can define a new set of coordinates,
1761 >
1762 > Defining a new set of coordinates,
1763   \[
1764   q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1765   ^2 }}x(0)
1766 < \]
1767 < This makes
1766 > \],
1767 > we can rewrite $R(T)$ as
1768   \[
1769 < R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
1769 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}.
1770   \]
1771   And since the $q$ coordinates are harmonic oscillators,
539 \[
540 \begin{array}{l}
541 \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
542 \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
543 \end{array}
544 \]
1772  
1773 < \begin{align}
1774 < \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
1775 < {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
1776 < (t)q_\beta  (0)} \right\rangle } }
1777 < %
1778 < &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
1779 < \right\rangle \cos (\omega _\alpha  t)}
1780 < %
554 < &= kT\xi (t)
555 < \end{align}
1773 > \begin{eqnarray*}
1774 > \left\langle {q_\alpha ^2 } \right\rangle  & = & \frac{{kT}}{{m_\alpha  \omega _\alpha ^2 }} \\
1775 > \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle & = & \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1776 > \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle & = &\delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1777 > \left\langle {R(t)R(0)} \right\rangle & = & \sum\limits_\alpha  {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle } }  \\
1778 >  & = &\sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t)}  \\
1779 >  & = &kT\xi (t) \\
1780 > \end{eqnarray*}
1781  
1782 + Thus, we recover the \emph{second fluctuation dissipation theorem}
1783   \begin{equation}
1784   \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1785 < \label{introEquation:secondFluctuationDissipation}
1785 > \label{introEquation:secondFluctuationDissipation}.
1786   \end{equation}
1787 + In effect, it acts as a constraint on the possible ways in which one
1788 + can model the random force and friction kernel.
1789  
562 \section{\label{introSection:hydroynamics}Hydrodynamics}
563
1790   \subsection{\label{introSection:frictionTensor} Friction Tensor}
1791 < \subsection{\label{introSection:analyticalApproach}Analytical
1792 < Approach}
1791 > Theoretically, the friction kernel can be determined using velocity
1792 > autocorrelation function. However, this approach become impractical
1793 > when the system become more and more complicate. Instead, various
1794 > approaches based on hydrodynamics have been developed to calculate
1795 > the friction coefficients. The friction effect is isotropic in
1796 > Equation, $\zeta$ can be taken as a scalar. In general, friction
1797 > tensor $\Xi$ is a $6\times 6$ matrix given by
1798 > \[
1799 > \Xi  = \left( {\begin{array}{*{20}c}
1800 >   {\Xi _{}^{tt} } & {\Xi _{}^{rt} }  \\
1801 >   {\Xi _{}^{tr} } & {\Xi _{}^{rr} }  \\
1802 > \end{array}} \right).
1803 > \]
1804 > Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1805 > tensor and rotational resistance (friction) tensor respectively,
1806 > while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1807 > {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1808 > particle moves in a fluid, it may experience friction force or
1809 > torque along the opposite direction of the velocity or angular
1810 > velocity,
1811 > \[
1812 > \left( \begin{array}{l}
1813 > F_R  \\
1814 > \tau _R  \\
1815 > \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1816 >   {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1817 >   {\Xi ^{tr} } & {\Xi ^{rr} }  \\
1818 > \end{array}} \right)\left( \begin{array}{l}
1819 > v \\
1820 > w \\
1821 > \end{array} \right)
1822 > \]
1823 > where $F_r$ is the friction force and $\tau _R$ is the friction
1824 > toque.
1825  
1826 < \subsection{\label{introSection:approximationApproach}Approximation
569 < Approach}
1826 > \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1827  
1828 < \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1829 < Body}
1828 > For a spherical particle, the translational and rotational friction
1829 > constant can be calculated from Stoke's law,
1830 > \[
1831 > \Xi ^{tt}  = \left( {\begin{array}{*{20}c}
1832 >   {6\pi \eta R} & 0 & 0  \\
1833 >   0 & {6\pi \eta R} & 0  \\
1834 >   0 & 0 & {6\pi \eta R}  \\
1835 > \end{array}} \right)
1836 > \]
1837 > and
1838 > \[
1839 > \Xi ^{rr}  = \left( {\begin{array}{*{20}c}
1840 >   {8\pi \eta R^3 } & 0 & 0  \\
1841 >   0 & {8\pi \eta R^3 } & 0  \\
1842 >   0 & 0 & {8\pi \eta R^3 }  \\
1843 > \end{array}} \right)
1844 > \]
1845 > where $\eta$ is the viscosity of the solvent and $R$ is the
1846 > hydrodynamics radius.
1847 >
1848 > Other non-spherical shape, such as cylinder and ellipsoid
1849 > \textit{etc}, are widely used as reference for developing new
1850 > hydrodynamics theory, because their properties can be calculated
1851 > exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1852 > also called a triaxial ellipsoid, which is given in Cartesian
1853 > coordinates by\cite{Perrin1934, Perrin1936}
1854 > \[
1855 > \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1856 > }} = 1
1857 > \]
1858 > where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1859 > due to the complexity of the elliptic integral, only the ellipsoid
1860 > with the restriction of two axes having to be equal, \textit{i.e.}
1861 > prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1862 > exactly. Introducing an elliptic integral parameter $S$ for prolate,
1863 > \[
1864 > S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1865 > } }}{b},
1866 > \]
1867 > and oblate,
1868 > \[
1869 > S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1870 > }}{a}
1871 > \],
1872 > one can write down the translational and rotational resistance
1873 > tensors
1874 > \[
1875 > \begin{array}{l}
1876 > \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1877 > \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1878 > \end{array},
1879 > \]
1880 > and
1881 > \[
1882 > \begin{array}{l}
1883 > \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1884 > \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1885 > \end{array}.
1886 > \]
1887 >
1888 > \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1889 >
1890 > Unlike spherical and other regular shaped molecules, there is not
1891 > analytical solution for friction tensor of any arbitrary shaped
1892 > rigid molecules. The ellipsoid of revolution model and general
1893 > triaxial ellipsoid model have been used to approximate the
1894 > hydrodynamic properties of rigid bodies. However, since the mapping
1895 > from all possible ellipsoidal space, $r$-space, to all possible
1896 > combination of rotational diffusion coefficients, $D$-space is not
1897 > unique\cite{Wegener1979} as well as the intrinsic coupling between
1898 > translational and rotational motion of rigid body, general ellipsoid
1899 > is not always suitable for modeling arbitrarily shaped rigid
1900 > molecule. A number of studies have been devoted to determine the
1901 > friction tensor for irregularly shaped rigid bodies using more
1902 > advanced method where the molecule of interest was modeled by
1903 > combinations of spheres(beads)\cite{Carrasco1999} and the
1904 > hydrodynamics properties of the molecule can be calculated using the
1905 > hydrodynamic interaction tensor. Let us consider a rigid assembly of
1906 > $N$ beads immersed in a continuous medium. Due to hydrodynamics
1907 > interaction, the ``net'' velocity of $i$th bead, $v'_i$ is different
1908 > than its unperturbed velocity $v_i$,
1909 > \[
1910 > v'_i  = v_i  - \sum\limits_{j \ne i} {T_{ij} F_j }
1911 > \]
1912 > where $F_i$ is the frictional force, and $T_{ij}$ is the
1913 > hydrodynamic interaction tensor. The friction force of $i$th bead is
1914 > proportional to its ``net'' velocity
1915 > \begin{equation}
1916 > F_i  = \zeta _i v_i  - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1917 > \label{introEquation:tensorExpression}
1918 > \end{equation}
1919 > This equation is the basis for deriving the hydrodynamic tensor. In
1920 > 1930, Oseen and Burgers gave a simple solution to Equation
1921 > \ref{introEquation:tensorExpression}
1922 > \begin{equation}
1923 > T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1924 > R_{ij}^T }}{{R_{ij}^2 }}} \right).
1925 > \label{introEquation:oseenTensor}
1926 > \end{equation}
1927 > Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1928 > A second order expression for element of different size was
1929 > introduced by Rotne and Prager\cite{Rotne1969} and improved by
1930 > Garc\'{i}a de la Torre and Bloomfield\cite{Torre1977},
1931 > \begin{equation}
1932 > T_{ij}  = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1933 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1934 > _i^2  + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1935 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1936 > \label{introEquation:RPTensorNonOverlapped}
1937 > \end{equation}
1938 > Both of the Equation \ref{introEquation:oseenTensor} and Equation
1939 > \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1940 > \ge \sigma _i  + \sigma _j$. An alternative expression for
1941 > overlapping beads with the same radius, $\sigma$, is given by
1942 > \begin{equation}
1943 > T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1944 > \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1945 > \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1946 > \label{introEquation:RPTensorOverlapped}
1947 > \end{equation}
1948 >
1949 > To calculate the resistance tensor at an arbitrary origin $O$, we
1950 > construct a $3N \times 3N$ matrix consisting of $N \times N$
1951 > $B_{ij}$ blocks
1952 > \begin{equation}
1953 > B = \left( {\begin{array}{*{20}c}
1954 >   {B_{11} } &  \ldots  & {B_{1N} }  \\
1955 >    \vdots  &  \ddots  &  \vdots   \\
1956 >   {B_{N1} } &  \cdots  & {B_{NN} }  \\
1957 > \end{array}} \right),
1958 > \end{equation}
1959 > where $B_{ij}$ is given by
1960 > \[
1961 > B_{ij}  = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1962 > )T_{ij}
1963 > \]
1964 > where $\delta _{ij}$ is Kronecker delta function. Inverting matrix
1965 > $B$, we obtain
1966 >
1967 > \[
1968 > C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1969 >   {C_{11} } &  \ldots  & {C_{1N} }  \\
1970 >    \vdots  &  \ddots  &  \vdots   \\
1971 >   {C_{N1} } &  \cdots  & {C_{NN} }  \\
1972 > \end{array}} \right)
1973 > \]
1974 > , which can be partitioned into $N \times N$ $3 \times 3$ block
1975 > $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1976 > \[
1977 > U_i  = \left( {\begin{array}{*{20}c}
1978 >   0 & { - z_i } & {y_i }  \\
1979 >   {z_i } & 0 & { - x_i }  \\
1980 >   { - y_i } & {x_i } & 0  \\
1981 > \end{array}} \right)
1982 > \]
1983 > where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1984 > bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1985 > arbitrary origin $O$ can be written as
1986 > \begin{equation}
1987 > \begin{array}{l}
1988 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1989 > \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1990 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1991 > \end{array}
1992 > \label{introEquation:ResistanceTensorArbitraryOrigin}
1993 > \end{equation}
1994 >
1995 > The resistance tensor depends on the origin to which they refer. The
1996 > proper location for applying friction force is the center of
1997 > resistance (reaction), at which the trace of rotational resistance
1998 > tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1999 > resistance is defined as an unique point of the rigid body at which
2000 > the translation-rotation coupling tensor are symmetric,
2001 > \begin{equation}
2002 > \Xi^{tr}  = \left( {\Xi^{tr} } \right)^T
2003 > \label{introEquation:definitionCR}
2004 > \end{equation}
2005 > Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
2006 > we can easily find out that the translational resistance tensor is
2007 > origin independent, while the rotational resistance tensor and
2008 > translation-rotation coupling resistance tensor depend on the
2009 > origin. Given resistance tensor at an arbitrary origin $O$, and a
2010 > vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
2011 > obtain the resistance tensor at $P$ by
2012 > \begin{equation}
2013 > \begin{array}{l}
2014 > \Xi _P^{tt}  = \Xi _O^{tt}  \\
2015 > \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
2016 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{tr} ^{^T }  \\
2017 > \end{array}
2018 > \label{introEquation:resistanceTensorTransformation}
2019 > \end{equation}
2020 > where
2021 > \[
2022 > U_{OP}  = \left( {\begin{array}{*{20}c}
2023 >   0 & { - z_{OP} } & {y_{OP} }  \\
2024 >   {z_i } & 0 & { - x_{OP} }  \\
2025 >   { - y_{OP} } & {x_{OP} } & 0  \\
2026 > \end{array}} \right)
2027 > \]
2028 > Using Equations \ref{introEquation:definitionCR} and
2029 > \ref{introEquation:resistanceTensorTransformation}, one can locate
2030 > the position of center of resistance,
2031 > \begin{eqnarray*}
2032 > \left( \begin{array}{l}
2033 > x_{OR}  \\
2034 > y_{OR}  \\
2035 > z_{OR}  \\
2036 > \end{array} \right) & = &\left( {\begin{array}{*{20}c}
2037 >   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
2038 >   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
2039 >   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
2040 > \end{array}} \right)^{ - 1}  \\
2041 >  & & \left( \begin{array}{l}
2042 > (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
2043 > (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
2044 > (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
2045 > \end{array} \right) \\
2046 > \end{eqnarray*}
2047 >
2048 >
2049 >
2050 > where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
2051 > joining center of resistance $R$ and origin $O$.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines