ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2899 by tim, Tue Jun 27 04:04:32 2006 UTC vs.
Revision 2904 by tim, Wed Jun 28 17:36:32 2006 UTC

# Line 71 | Line 71 | Newtonian Mechanics suffers from two important limitat
71  
72   \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
73  
74 < Newtonian Mechanics suffers from two important limitations: motions
75 < can only be described in cartesian coordinate systems. Moreover, it
76 < becomes impossible to predict analytically the properties of the
77 < system even if we know all of the details of the interaction. In
78 < order to overcome some of the practical difficulties which arise in
79 < attempts to apply Newton's equation to complex system, approximate
80 < numerical procedures may be developed.
74 > Newtonian Mechanics suffers from a important limitation: motions can
75 > only be described in cartesian coordinate systems which make it
76 > impossible to predict analytically the properties of the system even
77 > if we know all of the details of the interaction. In order to
78 > overcome some of the practical difficulties which arise in attempts
79 > to apply Newton's equation to complex system, approximate numerical
80 > procedures may be developed.
81  
82   \subsubsection{\label{introSection:halmiltonPrinciple}\textbf{Hamilton's
83   Principle}}
# Line 98 | Line 98 | L \equiv K - U = L(q_i ,\dot q_i ) ,
98   function $L$ can be defined as the difference between the kinetic
99   energy of the system and its potential energy,
100   \begin{equation}
101 < L \equiv K - U = L(q_i ,\dot q_i ) ,
101 > L \equiv K - U = L(q_i ,\dot q_i ).
102   \label{introEquation:lagrangianDef}
103   \end{equation}
104 < then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
104 > Thus, Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
105   \begin{equation}
106 < \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
106 > \delta \int_{t_1 }^{t_2 } {L dt = 0} .
107   \label{introEquation:halmitonianPrinciple2}
108   \end{equation}
109  
# Line 148 | Line 148 | L}}{{\partial t}}dt \label{introEquation:diffHamiltoni
148   dH = \sum\limits_k {\left( {p_k d\dot q_k  + \dot q_k dp_k  -
149   \frac{{\partial L}}{{\partial q_k }}dq_k  - \frac{{\partial
150   L}}{{\partial \dot q_k }}d\dot q_k } \right)}  - \frac{{\partial
151 < L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
151 > L}}{{\partial t}}dt . \label{introEquation:diffHamiltonian1}
152   \end{equation}
153   Making use of Eq.~\ref{introEquation:generalizedMomenta}, the second
154   and fourth terms in the parentheses cancel. Therefore,
155   Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
156   \begin{equation}
157   dH = \sum\limits_k {\left( {\dot q_k dp_k  - \dot p_k dq_k }
158 < \right)}  - \frac{{\partial L}}{{\partial t}}dt
158 > \right)}  - \frac{{\partial L}}{{\partial t}}dt .
159   \label{introEquation:diffHamiltonian2}
160   \end{equation}
161   By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
# Line 191 | Line 191 | Hamilton's equations of motion conserve the total Hami
191   In Newtonian Mechanics, a system described by conservative forces
192   conserves the total energy
193   (Eq.~\ref{introEquation:energyConservation}). It follows that
194 < Hamilton's equations of motion conserve the total Hamiltonian.
194 > Hamilton's equations of motion conserve the total Hamiltonian
195   \begin{equation}
196   \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
197   H}}{{\partial q_i }}\dot q_i  + \frac{{\partial H}}{{\partial p_i
198   }}\dot p_i } \right)}  = \sum\limits_i {\left( {\frac{{\partial
199   H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
200   \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
201 < q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
201 > q_i }}} \right) = 0}. \label{introEquation:conserveHalmitonian}
202   \end{equation}
203  
204   \section{\label{introSection:statisticalMechanics}Statistical
# Line 219 | Line 219 | this system is a $6f$ dimensional space. A point, $x =
219   momentum variables. Consider a dynamic system of $f$ particles in a
220   cartesian space, where each of the $6f$ coordinates and momenta is
221   assigned to one of $6f$ mutually orthogonal axes, the phase space of
222 < this system is a $6f$ dimensional space. A point, $x = (\rightarrow
223 < q_1 , \ldots ,\rightarrow q_f ,\rightarrow p_1 , \ldots ,\rightarrow
224 < p_f )$, with a unique set of values of $6f$ coordinates and momenta
225 < is a phase space vector.
222 > this system is a $6f$ dimensional space. A point, $x =
223 > (\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
224 > \over q} _1 , \ldots
225 > ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
226 > \over q} _f
227 > ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
228 > \over p} _1  \ldots
229 > ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
230 > \over p} _f )$ , with a unique set of values of $6f$ coordinates and
231 > momenta is a phase space vector.
232   %%%fix me
233  
234   In statistical mechanics, the condition of an ensemble at any time
# Line 284 | Line 290 | Microcanonical ensemble (NVE) has a partition function
290   is known to be thermally isolated and conserve energy, the
291   Microcanonical ensemble (NVE) has a partition function like,
292   \begin{equation}
293 < \Omega (N,V,E) = e^{\beta TS}. \label{introEquation:NVEPartition}.
293 > \Omega (N,V,E) = e^{\beta TS}. \label{introEquation:NVEPartition}
294   \end{equation}
295   A canonical ensemble (NVT)is an ensemble of systems, each of which
296   can share its energy with a large heat reservoir. The distribution

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines