ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2909 by tim, Thu Jun 29 23:00:35 2006 UTC vs.
Revision 2911 by tim, Thu Jun 29 23:56:11 2006 UTC

# Line 283 | Line 283 | There are several different types of ensembles with di
283   \label{introEquation:ensembelAverage}
284   \end{equation}
285  
286 There are several different types of ensembles with different
287 statistical characteristics. As a function of macroscopic
288 parameters, such as temperature \textit{etc}, the partition function
289 can be used to describe the statistical properties of a system in
290 thermodynamic equilibrium. As an ensemble of systems, each of which
291 is known to be thermally isolated and conserve energy, the
292 Microcanonical ensemble (NVE) has a partition function like,
293 \begin{equation}
294 \Omega (N,V,E) = e^{\beta TS}. \label{introEquation:NVEPartition}
295 \end{equation}
296 A canonical ensemble (NVT) is an ensemble of systems, each of which
297 can share its energy with a large heat reservoir. The distribution
298 of the total energy amongst the possible dynamical states is given
299 by the partition function,
300 \begin{equation}
301 \Omega (N,V,T) = e^{ - \beta A}.
302 \label{introEquation:NVTPartition}
303 \end{equation}
304 Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
305 TS$. Since most experiments are carried out under constant pressure
306 condition, the isothermal-isobaric ensemble (NPT) plays a very
307 important role in molecular simulations. The isothermal-isobaric
308 ensemble allow the system to exchange energy with a heat bath of
309 temperature $T$ and to change the volume as well. Its partition
310 function is given as
311 \begin{equation}
312 \Delta (N,P,T) =  - e^{\beta G}.
313 \label{introEquation:NPTPartition}
314 \end{equation}
315 Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
316
286   \subsection{\label{introSection:liouville}Liouville's theorem}
287  
288   Liouville's theorem is the foundation on which statistical mechanics

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines