ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
Revision: 2697
Committed: Fri Apr 7 05:03:54 2006 UTC (18 years, 2 months ago) by tim
Content type: application/x-tex
File size: 22926 byte(s)
Log Message:
adding introduction to geometric integrators

File Contents

# Content
1 \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2
3 \section{\label{introSection:classicalMechanics}Classical
4 Mechanics}
5
6 Closely related to Classical Mechanics, Molecular Dynamics
7 simulations are carried out by integrating the equations of motion
8 for a given system of particles. There are three fundamental ideas
9 behind classical mechanics. Firstly, One can determine the state of
10 a mechanical system at any time of interest; Secondly, all the
11 mechanical properties of the system at that time can be determined
12 by combining the knowledge of the properties of the system with the
13 specification of this state; Finally, the specification of the state
14 when further combine with the laws of mechanics will also be
15 sufficient to predict the future behavior of the system.
16
17 \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 The discovery of Newton's three laws of mechanics which govern the
19 motion of particles is the foundation of the classical mechanics.
20 Newton¡¯s first law defines a class of inertial frames. Inertial
21 frames are reference frames where a particle not interacting with
22 other bodies will move with constant speed in the same direction.
23 With respect to inertial frames Newton¡¯s second law has the form
24 \begin{equation}
25 F = \frac {dp}{dt} = \frac {mv}{dt}
26 \label{introEquation:newtonSecondLaw}
27 \end{equation}
28 A point mass interacting with other bodies moves with the
29 acceleration along the direction of the force acting on it. Let
30 $F_ij$ be the force that particle $i$ exerts on particle $j$, and
31 $F_ji$ be the force that particle $j$ exerts on particle $i$.
32 Newton¡¯s third law states that
33 \begin{equation}
34 F_ij = -F_ji
35 \label{introEquation:newtonThirdLaw}
36 \end{equation}
37
38 Conservation laws of Newtonian Mechanics play very important roles
39 in solving mechanics problems. The linear momentum of a particle is
40 conserved if it is free or it experiences no force. The second
41 conservation theorem concerns the angular momentum of a particle.
42 The angular momentum $L$ of a particle with respect to an origin
43 from which $r$ is measured is defined to be
44 \begin{equation}
45 L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46 \end{equation}
47 The torque $\tau$ with respect to the same origin is defined to be
48 \begin{equation}
49 N \equiv r \times F \label{introEquation:torqueDefinition}
50 \end{equation}
51 Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52 \[
53 \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54 \dot p)
55 \]
56 since
57 \[
58 \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59 \]
60 thus,
61 \begin{equation}
62 \dot L = r \times \dot p = N
63 \end{equation}
64 If there are no external torques acting on a body, the angular
65 momentum of it is conserved. The last conservation theorem state
66 that if all forces are conservative, Energy
67 \begin{equation}E = T + V \label{introEquation:energyConservation}
68 \end{equation}
69 is conserved. All of these conserved quantities are
70 important factors to determine the quality of numerical integration
71 scheme for rigid body \cite{Dullweber1997}.
72
73 \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74
75 Newtonian Mechanics suffers from two important limitations: it
76 describes their motion in special cartesian coordinate systems.
77 Another limitation of Newtonian mechanics becomes obvious when we
78 try to describe systems with large numbers of particles. It becomes
79 very difficult to predict the properties of the system by carrying
80 out calculations involving the each individual interaction between
81 all the particles, even if we know all of the details of the
82 interaction. In order to overcome some of the practical difficulties
83 which arise in attempts to apply Newton's equation to complex
84 system, alternative procedures may be developed.
85
86 \subsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
87 Principle}
88
89 Hamilton introduced the dynamical principle upon which it is
90 possible to base all of mechanics and, indeed, most of classical
91 physics. Hamilton's Principle may be stated as follow,
92
93 The actual trajectory, along which a dynamical system may move from
94 one point to another within a specified time, is derived by finding
95 the path which minimizes the time integral of the difference between
96 the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
97 \begin{equation}
98 \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
99 \label{introEquation:halmitonianPrinciple1}
100 \end{equation}
101
102 For simple mechanical systems, where the forces acting on the
103 different part are derivable from a potential and the velocities are
104 small compared with that of light, the Lagrangian function $L$ can
105 be define as the difference between the kinetic energy of the system
106 and its potential energy,
107 \begin{equation}
108 L \equiv K - U = L(q_i ,\dot q_i ) ,
109 \label{introEquation:lagrangianDef}
110 \end{equation}
111 then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
112 \begin{equation}
113 \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
114 \label{introEquation:halmitonianPrinciple2}
115 \end{equation}
116
117 \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118 Equations of Motion in Lagrangian Mechanics}
119
120 for a holonomic system of $f$ degrees of freedom, the equations of
121 motion in the Lagrangian form is
122 \begin{equation}
123 \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
124 \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
125 \label{introEquation:eqMotionLagrangian}
126 \end{equation}
127 where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
128 generalized velocity.
129
130 \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
131
132 Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
133 introduced by William Rowan Hamilton in 1833 as a re-formulation of
134 classical mechanics. If the potential energy of a system is
135 independent of generalized velocities, the generalized momenta can
136 be defined as
137 \begin{equation}
138 p_i = \frac{\partial L}{\partial \dot q_i}
139 \label{introEquation:generalizedMomenta}
140 \end{equation}
141 The Lagrange equations of motion are then expressed by
142 \begin{equation}
143 p_i = \frac{{\partial L}}{{\partial q_i }}
144 \label{introEquation:generalizedMomentaDot}
145 \end{equation}
146
147 With the help of the generalized momenta, we may now define a new
148 quantity $H$ by the equation
149 \begin{equation}
150 H = \sum\limits_k {p_k \dot q_k } - L ,
151 \label{introEquation:hamiltonianDefByLagrangian}
152 \end{equation}
153 where $ \dot q_1 \ldots \dot q_f $ are generalized velocities and
154 $L$ is the Lagrangian function for the system.
155
156 Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
157 one can obtain
158 \begin{equation}
159 dH = \sum\limits_k {\left( {p_k d\dot q_k + \dot q_k dp_k -
160 \frac{{\partial L}}{{\partial q_k }}dq_k - \frac{{\partial
161 L}}{{\partial \dot q_k }}d\dot q_k } \right)} - \frac{{\partial
162 L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
163 \end{equation}
164 Making use of Eq.~\ref{introEquation:generalizedMomenta}, the
165 second and fourth terms in the parentheses cancel. Therefore,
166 Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
167 \begin{equation}
168 dH = \sum\limits_k {\left( {\dot q_k dp_k - \dot p_k dq_k }
169 \right)} - \frac{{\partial L}}{{\partial t}}dt
170 \label{introEquation:diffHamiltonian2}
171 \end{equation}
172 By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
173 find
174 \begin{equation}
175 \frac{{\partial H}}{{\partial p_k }} = q_k
176 \label{introEquation:motionHamiltonianCoordinate}
177 \end{equation}
178 \begin{equation}
179 \frac{{\partial H}}{{\partial q_k }} = - p_k
180 \label{introEquation:motionHamiltonianMomentum}
181 \end{equation}
182 and
183 \begin{equation}
184 \frac{{\partial H}}{{\partial t}} = - \frac{{\partial L}}{{\partial
185 t}}
186 \label{introEquation:motionHamiltonianTime}
187 \end{equation}
188
189 Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
190 Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
191 equation of motion. Due to their symmetrical formula, they are also
192 known as the canonical equations of motions \cite{Goldstein01}.
193
194 An important difference between Lagrangian approach and the
195 Hamiltonian approach is that the Lagrangian is considered to be a
196 function of the generalized velocities $\dot q_i$ and the
197 generalized coordinates $q_i$, while the Hamiltonian is considered
198 to be a function of the generalized momenta $p_i$ and the conjugate
199 generalized coordinate $q_i$. Hamiltonian Mechanics is more
200 appropriate for application to statistical mechanics and quantum
201 mechanics, since it treats the coordinate and its time derivative as
202 independent variables and it only works with 1st-order differential
203 equations\cite{Marion90}.
204
205 In Newtonian Mechanics, a system described by conservative forces
206 conserves the total energy \ref{introEquation:energyConservation}.
207 It follows that Hamilton's equations of motion conserve the total
208 Hamiltonian.
209 \begin{equation}
210 \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
211 H}}{{\partial q_i }}\dot q_i + \frac{{\partial H}}{{\partial p_i
212 }}\dot p_i } \right)} = \sum\limits_i {\left( {\frac{{\partial
213 H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214 \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 q_i }}} \right) = 0}
216 \label{introEquation:conserveHalmitonian}
217 \end{equation}
218
219 When studying Hamiltonian system, it is more convenient to use
220 notation
221 \begin{equation}
222 r = r(q,p)^T
223 \end{equation}
224 and to introduce a $2n \times 2n$ canonical structure matrix $J$,
225 \begin{equation}
226 J = \left( {\begin{array}{*{20}c}
227 0 & I \\
228 { - I} & 0 \\
229 \end{array}} \right)
230 \label{introEquation:canonicalMatrix}
231 \end{equation}
232 where $I$ is a $n \times n$ identity matrix and $J$ is a
233 skew-symmetric matrix ($ J^T = - J $). Thus, Hamiltonian system
234 can be rewritten as,
235 \begin{equation}
236 \frac{d}{{dt}}r = J\nabla _r H(r)
237 \label{introEquation:compactHamiltonian}
238 \end{equation}
239
240 \section{\label{introSection:statisticalMechanics}Statistical
241 Mechanics}
242
243 The thermodynamic behaviors and properties of Molecular Dynamics
244 simulation are governed by the principle of Statistical Mechanics.
245 The following section will give a brief introduction to some of the
246 Statistical Mechanics concepts presented in this dissertation.
247
248 \subsection{\label{introSection:ensemble}Ensemble and Phase Space}
249
250 \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
251
252 Various thermodynamic properties can be calculated from Molecular
253 Dynamics simulation. By comparing experimental values with the
254 calculated properties, one can determine the accuracy of the
255 simulation and the quality of the underlying model. However, both of
256 experiment and computer simulation are usually performed during a
257 certain time interval and the measurements are averaged over a
258 period of them which is different from the average behavior of
259 many-body system in Statistical Mechanics. Fortunately, Ergodic
260 Hypothesis is proposed to make a connection between time average and
261 ensemble average. It states that time average and average over the
262 statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
263 \begin{equation}
264 \langle A \rangle_t = \mathop {\lim }\limits_{t \to \infty }
265 \frac{1}{t}\int\limits_0^t {A(p(t),q(t))dt = \int\limits_\Gamma
266 {A(p(t),q(t))} } \rho (p(t), q(t)) dpdq
267 \end{equation}
268 where $\langle A \rangle_t$ is an equilibrium value of a physical
269 quantity and $\rho (p(t), q(t))$ is the equilibrium distribution
270 function. If an observation is averaged over a sufficiently long
271 time (longer than relaxation time), all accessible microstates in
272 phase space are assumed to be equally probed, giving a properly
273 weighted statistical average. This allows the researcher freedom of
274 choice when deciding how best to measure a given observable. In case
275 an ensemble averaged approach sounds most reasonable, the Monte
276 Carlo techniques\cite{metropolis:1949} can be utilized. Or if the
277 system lends itself to a time averaging approach, the Molecular
278 Dynamics techniques in Sec.~\ref{introSection:molecularDynamics}
279 will be the best choice\cite{Frenkel1996}.
