ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2707 by tim, Thu Apr 13 22:17:13 2006 UTC vs.
Revision 2797 by tim, Tue Jun 6 02:12:34 2006 UTC

# Line 93 | Line 93 | the kinetic, $K$, and potential energies, $U$ \cite{to
93   The actual trajectory, along which a dynamical system may move from
94   one point to another within a specified time, is derived by finding
95   the path which minimizes the time integral of the difference between
96 < the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
96 > the kinetic, $K$, and potential energies, $U$ \cite{Tolman1979}.
97   \begin{equation}
98   \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
99   \label{introEquation:halmitonianPrinciple1}
# Line 189 | Line 189 | known as the canonical equations of motions \cite{Gold
189   Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
190   Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
191   equation of motion. Due to their symmetrical formula, they are also
192 < known as the canonical equations of motions \cite{Goldstein01}.
192 > known as the canonical equations of motions \cite{Goldstein2001}.
193  
194   An important difference between Lagrangian approach and the
195   Hamiltonian approach is that the Lagrangian is considered to be a
# Line 200 | Line 200 | equations\cite{Marion90}.
200   appropriate for application to statistical mechanics and quantum
201   mechanics, since it treats the coordinate and its time derivative as
202   independent variables and it only works with 1st-order differential
203 < equations\cite{Marion90}.
203 > equations\cite{Marion1990}.
204  
205   In Newtonian Mechanics, a system described by conservative forces
206   conserves the total energy \ref{introEquation:energyConservation}.
# Line 470 | Line 470 | statistical ensemble are identical \cite{Frenkel1996,
470   many-body system in Statistical Mechanics. Fortunately, Ergodic
471   Hypothesis is proposed to make a connection between time average and
472   ensemble average. It states that time average and average over the
473 < statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
473 > statistical ensemble are identical \cite{Frenkel1996, Leach2001}.
474   \begin{equation}
475   \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476   \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
# Line 484 | Line 484 | reasonable, the Monte Carlo techniques\cite{metropolis
484   a properly weighted statistical average. This allows the researcher
485   freedom of choice when deciding how best to measure a given
486   observable. In case an ensemble averaged approach sounds most
487 < reasonable, the Monte Carlo techniques\cite{metropolis:1949} can be
487 > reasonable, the Monte Carlo techniques\cite{Metropolis1949} can be
488   utilized. Or if the system lends itself to a time averaging
489   approach, the Molecular Dynamics techniques in
490   Sec.~\ref{introSection:molecularDynamics} will be the best
# Line 498 | Line 498 | issue. The velocity verlet method, which happens to be
498   within the equations. Since 1990, geometric integrators, which
499   preserve various phase-flow invariants such as symplectic structure,
500   volume and time reversal symmetry, are developed to address this
501 < issue. The velocity verlet method, which happens to be a simple
502 < example of symplectic integrator, continues to gain its popularity
503 < in molecular dynamics community. This fact can be partly explained
504 < by its geometric nature.
501 > issue\cite{Dullweber1997, McLachlan1998, Leimkuhler1999}. The
502 > velocity verlet method, which happens to be a simple example of
503 > symplectic integrator, continues to gain its popularity in molecular
504 > dynamics community. This fact can be partly explained by its
505 > geometric nature.
506  
507   \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
508   A \emph{manifold} is an abstract mathematical space. It locally
# Line 565 | Line 566 | Another generalization of Hamiltonian dynamics is Pois
566   \end{equation}In this case, $f$ is
567   called a \emph{Hamiltonian vector field}.
568  
569 < Another generalization of Hamiltonian dynamics is Poisson Dynamics,
569 > Another generalization of Hamiltonian dynamics is Poisson
570 > Dynamics\cite{Olver1986},
571   \begin{equation}
572   \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
573   \end{equation}
574   The most obvious change being that matrix $J$ now depends on $x$.
573 The free rigid body is an example of Poisson system (actually a
574 Lie-Poisson system) with Hamiltonian function of angular kinetic
575 energy.
576 \begin{equation}
577 J(\pi ) = \left( {\begin{array}{*{20}c}
578   0 & {\pi _3 } & { - \pi _2 }  \\
579   { - \pi _3 } & 0 & {\pi _1 }  \\
580   {\pi _2 } & { - \pi _1 } & 0  \\
581 \end{array}} \right)
582 \end{equation}
575  
584 \begin{equation}
585 H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
586 }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
587 \end{equation}
588
576   \subsection{\label{introSection:exactFlow}Exact Flow}
577  
578   Let $x(t)$ be the exact solution of the ODE system,
# Line 627 | Line 614 | The hidden geometric properties of ODE and its flow pl
614  
615   \subsection{\label{introSection:geometricProperties}Geometric Properties}
616  
617 < The hidden geometric properties of ODE and its flow play important
618 < roles in numerical studies. Many of them can be found in systems
619 < which occur naturally in applications.
617 > The hidden geometric properties\cite{Budd1999, Marsden1998} of ODE
618 > and its flow play important roles in numerical studies. Many of them
619 > can be found in systems which occur naturally in applications.
620  
621   Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
622   a \emph{symplectic} flow if it satisfies,
# Line 673 | Line 660 | smooth function $G$ is given by,
660   which is the condition for conserving \emph{first integral}. For a
661   canonical Hamiltonian system, the time evolution of an arbitrary
662   smooth function $G$ is given by,
663 < \begin{equation}
664 < \begin{array}{c}
665 < \frac{{dG(x(t))}}{{dt}} = [\nabla _x G(x(t))]^T \dot x(t) \\
666 <  = [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
680 < \end{array}
663 >
664 > \begin{eqnarray}
665 > \frac{{dG(x(t))}}{{dt}} & = & [\nabla _x G(x(t))]^T \dot x(t) \\
666 >                        & = & [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
667   \label{introEquation:firstIntegral1}
668 < \end{equation}
668 > \end{eqnarray}
669 >
670 >
671   Using poisson bracket notion, Equation
672   \ref{introEquation:firstIntegral1} can be rewritten as
673   \[
# Line 694 | Line 682 | is a \emph{first integral}, which is due to the fact $
682   is a \emph{first integral}, which is due to the fact $\{ H,H\}  =
683   0$.
684  
685 <
698 < When designing any numerical methods, one should always try to
685 > When designing any numerical methods, one should always try to
686   preserve the structural properties of the original ODE and its flow.
687  
688   \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
# Line 712 | Line 699 | Generating function tends to lead to methods which are
699   \item Splitting methods
700   \end{enumerate}
701  
702 < Generating function tends to lead to methods which are cumbersome
703 < and difficult to use. In dissipative systems, variational methods
704 < can capture the decay of energy accurately. Since their
705 < geometrically unstable nature against non-Hamiltonian perturbations,
706 < ordinary implicit Runge-Kutta methods are not suitable for
707 < Hamiltonian system. Recently, various high-order explicit
708 < Runge--Kutta methods have been developed to overcome this
702 > Generating function\cite{Channell1990} tends to lead to methods
703 > which are cumbersome and difficult to use. In dissipative systems,
704 > variational methods can capture the decay of energy
705 > accurately\cite{Kane2000}. Since their geometrically unstable nature
706 > against non-Hamiltonian perturbations, ordinary implicit Runge-Kutta
707 > methods are not suitable for Hamiltonian system. Recently, various
708 > high-order explicit Runge-Kutta methods
709 > \cite{Owren1992,Chen2003}have been developed to overcome this
710   instability. However, due to computational penalty involved in
711   implementing the Runge-Kutta methods, they do not attract too much
712   attention from Molecular Dynamics community. Instead, splitting have
713   been widely accepted since they exploit natural decompositions of
714 < the system\cite{Tuckerman92}.
714 > the system\cite{Tuckerman1992, McLachlan1998}.
715  
716   \subsubsection{\label{introSection:splittingMethod}Splitting Method}
717  
# Line 837 | Line 825 | q(\Delta t)} \right]. %
825   %
826   q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
827   q(\Delta t)} \right]. %
828 < \label{introEquation:positionVerlet1}
828 > \label{introEquation:positionVerlet2}
829   \end{align}
830  
831   \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
# Line 846 | Line 834 | $\varphi_1(t)$ and $\varphi_2(t$ respectively , we hav
834   error of splitting method in terms of commutator of the
835   operators(\ref{introEquation:exponentialOperator}) associated with
836   the sub-flow. For operators $hX$ and $hY$ which are associate to
837 < $\varphi_1(t)$ and $\varphi_2(t$ respectively , we have
837 > $\varphi_1(t)$ and $\varphi_2(t)$ respectively , we have
838   \begin{equation}
839   \exp (hX + hY) = \exp (hZ)
840   \end{equation}
# Line 859 | Line 847 | Applying Baker-Campbell-Hausdorff formula to Sprang sp
847   \[
848   [X,Y] = XY - YX .
849   \]
850 < Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
851 < can obtain
850 > Applying Baker-Campbell-Hausdorff formula\cite{Varadarajan1974} to
851 > Sprang splitting, we can obtain
852   \begin{eqnarray*}
853 < \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
854 < [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
855 < & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 & & \mbox{} +
868 < \ldots )
853 > \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2 [X,Y]/4 + h^2 [Y,X]/4 \\
854 >                                   &   & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
855 >                                   &   & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3[X,[X,Y]]/24 + \ldots )
856   \end{eqnarray*}
857   Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
858   error of Spring splitting is proportional to $h^3$. The same
# Line 874 | Line 861 | Careful choice of coefficient $a_1 ,\ldot , b_m$ will
861   \varphi _{b_m h}^2  \circ \varphi _{a_m h}^1  \circ \varphi _{b_{m -
862   1} h}^2  \circ  \ldots  \circ \varphi _{a_1 h}^1 .
863   \end{equation}
864 < Careful choice of coefficient $a_1 ,\ldot , b_m$ will lead to higher
864 > Careful choice of coefficient $a_1 \ldots b_m$ will lead to higher
865   order method. Yoshida proposed an elegant way to compose higher
866 < order methods based on symmetric splitting. Given a symmetric second
867 < order base method $ \varphi _h^{(2)} $, a fourth-order symmetric
868 < method can be constructed by composing,
866 > order methods based on symmetric splitting\cite{Yoshida1990}. Given
867 > a symmetric second order base method $ \varphi _h^{(2)} $, a
868 > fourth-order symmetric method can be constructed by composing,
869   \[
870   \varphi _h^{(4)}  = \varphi _{\alpha h}^{(2)}  \circ \varphi _{\beta
871   h}^{(2)}  \circ \varphi _{\alpha h}^{(2)}
# Line 898 | Line 885 | As a special discipline of molecular modeling, Molecul
885  
886   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
887  
888 < As a special discipline of molecular modeling, Molecular dynamics
889 < has proven to be a powerful tool for studying the functions of
890 < biological systems, providing structural, thermodynamic and
891 < dynamical information.
888 > As one of the principal tools of molecular modeling, Molecular
889 > dynamics has proven to be a powerful tool for studying the functions
890 > of biological systems, providing structural, thermodynamic and
891 > dynamical information. The basic idea of molecular dynamics is that
892 > macroscopic properties are related to microscopic behavior and
893 > microscopic behavior can be calculated from the trajectories in
894 > simulations. For instance, instantaneous temperature of an
895 > Hamiltonian system of $N$ particle can be measured by
896 > \[
897 > T = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
898 > \]
899 > where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
900 > respectively, $f$ is the number of degrees of freedom, and $k_B$ is
901 > the boltzman constant.
902  
903 < \subsection{\label{introSec:mdInit}Initialization}
903 > A typical molecular dynamics run consists of three essential steps:
904 > \begin{enumerate}
905 >  \item Initialization
906 >    \begin{enumerate}
907 >    \item Preliminary preparation
908 >    \item Minimization
909 >    \item Heating
910 >    \item Equilibration
911 >    \end{enumerate}
912 >  \item Production
913 >  \item Analysis
914 > \end{enumerate}
915 > These three individual steps will be covered in the following
916 > sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
917 > initialization of a simulation. Sec.~\ref{introSec:production} will
918 > discusses issues in production run. Sec.~\ref{introSection:Analysis}
919 > provides the theoretical tools for trajectory analysis.
920  
921 < \subsection{\label{introSec:forceEvaluation}Force Evaluation}
921 > \subsection{\label{introSec:initialSystemSettings}Initialization}
922  
923 < \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
923 > \subsubsection{Preliminary preparation}
924 >
925 > When selecting the starting structure of a molecule for molecular
926 > simulation, one may retrieve its Cartesian coordinates from public
927 > databases, such as RCSB Protein Data Bank \textit{etc}. Although
928 > thousands of crystal structures of molecules are discovered every
929 > year, many more remain unknown due to the difficulties of
930 > purification and crystallization. Even for the molecule with known
931 > structure, some important information is missing. For example, the
932 > missing hydrogen atom which acts as donor in hydrogen bonding must
933 > be added. Moreover, in order to include electrostatic interaction,
934 > one may need to specify the partial charges for individual atoms.
935 > Under some circumstances, we may even need to prepare the system in
936 > a special setup. For instance, when studying transport phenomenon in
937 > membrane system, we may prepare the lipids in bilayer structure
938 > instead of placing lipids randomly in solvent, since we are not
939 > interested in self-aggregation and it takes a long time to happen.
940 >
941 > \subsubsection{Minimization}
942 >
943 > It is quite possible that some of molecules in the system from
944 > preliminary preparation may be overlapped with each other. This
945 > close proximity leads to high potential energy which consequently
946 > jeopardizes any molecular dynamics simulations. To remove these
947 > steric overlaps, one typically performs energy minimization to find
948 > a more reasonable conformation. Several energy minimization methods
949 > have been developed to exploit the energy surface and to locate the
950 > local minimum. While converging slowly near the minimum, steepest
951 > descent method is extremely robust when systems are far from
952 > harmonic. Thus, it is often used to refine structure from
953 > crystallographic data. Relied on the gradient or hessian, advanced
954 > methods like conjugate gradient and Newton-Raphson converge rapidly
955 > to a local minimum, while become unstable if the energy surface is
956 > far from quadratic. Another factor must be taken into account, when
957 > choosing energy minimization method, is the size of the system.
958 > Steepest descent and conjugate gradient can deal with models of any
959 > size. Because of the limit of computation power to calculate hessian
960 > matrix and insufficient storage capacity to store them, most
961 > Newton-Raphson methods can not be used with very large models.
962 >
963 > \subsubsection{Heating}
964 >
965 > Typically, Heating is performed by assigning random velocities
966 > according to a Gaussian distribution for a temperature. Beginning at
967 > a lower temperature and gradually increasing the temperature by
968 > assigning greater random velocities, we end up with setting the
969 > temperature of the system to a final temperature at which the
970 > simulation will be conducted. In heating phase, we should also keep
971 > the system from drifting or rotating as a whole. Equivalently, the
972 > net linear momentum and angular momentum of the system should be
973 > shifted to zero.
974 >
975 > \subsubsection{Equilibration}
976 >
977 > The purpose of equilibration is to allow the system to evolve
978 > spontaneously for a period of time and reach equilibrium. The
979 > procedure is continued until various statistical properties, such as
980 > temperature, pressure, energy, volume and other structural
981 > properties \textit{etc}, become independent of time. Strictly
982 > speaking, minimization and heating are not necessary, provided the
983 > equilibration process is long enough. However, these steps can serve
984 > as a means to arrive at an equilibrated structure in an effective
985 > way.
986 >
987 > \subsection{\label{introSection:production}Production}
988 >
989 > Production run is the most important step of the simulation, in
990 > which the equilibrated structure is used as a starting point and the
991 > motions of the molecules are collected for later analysis. In order
992 > to capture the macroscopic properties of the system, the molecular
993 > dynamics simulation must be performed in correct and efficient way.
994 >
995 > The most expensive part of a molecular dynamics simulation is the
996 > calculation of non-bonded forces, such as van der Waals force and
997 > Coulombic forces \textit{etc}. For a system of $N$ particles, the
998 > complexity of the algorithm for pair-wise interactions is $O(N^2 )$,
999 > which making large simulations prohibitive in the absence of any
1000 > computation saving techniques.
1001 >
1002 > A natural approach to avoid system size issue is to represent the
1003 > bulk behavior by a finite number of the particles. However, this
1004 > approach will suffer from the surface effect. To offset this,
1005 > \textit{Periodic boundary condition} (see Fig.~\ref{introFig:pbc})
1006 > is developed to simulate bulk properties with a relatively small
1007 > number of particles. In this method, the simulation box is
1008 > replicated throughout space to form an infinite lattice. During the
1009 > simulation, when a particle moves in the primary cell, its image in
1010 > other cells move in exactly the same direction with exactly the same
1011 > orientation. Thus, as a particle leaves the primary cell, one of its
1012 > images will enter through the opposite face.
1013 > \begin{figure}
1014 > \centering
1015 > \includegraphics[width=\linewidth]{pbc.eps}
1016 > \caption[An illustration of periodic boundary conditions]{A 2-D
1017 > illustration of periodic boundary conditions. As one particle leaves
1018 > the left of the simulation box, an image of it enters the right.}
1019 > \label{introFig:pbc}
1020 > \end{figure}
1021 >
1022 > %cutoff and minimum image convention
1023 > Another important technique to improve the efficiency of force
1024 > evaluation is to apply cutoff where particles farther than a
1025 > predetermined distance, are not included in the calculation
1026 > \cite{Frenkel1996}. The use of a cutoff radius will cause a
1027 > discontinuity in the potential energy curve. Fortunately, one can
1028 > shift the potential to ensure the potential curve go smoothly to
1029 > zero at the cutoff radius. Cutoff strategy works pretty well for
1030 > Lennard-Jones interaction because of its short range nature.
1031 > However, simply truncating the electrostatic interaction with the
1032 > use of cutoff has been shown to lead to severe artifacts in
1033 > simulations. Ewald summation, in which the slowly conditionally
1034 > convergent Coulomb potential is transformed into direct and
1035 > reciprocal sums with rapid and absolute convergence, has proved to
1036 > minimize the periodicity artifacts in liquid simulations. Taking the
1037 > advantages of the fast Fourier transform (FFT) for calculating
1038 > discrete Fourier transforms, the particle mesh-based
1039 > methods\cite{Hockney1981,Shimada1993, Luty1994} are accelerated from
1040 > $O(N^{3/2})$ to $O(N logN)$. An alternative approach is \emph{fast
1041 > multipole method}\cite{Greengard1987, Greengard1994}, which treats
1042 > Coulombic interaction exactly at short range, and approximate the
1043 > potential at long range through multipolar expansion. In spite of
1044 > their wide acceptances at the molecular simulation community, these
1045 > two methods are hard to be implemented correctly and efficiently.
1046 > Instead, we use a damped and charge-neutralized Coulomb potential
1047 > method developed by Wolf and his coworkers\cite{Wolf1999}. The
1048 > shifted Coulomb potential for particle $i$ and particle $j$ at
1049 > distance $r_{rj}$ is given by:
1050 > \begin{equation}
1051 > V(r_{ij})= \frac{q_i q_j \textrm{erfc}(\alpha
1052 > r_{ij})}{r_{ij}}-\lim_{r_{ij}\rightarrow
1053 > R_\textrm{c}}\left\{\frac{q_iq_j \textrm{erfc}(\alpha
1054 > r_{ij})}{r_{ij}}\right\}. \label{introEquation:shiftedCoulomb}
1055 > \end{equation}
1056 > where $\alpha$ is the convergence parameter. Due to the lack of
1057 > inherent periodicity and rapid convergence,this method is extremely
1058 > efficient and easy to implement.
1059 > \begin{figure}
1060 > \centering
1061 > \includegraphics[width=\linewidth]{shifted_coulomb.eps}
1062 > \caption[An illustration of shifted Coulomb potential]{An
1063 > illustration of shifted Coulomb potential.}
1064 > \label{introFigure:shiftedCoulomb}
1065 > \end{figure}
1066 >
1067 > %multiple time step
1068 >
1069 > \subsection{\label{introSection:Analysis} Analysis}
1070 >
1071 > Recently, advanced visualization technique are widely applied to
1072 > monitor the motions of molecules. Although the dynamics of the
1073 > system can be described qualitatively from animation, quantitative
1074 > trajectory analysis are more appreciable. According to the
1075 > principles of Statistical Mechanics,
1076 > Sec.~\ref{introSection:statisticalMechanics}, one can compute
1077 > thermodynamics properties, analyze fluctuations of structural
1078 > parameters, and investigate time-dependent processes of the molecule
1079 > from the trajectories.
1080 >
1081 > \subsubsection{\label{introSection:thermodynamicsProperties}Thermodynamics Properties}
1082 >
1083 > Thermodynamics properties, which can be expressed in terms of some
1084 > function of the coordinates and momenta of all particles in the
1085 > system, can be directly computed from molecular dynamics. The usual
1086 > way to measure the pressure is based on virial theorem of Clausius
1087 > which states that the virial is equal to $-3Nk_BT$. For a system
1088 > with forces between particles, the total virial, $W$, contains the
1089 > contribution from external pressure and interaction between the
1090 > particles:
1091 > \[
1092 > W =  - 3PV + \left\langle {\sum\limits_{i < j} {r{}_{ij} \cdot
1093 > f_{ij} } } \right\rangle
1094 > \]
1095 > where $f_{ij}$ is the force between particle $i$ and $j$ at a
1096 > distance $r_{ij}$. Thus, the expression for the pressure is given
1097 > by:
1098 > \begin{equation}
1099 > P = \frac{{Nk_B T}}{V} - \frac{1}{{3V}}\left\langle {\sum\limits_{i
1100 > < j} {r{}_{ij} \cdot f_{ij} } } \right\rangle
1101 > \end{equation}
1102 >
1103 > \subsubsection{\label{introSection:structuralProperties}Structural Properties}
1104 >
1105 > Structural Properties of a simple fluid can be described by a set of
1106 > distribution functions. Among these functions,\emph{pair
1107 > distribution function}, also known as \emph{radial distribution
1108 > function}, is of most fundamental importance to liquid-state theory.
1109 > Pair distribution function can be gathered by Fourier transforming
1110 > raw data from a series of neutron diffraction experiments and
1111 > integrating over the surface factor \cite{Powles1973}. The
1112 > experiment result can serve as a criterion to justify the
1113 > correctness of the theory. Moreover, various equilibrium
1114 > thermodynamic and structural properties can also be expressed in
1115 > terms of radial distribution function \cite{Allen1987}.
1116 >
1117 > A pair distribution functions $g(r)$ gives the probability that a
1118 > particle $i$ will be located at a distance $r$ from a another
1119 > particle $j$ in the system
1120 > \[
1121 > g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1122 > \ne i} {\delta (r - r_{ij} )} } } \right\rangle.
1123 > \]
1124 > Note that the delta function can be replaced by a histogram in
1125 > computer simulation. Figure
1126 > \ref{introFigure:pairDistributionFunction} shows a typical pair
1127 > distribution function for the liquid argon system. The occurrence of
1128 > several peaks in the plot of $g(r)$ suggests that it is more likely
1129 > to find particles at certain radial values than at others. This is a
1130 > result of the attractive interaction at such distances. Because of
1131 > the strong repulsive forces at short distance, the probability of
1132 > locating particles at distances less than about 2.5{\AA} from each
1133 > other is essentially zero.
1134  
1135 + %\begin{figure}
1136 + %\centering
1137 + %\includegraphics[width=\linewidth]{pdf.eps}
1138 + %\caption[Pair distribution function for the liquid argon
1139 + %]{Pair distribution function for the liquid argon}
1140 + %\label{introFigure:pairDistributionFunction}
1141 + %\end{figure}
1142 +
1143 + \subsubsection{\label{introSection:timeDependentProperties}Time-dependent
1144 + Properties}
1145 +
1146 + Time-dependent properties are usually calculated using \emph{time
1147 + correlation function}, which correlates random variables $A$ and $B$
1148 + at two different time
1149 + \begin{equation}
1150 + C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1151 + \label{introEquation:timeCorrelationFunction}
1152 + \end{equation}
1153 + If $A$ and $B$ refer to same variable, this kind of correlation
1154 + function is called \emph{auto correlation function}. One example of
1155 + auto correlation function is velocity auto-correlation function
1156 + which is directly related to transport properties of molecular
1157 + liquids:
1158 + \[
1159 + D = \frac{1}{3}\int\limits_0^\infty  {\left\langle {v(t) \cdot v(0)}
1160 + \right\rangle } dt
1161 + \]
1162 + where $D$ is diffusion constant. Unlike velocity autocorrelation
1163 + function which is averaging over time origins and over all the
1164 + atoms, dipole autocorrelation are calculated for the entire system.
1165 + The dipole autocorrelation function is given by:
1166 + \[
1167 + c_{dipole}  = \left\langle {u_{tot} (t) \cdot u_{tot} (t)}
1168 + \right\rangle
1169 + \]
1170 + Here $u_{tot}$ is the net dipole of the entire system and is given
1171 + by
1172 + \[
1173 + u_{tot} (t) = \sum\limits_i {u_i (t)}
1174 + \]
1175 + In principle, many time correlation functions can be related with
1176 + Fourier transforms of the infrared, Raman, and inelastic neutron
1177 + scattering spectra of molecular liquids. In practice, one can
1178 + extract the IR spectrum from the intensity of dipole fluctuation at
1179 + each frequency using the following relationship:
1180 + \[
1181 + \hat c_{dipole} (v) = \int_{ - \infty }^\infty  {c_{dipole} (t)e^{ -
1182 + i2\pi vt} dt}
1183 + \]
1184 +
1185   \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1186  
1187   Rigid bodies are frequently involved in the modeling of different
# Line 917 | Line 1190 | protein-protein docking study{\cite{Gray03}}.
1190   movement of the objects in 3D gaming engine or other physics
1191   simulator is governed by the rigid body dynamics. In molecular
1192   simulation, rigid body is used to simplify the model in
1193 < protein-protein docking study{\cite{Gray03}}.
1193 > protein-protein docking study\cite{Gray2003}.
1194  
1195   It is very important to develop stable and efficient methods to
1196   integrate the equations of motion of orientational degrees of
# Line 925 | Line 1198 | different sets of Euler angles can overcome this diffi
1198   rotational degrees of freedom. However, due to its singularity, the
1199   numerical integration of corresponding equations of motion is very
1200   inefficient and inaccurate. Although an alternative integrator using
1201 < different sets of Euler angles can overcome this difficulty\cite{},
1202 < the computational penalty and the lost of angular momentum
1203 < conservation still remain. A singularity free representation
1204 < utilizing quaternions was developed by Evans in 1977. Unfortunately,
1205 < this approach suffer from the nonseparable Hamiltonian resulted from
1206 < quaternion representation, which prevents the symplectic algorithm
1207 < to be utilized. Another different approach is to apply holonomic
1208 < constraints to the atoms belonging to the rigid body. Each atom
1209 < moves independently under the normal forces deriving from potential
1210 < energy and constraint forces which are used to guarantee the
1211 < rigidness. However, due to their iterative nature, SHAKE and Rattle
1212 < algorithm converge very slowly when the number of constraint
1213 < increases.
1201 > different sets of Euler angles can overcome this
1202 > difficulty\cite{Barojas1973}, the computational penalty and the lost
1203 > of angular momentum conservation still remain. A singularity free
1204 > representation utilizing quaternions was developed by Evans in
1205 > 1977\cite{Evans1977}. Unfortunately, this approach suffer from the
1206 > nonseparable Hamiltonian resulted from quaternion representation,
1207 > which prevents the symplectic algorithm to be utilized. Another
1208 > different approach is to apply holonomic constraints to the atoms
1209 > belonging to the rigid body. Each atom moves independently under the
1210 > normal forces deriving from potential energy and constraint forces
1211 > which are used to guarantee the rigidness. However, due to their
1212 > iterative nature, SHAKE and Rattle algorithm converge very slowly
1213 > when the number of constraint increases\cite{Ryckaert1977,
1214 > Andersen1983}.
1215  
1216   The break through in geometric literature suggests that, in order to
1217   develop a long-term integration scheme, one should preserve the
1218   symplectic structure of the flow. Introducing conjugate momentum to
1219 < rotation matrix $A$ and re-formulating Hamiltonian's equation, a
1220 < symplectic integrator, RSHAKE, was proposed to evolve the
1221 < Hamiltonian system in a constraint manifold by iteratively
1222 < satisfying the orthogonality constraint $A_t A = 1$. An alternative
1223 < method using quaternion representation was developed by Omelyan.
1224 < However, both of these methods are iterative and inefficient. In
1225 < this section, we will present a symplectic Lie-Poisson integrator
1226 < for rigid body developed by Dullweber and his
1227 < coworkers\cite{Dullweber1997}.
1219 > rotation matrix $Q$ and re-formulating Hamiltonian's equation, a
1220 > symplectic integrator, RSHAKE\cite{Kol1997}, was proposed to evolve
1221 > the Hamiltonian system in a constraint manifold by iteratively
1222 > satisfying the orthogonality constraint $Q_T Q = 1$. An alternative
1223 > method using quaternion representation was developed by
1224 > Omelyan\cite{Omelyan1998}. However, both of these methods are
1225 > iterative and inefficient. In this section, we will present a
1226 > symplectic Lie-Poisson integrator for rigid body developed by
1227 > Dullweber and his coworkers\cite{Dullweber1997} in depth.
1228  
955 \subsection{\label{introSection:lieAlgebra}Lie Algebra}
956
1229   \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
1230 <
1230 > The motion of the rigid body is Hamiltonian with the Hamiltonian
1231 > function
1232   \begin{equation}
1233   H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1234   V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
# Line 970 | Line 1243 | Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
1243   where $I_{ii}$ is the diagonal element of the inertia tensor. This
1244   constrained Hamiltonian equation subjects to a holonomic constraint,
1245   \begin{equation}
1246 < Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
1246 > Q^T Q = 1, \label{introEquation:orthogonalConstraint}
1247   \end{equation}
1248   which is used to ensure rotation matrix's orthogonality.
1249   Differentiating \ref{introEquation:orthogonalConstraint} and using
# Line 983 | Line 1256 | the equations of motion,
1256   Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
1257   \ref{introEquation:motionHamiltonianMomentum}), one can write down
1258   the equations of motion,
986 \[
987 \begin{array}{c}
988 \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
989 \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
990 \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
991 \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
992 \end{array}
993 \]
1259  
1260 + \begin{eqnarray}
1261 + \frac{{dq}}{{dt}} & = & \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1262 + \frac{{dp}}{{dt}} & = & - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1263 + \frac{{dQ}}{{dt}} & = & PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1264 + \frac{{dP}}{{dt}} & = & - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}
1265 + \end{eqnarray}
1266 +
1267   In general, there are two ways to satisfy the holonomic constraints.
1268   We can use constraint force provided by lagrange multiplier on the
1269   normal manifold to keep the motion on constraint space. Or we can
1270 < simply evolve the system in constraint manifold. The two method are
1271 < proved to be equivalent. The holonomic constraint and equations of
1272 < motions define a constraint manifold for rigid body
1270 > simply evolve the system in constraint manifold. These two methods
1271 > are proved to be equivalent. The holonomic constraint and equations
1272 > of motions define a constraint manifold for rigid body
1273   \[
1274   M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
1275   \right\}.
# Line 1027 | Line 1299 | Hence,
1299   \[
1300   V(q,Q) = V(Q X_0 + q).
1301   \]
1302 < Hence,
1302 > Hence, the force and torque are given by
1303   \[
1304 < \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)}
1304 > \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1305   \]
1306 <
1306 > and
1307   \[
1308   \nabla _Q V(q,Q) = F(q,Q)X_i^t
1309   \]
1310 + respectively.
1311  
1312   As a common choice to describe the rotation dynamics of the rigid
1313   body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
# Line 1070 | Line 1343 | operations
1343   \[
1344   \hat vu = v \times u
1345   \]
1073
1346   Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1347   matrix,
1348   \begin{equation}
1349 < (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ \bullet  ^T
1349 > (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ {\bullet  ^T}
1350   ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1351   - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1352   (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1353   \end{equation}
1354   Since $\Lambda$ is symmetric, the last term of Equation
1355 < \ref{introEquation:skewMatrixPI}, which implies the Lagrange
1356 < multiplier $\Lambda$ is ignored in the integration.
1355 > \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1356 > multiplier $\Lambda$ is absent from the equations of motion. This
1357 > unique property eliminate the requirement of iterations which can
1358 > not be avoided in other methods\cite{Kol1997, Omelyan1998}.
1359  
1360 < Hence, applying hat-map isomorphism, we obtain the equation of
1361 < motion for angular momentum on body frame
1362 < \[
1363 < \dot \pi  = \pi  \times I^{ - 1} \pi  + Q^T \sum\limits_i {F_i (r,Q)
1364 < \times X_i }
1365 < \]
1360 > Applying hat-map isomorphism, we obtain the equation of motion for
1361 > angular momentum on body frame
1362 > \begin{equation}
1363 > \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1364 > F_i (r,Q)} \right) \times X_i }.
1365 > \label{introEquation:bodyAngularMotion}
1366 > \end{equation}
1367   In the same manner, the equation of motion for rotation matrix is
1368   given by
1369   \[
1370 < \dot Q = Qskew(M^{ - 1} \pi )
1370 > \dot Q = Qskew(I^{ - 1} \pi )
1371   \]
1372  
1373 < The free rigid body equation is an example of a non-canonical
1374 < Hamiltonian system.
1373 > \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1374 > Lie-Poisson Integrator for Free Rigid Body}
1375  
1376 < \subsection{\label{introSection:symplecticDiscretizationRB}Symplectic Integration of Euler Equations}
1376 > If there is not external forces exerted on the rigid body, the only
1377 > contribution to the rotational is from the kinetic potential (the
1378 > first term of \ref{ introEquation:bodyAngularMotion}). The free
1379 > rigid body is an example of Lie-Poisson system with Hamiltonian
1380 > function
1381 > \begin{equation}
1382 > T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1383 > \label{introEquation:rotationalKineticRB}
1384 > \end{equation}
1385 > where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1386 > Lie-Poisson structure matrix,
1387 > \begin{equation}
1388 > J(\pi ) = \left( {\begin{array}{*{20}c}
1389 >   0 & {\pi _3 } & { - \pi _2 }  \\
1390 >   { - \pi _3 } & 0 & {\pi _1 }  \\
1391 >   {\pi _2 } & { - \pi _1 } & 0  \\
1392 > \end{array}} \right)
1393 > \end{equation}
1394 > Thus, the dynamics of free rigid body is governed by
1395 > \begin{equation}
1396 > \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi )
1397 > \end{equation}
1398  
1399 + One may notice that each $T_i^r$ in Equation
1400 + \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1401 + instance, the equations of motion due to $T_1^r$ are given by
1402 + \begin{equation}
1403 + \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1404 + \label{introEqaution:RBMotionSingleTerm}
1405 + \end{equation}
1406 + where
1407 + \[ R_1  = \left( {\begin{array}{*{20}c}
1408 +   0 & 0 & 0  \\
1409 +   0 & 0 & {\pi _1 }  \\
1410 +   0 & { - \pi _1 } & 0  \\
1411 + \end{array}} \right).
1412 + \]
1413 + The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1414   \[
1415 < \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1416 < _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}
1415 > \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1416 > Q(0)e^{\Delta tR_1 }
1417   \]
1418 <
1418 > with
1419   \[
1420 < \varphi _{\Delta t,T}  = \varphi _{\Delta t,R}  \circ \varphi
1421 < _{\Delta t,\pi }
1420 > e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1421 >   0 & 0 & 0  \\
1422 >   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1423 >   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1424 > \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1425   \]
1426 + To reduce the cost of computing expensive functions in $e^{\Delta
1427 + tR_1 }$, we can use Cayley transformation,
1428 + \[
1429 + e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1430 + )
1431 + \]
1432 + The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1433 + manner.
1434  
1435 + In order to construct a second-order symplectic method, we split the
1436 + angular kinetic Hamiltonian function can into five terms
1437   \[
1438 < \varphi _{\Delta t,\pi }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1438 > T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1439 > ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1440 > (\pi _1 )
1441 > \].
1442 > Concatenating flows corresponding to these five terms, we can obtain
1443 > an symplectic integrator,
1444 > \[
1445 > \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1446   \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1447   \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1448 < _1 }
1448 > _1 }.
1449   \]
1450  
1451 + The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1452 + $F(\pi )$ and $G(\pi )$ is defined by
1453   \[
1454 + \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1455 + )
1456 + \]
1457 + If the Poisson bracket of a function $F$ with an arbitrary smooth
1458 + function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1459 + conserved quantity in Poisson system. We can easily verify that the
1460 + norm of the angular momentum, $\parallel \pi
1461 + \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1462 + \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1463 + then by the chain rule
1464 + \[
1465 + \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1466 + }}{2})\pi
1467 + \]
1468 + Thus $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel \pi
1469 + \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1470 + Lie-Poisson integrator is found to be extremely efficient and stable
1471 + which can be explained by the fact the small angle approximation is
1472 + used and the norm of the angular momentum is conserved.
1473 +
1474 + \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1475 + Splitting for Rigid Body}
1476 +
1477 + The Hamiltonian of rigid body can be separated in terms of kinetic
1478 + energy and potential energy,
1479 + \[
1480 + H = T(p,\pi ) + V(q,Q)
1481 + \]
1482 + The equations of motion corresponding to potential energy and
1483 + kinetic energy are listed in the below table,
1484 + \begin{table}
1485 + \caption{Equations of motion due to Potential and Kinetic Energies}
1486 + \begin{center}
1487 + \begin{tabular}{|l|l|}
1488 +  \hline
1489 +  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1490 +  Potential & Kinetic \\
1491 +  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1492 +  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1493 +  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1494 +  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1495 +  \hline
1496 + \end{tabular}
1497 + \end{center}
1498 + \end{table}
1499 + A second-order symplectic method is now obtained by the
1500 + composition of the flow maps,
1501 + \[
1502 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1503 + _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1504 + \]
1505 + Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1506 + sub-flows which corresponding to force and torque respectively,
1507 + \[
1508   \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1509 < _{\Delta t/2,\tau }
1509 > _{\Delta t/2,\tau }.
1510   \]
1511 + Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1512 + $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1513 + order inside $\varphi _{\Delta t/2,V}$ does not matter.
1514  
1515 + Furthermore, kinetic potential can be separated to translational
1516 + kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1517 + \begin{equation}
1518 + T(p,\pi ) =T^t (p) + T^r (\pi ).
1519 + \end{equation}
1520 + where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1521 + defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1522 + corresponding flow maps are given by
1523 + \[
1524 + \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1525 + _{\Delta t,T^r }.
1526 + \]
1527 + Finally, we obtain the overall symplectic flow maps for free moving
1528 + rigid body
1529 + \begin{equation}
1530 + \begin{array}{c}
1531 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \\
1532 +  \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \\
1533 +  \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1534 + \end{array}
1535 + \label{introEquation:overallRBFlowMaps}
1536 + \end{equation}
1537  
1538   \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1539 + As an alternative to newtonian dynamics, Langevin dynamics, which
1540 + mimics a simple heat bath with stochastic and dissipative forces,
1541 + has been applied in a variety of studies. This section will review
1542 + the theory of Langevin dynamics simulation. A brief derivation of
1543 + generalized Langevin equation will be given first. Follow that, we
1544 + will discuss the physical meaning of the terms appearing in the
1545 + equation as well as the calculation of friction tensor from
1546 + hydrodynamics theory.
1547  
1548 < \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
1548 > \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1549  
1550 < \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
1551 <
1550 > Harmonic bath model, in which an effective set of harmonic
1551 > oscillators are used to mimic the effect of a linearly responding
1552 > environment, has been widely used in quantum chemistry and
1553 > statistical mechanics. One of the successful applications of
1554 > Harmonic bath model is the derivation of Deriving Generalized
1555 > Langevin Dynamics. Lets consider a system, in which the degree of
1556 > freedom $x$ is assumed to couple to the bath linearly, giving a
1557 > Hamiltonian of the form
1558   \begin{equation}
1559   H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1560 < \label{introEquation:bathGLE}
1560 > \label{introEquation:bathGLE}.
1561   \end{equation}
1562 < where $H_B$ is harmonic bath Hamiltonian,
1562 > Here $p$ is a momentum conjugate to $q$, $m$ is the mass associated
1563 > with this degree of freedom, $H_B$ is harmonic bath Hamiltonian,
1564   \[
1565 < H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1566 < }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
1565 > H_B  = \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1566 > }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  \omega _\alpha ^2 }
1567 > \right\}}
1568   \]
1569 < and $\Delta U$ is bilinear system-bath coupling,
1569 > where the index $\alpha$ runs over all the bath degrees of freedom,
1570 > $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1571 > the harmonic bath masses, and $\Delta U$ is bilinear system-bath
1572 > coupling,
1573   \[
1574   \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1575   \]
1576 < Completing the square,
1576 > where $g_\alpha$ are the coupling constants between the bath and the
1577 > coordinate $x$. Introducing
1578   \[
1579 < H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
1580 < {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1581 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1582 < w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
1583 < 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1152 < \]
1153 < and putting it back into Eq.~\ref{introEquation:bathGLE},
1579 > W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1580 > }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1581 > \] and combining the last two terms in Equation
1582 > \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1583 > Hamiltonian as
1584   \[
1585   H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1586   {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1587   w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1588   w_\alpha ^2 }}x} \right)^2 } \right\}}
1589   \]
1160 where
1161 \[
1162 W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1163 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1164 \]
1590   Since the first two terms of the new Hamiltonian depend only on the
1591   system coordinates, we can get the equations of motion for
1592   Generalized Langevin Dynamics by Hamilton's equations
1593   \ref{introEquation:motionHamiltonianCoordinate,
1594   introEquation:motionHamiltonianMomentum},
1595 < \begin{align}
1596 < \dot p &=  - \frac{{\partial H}}{{\partial x}}
1597 <       &= m\ddot x
1598 <       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
1599 < \label{introEquation:Lp5}
1600 < \end{align}
1601 < , and
1602 < \begin{align}
1603 < \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
1604 <                &= m\ddot x_\alpha
1605 <                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
1606 < \end{align}
1595 > \begin{equation}
1596 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1597 > \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   -
1598 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)},
1599 > \label{introEquation:coorMotionGLE}
1600 > \end{equation}
1601 > and
1602 > \begin{equation}
1603 > m\ddot x_\alpha   =  - m_\alpha  w_\alpha ^2 \left( {x_\alpha   -
1604 > \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right).
1605 > \label{introEquation:bathMotionGLE}
1606 > \end{equation}
1607  
1608 < \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
1608 > In order to derive an equation for $x$, the dynamics of the bath
1609 > variables $x_\alpha$ must be solved exactly first. As an integral
1610 > transform which is particularly useful in solving linear ordinary
1611 > differential equations, Laplace transform is the appropriate tool to
1612 > solve this problem. The basic idea is to transform the difficult
1613 > differential equations into simple algebra problems which can be
1614 > solved easily. Then applying inverse Laplace transform, also known
1615 > as the Bromwich integral, we can retrieve the solutions of the
1616 > original problems.
1617  
1618 + Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1619 + transform of f(t) is a new function defined as
1620   \[
1621 < L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
1621 > L(f(t)) \equiv F(p) = \int_0^\infty  {f(t)e^{ - pt} dt}
1622   \]
1623 + where  $p$ is real and  $L$ is called the Laplace Transform
1624 + Operator. Below are some important properties of Laplace transform
1625  
1626 < \[
1627 < L(x + y) = L(x) + L(y)
1628 < \]
1626 > \begin{eqnarray*}
1627 > L(x + y)  & = & L(x) + L(y) \\
1628 > L(ax)     & = & aL(x) \\
1629 > L(\dot x) & = & pL(x) - px(0) \\
1630 > L(\ddot x)& = & p^2 L(x) - px(0) - \dot x(0) \\
1631 > L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right)& = & G(p)H(p) \\
1632 > \end{eqnarray*}
1633  
1193 \[
1194 L(ax) = aL(x)
1195 \]
1634  
1635 < \[
1636 < L(\dot x) = pL(x) - px(0)
1637 < \]
1635 > Applying Laplace transform to the bath coordinates, we obtain
1636 > \begin{eqnarray*}
1637 > p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) & = & - \omega _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) \\
1638 > L(x_\alpha  ) & = & \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }} \\
1639 > \end{eqnarray*}
1640  
1641 + By the same way, the system coordinates become
1642 + \begin{eqnarray*}
1643 + mL(\ddot x) & = & - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1644 +  & & \mbox{} - \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0) - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}  \\
1645 + \end{eqnarray*}
1646 +
1647 + With the help of some relatively important inverse Laplace
1648 + transformations:
1649   \[
1650 < L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
1650 > \begin{array}{c}
1651 > L(\cos at) = \frac{p}{{p^2  + a^2 }} \\
1652 > L(\sin at) = \frac{a}{{p^2  + a^2 }} \\
1653 > L(1) = \frac{1}{p} \\
1654 > \end{array}
1655   \]
1656 + , we obtain
1657 + \begin{eqnarray*}
1658 + m\ddot x & =  & - \frac{{\partial W(x)}}{{\partial x}} -
1659 + \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1660 + }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1661 + _\alpha  t)\dot x(t - \tau )d\tau } } \right\}}  \\
1662 + & & + \sum\limits_{\alpha  = 1}^N {\left\{ {\left[ {g_\alpha
1663 + x_\alpha (0) - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}}
1664 + \right]\cos (\omega _\alpha  t) + \frac{{g_\alpha  \dot x_\alpha
1665 + (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)} \right\}}
1666 + \end{eqnarray*}
1667 + \begin{eqnarray*}
1668 + m\ddot x & = & - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1669 + {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1670 + }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1671 + t)\dot x(t - \tau )d} \tau }  \\
1672 + & & + \sum\limits_{\alpha  = 1}^N {\left\{ {\left[ {g_\alpha
1673 + x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha  }}}
1674 + \right]\cos (\omega _\alpha  t) + \frac{{g_\alpha  \dot x_\alpha
1675 + (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)} \right\}}
1676 + \end{eqnarray*}
1677 + Introducing a \emph{dynamic friction kernel}
1678 + \begin{equation}
1679 + \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1680 + }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1681 + \label{introEquation:dynamicFrictionKernelDefinition}
1682 + \end{equation}
1683 + and \emph{a random force}
1684 + \begin{equation}
1685 + R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1686 + - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1687 + \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1688 + (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t),
1689 + \label{introEquation:randomForceDefinition}
1690 + \end{equation}
1691 + the equation of motion can be rewritten as
1692 + \begin{equation}
1693 + m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1694 + (t)\dot x(t - \tau )d\tau }  + R(t)
1695 + \label{introEuqation:GeneralizedLangevinDynamics}
1696 + \end{equation}
1697 + which is known as the \emph{generalized Langevin equation}.
1698  
1699 + \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}Random Force and Dynamic Friction Kernel}
1700 +
1701 + One may notice that $R(t)$ depends only on initial conditions, which
1702 + implies it is completely deterministic within the context of a
1703 + harmonic bath. However, it is easy to verify that $R(t)$ is totally
1704 + uncorrelated to $x$ and $\dot x$,
1705   \[
1706 < L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
1706 > \begin{array}{l}
1707 > \left\langle {x(t)R(t)} \right\rangle  = 0, \\
1708 > \left\langle {\dot x(t)R(t)} \right\rangle  = 0. \\
1709 > \end{array}
1710   \]
1711 + This property is what we expect from a truly random process. As long
1712 + as the model, which is gaussian distribution in general, chosen for
1713 + $R(t)$ is a truly random process, the stochastic nature of the GLE
1714 + still remains.
1715  
1716 < Some relatively important transformation,
1716 > %dynamic friction kernel
1717 > The convolution integral
1718   \[
1719 < L(\cos at) = \frac{p}{{p^2  + a^2 }}
1719 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1720   \]
1721 <
1721 > depends on the entire history of the evolution of $x$, which implies
1722 > that the bath retains memory of previous motions. In other words,
1723 > the bath requires a finite time to respond to change in the motion
1724 > of the system. For a sluggish bath which responds slowly to changes
1725 > in the system coordinate, we may regard $\xi(t)$ as a constant
1726 > $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1727   \[
1728 < L(\sin at) = \frac{a}{{p^2  + a^2 }}
1728 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = \xi _0 (x(t) - x(0))
1729   \]
1730 <
1730 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1731   \[
1732 < L(1) = \frac{1}{p}
1732 > m\ddot x =  - \frac{\partial }{{\partial x}}\left( {W(x) +
1733 > \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1734   \]
1735 <
1736 < First, the bath coordinates,
1735 > which can be used to describe dynamic caging effect. The other
1736 > extreme is the bath that responds infinitely quickly to motions in
1737 > the system. Thus, $\xi (t)$ can be taken as a $delta$ function in
1738 > time:
1739   \[
1740 < p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
1225 < _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
1226 < }}L(x)
1740 > \xi (t) = 2\xi _0 \delta (t)
1741   \]
1742 + Hence, the convolution integral becomes
1743   \[
1744 < L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
1745 < px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
1744 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = 2\xi _0 \int_0^t
1745 > {\delta (t)\dot x(t - \tau )d\tau }  = \xi _0 \dot x(t),
1746   \]
1747 < Then, the system coordinates,
1233 < \begin{align}
1234 < mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1235 < \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
1236 < }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
1237 < (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
1238 < }}\omega _\alpha ^2 L(x)} \right\}}
1239 < %
1240 < &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1241 < \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
1242 < - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
1243 < - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
1244 < \end{align}
1245 < Then, the inverse transform,
1246 <
1247 < \begin{align}
1248 < m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
1249 < \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1250 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1251 < _\alpha  t)\dot x(t - \tau )d\tau  - \left[ {g_\alpha  x_\alpha  (0)
1252 < - \frac{{g_\alpha  }}{{m_\alpha  \omega _\alpha  }}} \right]\cos
1253 < (\omega _\alpha  t) - \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega
1254 < _\alpha  }}\sin (\omega _\alpha  t)} } \right\}}
1255 < %
1256 < &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1257 < {\sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1258 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1259 < t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  = 1}^N {\left\{
1260 < {\left[ {g_\alpha  x_\alpha  (0) - \frac{{g_\alpha  }}{{m_\alpha
1261 < \omega _\alpha  }}} \right]\cos (\omega _\alpha  t) +
1262 < \frac{{g_\alpha  \dot x_\alpha  (0)}}{{\omega _\alpha  }}\sin
1263 < (\omega _\alpha  t)} \right\}}
1264 < \end{align}
1265 <
1747 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1748   \begin{equation}
1749 < m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1750 < (t)\dot x(t - \tau )d\tau }  + R(t)
1269 < \label{introEuqation:GeneralizedLangevinDynamics}
1749 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1750 > x(t) + R(t) \label{introEquation:LangevinEquation}
1751   \end{equation}
1752 < %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1753 < %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
1754 < \[
1755 < \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1756 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1276 < \]
1277 < For an infinite harmonic bath, we can use the spectral density and
1278 < an integral over frequencies.
1752 > which is known as the Langevin equation. The static friction
1753 > coefficient $\xi _0$ can either be calculated from spectral density
1754 > or be determined by Stokes' law for regular shaped particles.A
1755 > briefly review on calculating friction tensor for arbitrary shaped
1756 > particles is given in Sec.~\ref{introSection:frictionTensor}.
1757  
1280 \[
1281 R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1282 - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1283 \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1284 (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
1285 \]
1286 The random forces depend only on initial conditions.
1287
1758   \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1759 < So we can define a new set of coordinates,
1759 >
1760 > Defining a new set of coordinates,
1761   \[
1762   q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1763   ^2 }}x(0)
1764 < \]
1765 < This makes
1764 > \],
1765 > we can rewrite $R(T)$ as
1766   \[
1767 < R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
1767 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}.
1768   \]
1769   And since the $q$ coordinates are harmonic oscillators,
1770 < \[
1771 < \begin{array}{l}
1772 < \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1773 < \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1774 < \end{array}
1770 >
1771 > \begin{eqnarray*}
1772 > \left\langle {q_\alpha ^2 } \right\rangle  & = & \frac{{kT}}{{m_\alpha  \omega _\alpha ^2 }} \\
1773 > \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle & = & \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1774 > \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle & = &\delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1775 > \left\langle {R(t)R(0)} \right\rangle & = & \sum\limits_\alpha  {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle } }  \\
1776 >  & = &\sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t)}  \\
1777 >  & = &kT\xi (t) \\
1778 > \end{eqnarray*}
1779 >
1780 > Thus, we recover the \emph{second fluctuation dissipation theorem}
1781 > \begin{equation}
1782 > \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1783 > \label{introEquation:secondFluctuationDissipation}.
1784 > \end{equation}
1785 > In effect, it acts as a constraint on the possible ways in which one
1786 > can model the random force and friction kernel.
1787 >
1788 > \subsection{\label{introSection:frictionTensor} Friction Tensor}
1789 > Theoretically, the friction kernel can be determined using velocity
1790 > autocorrelation function. However, this approach become impractical
1791 > when the system become more and more complicate. Instead, various
1792 > approaches based on hydrodynamics have been developed to calculate
1793 > the friction coefficients. The friction effect is isotropic in
1794 > Equation, $\zeta$ can be taken as a scalar. In general, friction
1795 > tensor $\Xi$ is a $6\times 6$ matrix given by
1796 > \[
1797 > \Xi  = \left( {\begin{array}{*{20}c}
1798 >   {\Xi _{}^{tt} } & {\Xi _{}^{rt} }  \\
1799 >   {\Xi _{}^{tr} } & {\Xi _{}^{rr} }  \\
1800 > \end{array}} \right).
1801   \]
1802 + Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1803 + tensor and rotational resistance (friction) tensor respectively,
1804 + while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1805 + {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1806 + particle moves in a fluid, it may experience friction force or
1807 + torque along the opposite direction of the velocity or angular
1808 + velocity,
1809 + \[
1810 + \left( \begin{array}{l}
1811 + F_R  \\
1812 + \tau _R  \\
1813 + \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1814 +   {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1815 +   {\Xi ^{tr} } & {\Xi ^{rr} }  \\
1816 + \end{array}} \right)\left( \begin{array}{l}
1817 + v \\
1818 + w \\
1819 + \end{array} \right)
1820 + \]
1821 + where $F_r$ is the friction force and $\tau _R$ is the friction
1822 + toque.
1823  
1824 < \begin{align}
1307 < \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
1308 < {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
1309 < (t)q_\beta  (0)} \right\rangle } }
1310 < %
1311 < &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
1312 < \right\rangle \cos (\omega _\alpha  t)}
1313 < %
1314 < &= kT\xi (t)
1315 < \end{align}
1824 > \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1825  
1826 + For a spherical particle, the translational and rotational friction
1827 + constant can be calculated from Stoke's law,
1828 + \[
1829 + \Xi ^{tt}  = \left( {\begin{array}{*{20}c}
1830 +   {6\pi \eta R} & 0 & 0  \\
1831 +   0 & {6\pi \eta R} & 0  \\
1832 +   0 & 0 & {6\pi \eta R}  \\
1833 + \end{array}} \right)
1834 + \]
1835 + and
1836 + \[
1837 + \Xi ^{rr}  = \left( {\begin{array}{*{20}c}
1838 +   {8\pi \eta R^3 } & 0 & 0  \\
1839 +   0 & {8\pi \eta R^3 } & 0  \\
1840 +   0 & 0 & {8\pi \eta R^3 }  \\
1841 + \end{array}} \right)
1842 + \]
1843 + where $\eta$ is the viscosity of the solvent and $R$ is the
1844 + hydrodynamics radius.
1845 +
1846 + Other non-spherical shape, such as cylinder and ellipsoid
1847 + \textit{etc}, are widely used as reference for developing new
1848 + hydrodynamics theory, because their properties can be calculated
1849 + exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1850 + also called a triaxial ellipsoid, which is given in Cartesian
1851 + coordinates by\cite{Perrin1934, Perrin1936}
1852 + \[
1853 + \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1854 + }} = 1
1855 + \]
1856 + where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1857 + due to the complexity of the elliptic integral, only the ellipsoid
1858 + with the restriction of two axes having to be equal, \textit{i.e.}
1859 + prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1860 + exactly. Introducing an elliptic integral parameter $S$ for prolate,
1861 + \[
1862 + S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1863 + } }}{b},
1864 + \]
1865 + and oblate,
1866 + \[
1867 + S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1868 + }}{a}
1869 + \],
1870 + one can write down the translational and rotational resistance
1871 + tensors
1872 + \[
1873 + \begin{array}{l}
1874 + \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1875 + \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1876 + \end{array},
1877 + \]
1878 + and
1879 + \[
1880 + \begin{array}{l}
1881 + \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1882 + \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1883 + \end{array}.