280
281 \section{\label{introSection:geometricIntegratos}Geometric Integrators}
282 A variety of numerical integrators were proposed to simulate the
283 motions. They usually begin with an initial conditionals and move
284 the objects in the direction governed by the differential equations.
285 However, most of them ignore the hidden physical law contained
286 within the equations. Since 1990, geometric integrators, which
287 preserve various phase-flow invariants such as symplectic structure,
288 volume and time reversal symmetry, are developed to address this
289 issue. The velocity verlet method, which happens to be a simple
290 example of symplectic integrator, continues to gain its popularity
291 in molecular dynamics community. This fact can be partly explained
292 by its geometric nature.
293
294 \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
295 A \emph{manifold} is an abstract mathematical space. It locally
296 looks like Euclidean space, but when viewed globally, it may have
297 more complicate structure. A good example of manifold is the surface
298 of Earth. It seems to be flat locally, but it is round if viewed as
299 a whole. A \emph{differentiable manifold} (also known as
300 \emph{smooth manifold}) is a manifold with an open cover in which
301 the covering neighborhoods are all smoothly isomorphic to one
302 another. In other words,it is possible to apply calculus on
303 \emph{differentiable manifold}. A \emph{symplectic manifold} is
304 defined as a pair $(M, \omega)$ which consisting of a
305 \emph{differentiable manifold} $M$ and a close, non-degenerated,
306 bilinear symplectic form, $\omega$. A symplectic form on a vector
307 space $V$ is a function $\omega(x, y)$ which satisfies
308 $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
309 \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
310 $\omega(x, x) = 0$. Cross product operation in vector field is an
311 example of symplectic form.
312
313 One of the motivations to study \emph{symplectic manifold} in
314 Hamiltonian Mechanics is that a symplectic manifold can represent
315 all possible configurations of the system and the phase space of the
316 system can be described by it's cotangent bundle. Every symplectic
317 manifold is even dimensional. For instance, in Hamilton equations,
318 coordinate and momentum always appear in pairs.
319
320 Let $(M,\omega)$ and $(N, \eta)$ be symplectic manifolds. A map
321 \[
322 f : M \rightarrow N
323 \]
324 is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
325 the \emph{pullback} of $\eta$ under f is equal to $\omega$.
326 Canonical transformation is an example of symplectomorphism in
327 classical mechanics. According to Liouville's theorem, the
328 Hamiltonian \emph{flow} or \emph{symplectomorphism} generated by the
329 Hamiltonian vector filed preserves the volume form on the phase
330 space, which is the basis of classical statistical mechanics.
331
332 \subsection{\label{introSection:exactFlow}The Exact Flow of ODE}
333
334 \subsection{\label{introSection:hamiltonianSplitting}Hamiltonian Splitting}
335
336 \section{\label{introSection:molecularDynamics}Molecular Dynamics}
337
338 As a special discipline of molecular modeling, Molecular dynamics
339 has proven to be a powerful tool for studying the functions of
340 biological systems, providing structural, thermodynamic and
341 dynamical information.
342
343 \subsection{\label{introSec:mdInit}Initialization}
344
345 \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
346
347 \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
348
349 A rigid body is a body in which the distance between any two given
350 points of a rigid body remains constant regardless of external
351 forces exerted on it. A rigid body therefore conserves its shape
352 during its motion.
353
354 Applications of dynamics of rigid bodies.
355
356 \subsection{\label{introSection:lieAlgebra}Lie Algebra}
357
358 \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
359
360 \subsection{\label{introSection:otherRBMotionEquation}Other Formulations for Rigid Body Motion}
361
362 %\subsection{\label{introSection:poissonBrackets}Poisson Brackets}
363
364 \section{\label{introSection:correlationFunctions}Correlation Functions}
365
366 \section{\label{introSection:langevinDynamics}Langevin Dynamics}
367
368 \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
369
370 \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
371
372 \begin{equation}
373 H = \frac{{p^2 }}{{2m}} + U(x) + H_B + \Delta U(x,x_1 , \ldots x_N)
374 \label{introEquation:bathGLE}
375 \end{equation}
376 where $H_B$ is harmonic bath Hamiltonian,
377 \[
378 H_B =\sum\limits_{\alpha = 1}^N {\left\{ {\frac{{p_\alpha ^2
379 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha w_\alpha ^2 } \right\}}
380 \]
381 and $\Delta U$ is bilinear system-bath coupling,
382 \[
383 \Delta U = - \sum\limits_{\alpha = 1}^N {g_\alpha x_\alpha x}
384 \]
385 Completing the square,
386 \[
387 H_B + \Delta U = \sum\limits_{\alpha = 1}^N {\left\{
388 {\frac{{p_\alpha ^2 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha
389 w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha
390 w_\alpha ^2 }}x} \right)^2 } \right\}} - \sum\limits_{\alpha =
391 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha w_\alpha ^2 }}} x^2
392 \]
393 and putting it back into Eq.~\ref{introEquation:bathGLE},
394 \[
395 H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha = 1}^N
396 {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha
397 w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha
398 w_\alpha ^2 }}x} \right)^2 } \right\}}
399 \]
400 where
401 \[
402 W(x) = U(x) - \sum\limits_{\alpha = 1}^N {\frac{{g_\alpha ^2
403 }}{{2m_\alpha w_\alpha ^2 }}} x^2
404 \]
405 Since the first two terms of the new Hamiltonian depend only on the
406 system coordinates, we can get the equations of motion for
407 Generalized Langevin Dynamics by Hamilton's equations
408 \ref{introEquation:motionHamiltonianCoordinate,
409 introEquation:motionHamiltonianMomentum},
410 \begin{align}
411 \dot p &= - \frac{{\partial H}}{{\partial x}}
412 &= m\ddot x
413 &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha = 1}^N {g_\alpha \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right)}
414 \label{introEq:Lp5}
415 \end{align}
416 , and
417 \begin{align}
418 \dot p_\alpha &= - \frac{{\partial H}}{{\partial x_\alpha }}
419 &= m\ddot x_\alpha
420 &= \- m_\alpha w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha}}{{m_\alpha w_\alpha ^2 }}x} \right)
421 \end{align}
422
423 \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
424
425 \[
426 L(x) = \int_0^\infty {x(t)e^{ - pt} dt}
427 \]
428
429 \[
430 L(x + y) = L(x) + L(y)
431 \]
432
433 \[
434 L(ax) = aL(x)
435 \]
436
437 \[
438 L(\dot x) = pL(x) - px(0)
439 \]
440
441 \[
442 L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
443 \]
444
445 \[
446 L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
447 \]
448
449 Some relatively important transformation,
450 \[
451 L(\cos at) = \frac{p}{{p^2 + a^2 }}
452 \]
453
454 \[
455 L(\sin at) = \frac{a}{{p^2 + a^2 }}
456 \]
457
458 \[
459 L(1) = \frac{1}{p}
460 \]
461
462 First, the bath coordinates,
463 \[
464 p^2 L(x_\alpha ) - px_\alpha (0) - \dot x_\alpha (0) = - \omega
465 _\alpha ^2 L(x_\alpha ) + \frac{{g_\alpha }}{{\omega _\alpha
466 }}L(x)
467 \]
468 \[
469 L(x_\alpha ) = \frac{{\frac{{g_\alpha }}{{\omega _\alpha }}L(x) +
470 px_\alpha (0) + \dot x_\alpha (0)}}{{p^2 + \omega _\alpha ^2 }}
471 \]
472 Then, the system coordinates,
473 \begin{align}
474 mL(\ddot x) &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
475 \sum\limits_{\alpha = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
476 }}{{\omega _\alpha }}L(x) + px_\alpha (0) + \dot x_\alpha
477 (0)}}{{p^2 + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
478 }}\omega _\alpha ^2 L(x)} \right\}}
479 %
480 &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
481 \sum\limits_{\alpha = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}\frac{p}{{p^2 + \omega _\alpha ^2 }}pL(x)
482 - \frac{p}{{p^2 + \omega _\alpha ^2 }}g_\alpha x_\alpha (0)
483 - \frac{1}{{p^2 + \omega _\alpha ^2 }}g_\alpha \dot x_\alpha (0)} \right\}}
484 \end{align}
485 Then, the inverse transform,
486
487 \begin{align}
488 m\ddot x &= - \frac{{\partial W(x)}}{{\partial x}} -
489 \sum\limits_{\alpha = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
490 }}{{m_\alpha \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
491 _\alpha t)\dot x(t - \tau )d\tau - \left[ {g_\alpha x_\alpha (0)
492 - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha }}} \right]\cos
493 (\omega _\alpha t) - \frac{{g_\alpha \dot x_\alpha (0)}}{{\omega
494 _\alpha }}\sin (\omega _\alpha t)} } \right\}}
495 %
496 &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
497 {\sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
498 }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
499 t)\dot x(t - \tau )d} \tau } + \sum\limits_{\alpha = 1}^N {\left\{
500 {\left[ {g_\alpha x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha
501 \omega _\alpha }}} \right]\cos (\omega _\alpha t) +
502 \frac{{g_\alpha \dot x_\alpha (0)}}{{\omega _\alpha }}\sin
503 (\omega _\alpha t)} \right\}}
504 \end{align}
505
506 \begin{equation}
507 m\ddot x = - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
508 (t)\dot x(t - \tau )d\tau } + R(t)
509 \label{introEuqation:GeneralizedLangevinDynamics}
510 \end{equation}
511 %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
512 %$W$ is the potential of mean force. $W(x) = - kT\ln p(x)$
513 \[
514 \xi (t) = \sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
515 }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha t)}
516 \]
517 For an infinite harmonic bath, we can use the spectral density and
518 an integral over frequencies.
519
520 \[
521 R(t) = \sum\limits_{\alpha = 1}^N {\left( {g_\alpha x_\alpha (0)
522 - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}x(0)}
523 \right)\cos (\omega _\alpha t)} + \frac{{\dot x_\alpha
524 (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t)
525 \]
526 The random forces depend only on initial conditions.
527
528 \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
529 So we can define a new set of coordinates,
530 \[
531 q_\alpha (t) = x_\alpha (t) - \frac{1}{{m_\alpha \omega _\alpha
532 ^2 }}x(0)
533 \]
534 This makes
535 \[
536 R(t) = \sum\limits_{\alpha = 1}^N {g_\alpha q_\alpha (t)}
537 \]
538 And since the $q$ coordinates are harmonic oscillators,
539 \[
540 \begin{array}{l}
541 \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t) \\
542 \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle = \delta _{\alpha \beta } \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle \\
543 \end{array}
544 \]
545
546 \begin{align}
547 \left\langle {R(t)R(0)} \right\rangle &= \sum\limits_\alpha
548 {\sum\limits_\beta {g_\alpha g_\beta \left\langle {q_\alpha
549 (t)q_\beta (0)} \right\rangle } }
550 %
551 &= \sum\limits_\alpha {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
552 \right\rangle \cos (\omega _\alpha t)}
553 %
554 &= kT\xi (t)
555 \end{align}
556
557 \begin{equation}
558 \xi (t) = \left\langle {R(t)R(0)} \right\rangle
559 \label{introEquation:secondFluctuationDissipation}
560 \end{equation}
561
562 \section{\label{introSection:hydroynamics}Hydrodynamics}
563
564 \subsection{\label{introSection:frictionTensor} Friction Tensor}
565 \subsection{\label{introSection:analyticalApproach}Analytical
566 Approach}
567
568 \subsection{\label{introSection:approximationApproach}Approximation
569 Approach}
570
571 \subsection{\label{introSection:centersRigidBody}Centers of Rigid
572 Body}