1884 + \]
1885 +
1886 + \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1887 +
1888 + Unlike spherical and other regular shaped molecules, there is not
1889 + analytical solution for friction tensor of any arbitrary shaped
1890 + rigid molecules. The ellipsoid of revolution model and general
1891 + triaxial ellipsoid model have been used to approximate the
1892 + hydrodynamic properties of rigid bodies. However, since the mapping
1893 + from all possible ellipsoidal space, $r$-space, to all possible
1894 + combination of rotational diffusion coefficients, $D$-space is not
1895 + unique\cite{Wegener1979} as well as the intrinsic coupling between
1896 + translational and rotational motion of rigid body, general ellipsoid
1897 + is not always suitable for modeling arbitrarily shaped rigid
1898 + molecule. A number of studies have been devoted to determine the
1899 + friction tensor for irregularly shaped rigid bodies using more
1900 + advanced method where the molecule of interest was modeled by
1901 + combinations of spheres(beads)\cite{Carrasco1999} and the
1902 + hydrodynamics properties of the molecule can be calculated using the
1903 + hydrodynamic interaction tensor. Let us consider a rigid assembly of
1904 + $N$ beads immersed in a continuous medium. Due to hydrodynamics
1905 + interaction, the ``net'' velocity of $i$th bead, $v'_i$ is different
1906 + than its unperturbed velocity $v_i$,
1907 + \[
1908 + v'_i  = v_i  - \sum\limits_{j \ne i} {T_{ij} F_j }
1909 + \]
1910 + where $F_i$ is the frictional force, and $T_{ij}$ is the
1911 + hydrodynamic interaction tensor. The friction force of $i$th bead is
1912 + proportional to its ``net'' velocity
1913   \begin{equation}
1914 < \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1915 < \label{introEquation:secondFluctuationDissipation}
1914 > F_i  = \zeta _i v_i  - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1915 > \label{introEquation:tensorExpression}
1916   \end{equation}
1917 + This equation is the basis for deriving the hydrodynamic tensor. In
1918 + 1930, Oseen and Burgers gave a simple solution to Equation
1919 + \ref{introEquation:tensorExpression}
1920 + \begin{equation}
1921 + T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1922 + R_{ij}^T }}{{R_{ij}^2 }}} \right).
1923 + \label{introEquation:oseenTensor}
1924 + \end{equation}
1925 + Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1926 + A second order expression for element of different size was
1927 + introduced by Rotne and Prager\cite{Rotne1969} and improved by
1928 + Garc\'{i}a de la Torre and Bloomfield\cite{Torre1977},
1929 + \begin{equation}
1930 + T_{ij}  = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1931 + \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1932 + _i^2  + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1933 + \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1934 + \label{introEquation:RPTensorNonOverlapped}
1935 + \end{equation}
1936 + Both of the Equation \ref{introEquation:oseenTensor} and Equation
1937 + \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1938 + \ge \sigma _i  + \sigma _j$. An alternative expression for
1939 + overlapping beads with the same radius, $\sigma$, is given by
1940 + \begin{equation}
1941 + T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1942 + \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1943 + \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1944 + \label{introEquation:RPTensorOverlapped}
1945 + \end{equation}
1946  
1947 < \section{\label{introSection:hydroynamics}Hydrodynamics}
1947 > To calculate the resistance tensor at an arbitrary origin $O$, we
1948 > construct a $3N \times 3N$ matrix consisting of $N \times N$
1949 > $B_{ij}$ blocks
1950 > \begin{equation}
1951 > B = \left( {\begin{array}{*{20}c}
1952 >   {B_{11} } &  \ldots  & {B_{1N} }  \\
1953 >    \vdots  &  \ddots  &  \vdots   \\
1954 >   {B_{N1} } &  \cdots  & {B_{NN} }  \\
1955 > \end{array}} \right),
1956 > \end{equation}
1957 > where $B_{ij}$ is given by
1958 > \[
1959 > B_{ij}  = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1960 > )T_{ij}
1961 > \]
1962 > where $\delta _{ij}$ is Kronecker delta function. Inverting matrix
1963 > $B$, we obtain
1964  
1965 < \subsection{\label{introSection:frictionTensor} Friction Tensor}
1966 < \subsection{\label{introSection:analyticalApproach}Analytical
1967 < Approach}
1965 > \[
1966 > C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1967 >   {C_{11} } &  \ldots  & {C_{1N} }  \\
1968 >    \vdots  &  \ddots  &  \vdots   \\
1969 >   {C_{N1} } &  \cdots  & {C_{NN} }  \\
1970 > \end{array}} \right)
1971 > \]
1972 > , which can be partitioned into $N \times N$ $3 \times 3$ block
1973 > $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1974 > \[
1975 > U_i  = \left( {\begin{array}{*{20}c}
1976 >   0 & { - z_i } & {y_i }  \\
1977 >   {z_i } & 0 & { - x_i }  \\
1978 >   { - y_i } & {x_i } & 0  \\
1979 > \end{array}} \right)
1980 > \]
1981 > where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1982 > bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1983 > arbitrary origin $O$ can be written as
1984 > \begin{equation}
1985 > \begin{array}{l}
1986 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1987 > \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1988 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1989 > \end{array}
1990 > \label{introEquation:ResistanceTensorArbitraryOrigin}
1991 > \end{equation}
1992  
1993 < \subsection{\label{introSection:approximationApproach}Approximation
1994 < Approach}
1993 > The resistance tensor depends on the origin to which they refer. The
1994 > proper location for applying friction force is the center of
1995 > resistance (reaction), at which the trace of rotational resistance
1996 > tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1997 > resistance is defined as an unique point of the rigid body at which
1998 > the translation-rotation coupling tensor are symmetric,
1999 > \begin{equation}
2000 > \Xi^{tr}  = \left( {\Xi^{tr} } \right)^T
2001 > \label{introEquation:definitionCR}
2002 > \end{equation}
2003 > Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
2004 > we can easily find out that the translational resistance tensor is
2005 > origin independent, while the rotational resistance tensor and
2006 > translation-rotation coupling resistance tensor depend on the
2007 > origin. Given resistance tensor at an arbitrary origin $O$, and a
2008 > vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
2009 > obtain the resistance tensor at $P$ by
2010 > \begin{equation}
2011 > \begin{array}{l}
2012 > \Xi _P^{tt}  = \Xi _O^{tt}  \\
2013 > \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
2014 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{{tr} ^{^T }}  \\
2015 > \end{array}
2016 > \label{introEquation:resistanceTensorTransformation}
2017 > \end{equation}
2018 > where
2019 > \[
2020 > U_{OP}  = \left( {\begin{array}{*{20}c}
2021 >   0 & { - z_{OP} } & {y_{OP} }  \\
2022 >   {z_i } & 0 & { - x_{OP} }  \\
2023 >   { - y_{OP} } & {x_{OP} } & 0  \\
2024 > \end{array}} \right)
2025 > \]
2026 > Using Equations \ref{introEquation:definitionCR} and
2027 > \ref{introEquation:resistanceTensorTransformation}, one can locate
2028 > the position of center of resistance,
2029 > \begin{eqnarray*}
2030 > \left( \begin{array}{l}
2031 > x_{OR}  \\
2032 > y_{OR}  \\
2033 > z_{OR}  \\
2034 > \end{array} \right) & = &\left( {\begin{array}{*{20}c}
2035 >   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
2036 >   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
2037 >   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
2038 > \end{array}} \right)^{ - 1}  \\
2039 >  & & \left( \begin{array}{l}
2040 > (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
2041 > (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
2042 > (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
2043 > \end{array} \right) \\
2044 > \end{eqnarray*}
2045  
1331 \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1332 Body}
2046  
2047 < \section{\label{introSection:correlationFunctions}Correlation Functions}
2047 >
2048 > where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
2049 > joining center of resistance $R$ and origin $O$.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines