ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
Revision: 2718
Committed: Tue Apr 18 04:11:56 2006 UTC (18 years, 2 months ago) by tim
Content type: application/x-tex
File size: 69580 byte(s)
Log Message:
Finish Hydrodynamics

File Contents

# Content
1 \chapter{\label{chapt:introduction}INTRODUCTION AND THEORETICAL BACKGROUND}
2
3 \section{\label{introSection:classicalMechanics}Classical
4 Mechanics}
5
6 Closely related to Classical Mechanics, Molecular Dynamics
7 simulations are carried out by integrating the equations of motion
8 for a given system of particles. There are three fundamental ideas
9 behind classical mechanics. Firstly, One can determine the state of
10 a mechanical system at any time of interest; Secondly, all the
11 mechanical properties of the system at that time can be determined
12 by combining the knowledge of the properties of the system with the
13 specification of this state; Finally, the specification of the state
14 when further combine with the laws of mechanics will also be
15 sufficient to predict the future behavior of the system.
16
17 \subsection{\label{introSection:newtonian}Newtonian Mechanics}
18 The discovery of Newton's three laws of mechanics which govern the
19 motion of particles is the foundation of the classical mechanics.
20 Newton¡¯s first law defines a class of inertial frames. Inertial
21 frames are reference frames where a particle not interacting with
22 other bodies will move with constant speed in the same direction.
23 With respect to inertial frames Newton¡¯s second law has the form
24 \begin{equation}
25 F = \frac {dp}{dt} = \frac {mv}{dt}
26 \label{introEquation:newtonSecondLaw}
27 \end{equation}
28 A point mass interacting with other bodies moves with the
29 acceleration along the direction of the force acting on it. Let
30 $F_{ij}$ be the force that particle $i$ exerts on particle $j$, and
31 $F_{ji}$ be the force that particle $j$ exerts on particle $i$.
32 Newton¡¯s third law states that
33 \begin{equation}
34 F_{ij} = -F_{ji}
35 \label{introEquation:newtonThirdLaw}
36 \end{equation}
37
38 Conservation laws of Newtonian Mechanics play very important roles
39 in solving mechanics problems. The linear momentum of a particle is
40 conserved if it is free or it experiences no force. The second
41 conservation theorem concerns the angular momentum of a particle.
42 The angular momentum $L$ of a particle with respect to an origin
43 from which $r$ is measured is defined to be
44 \begin{equation}
45 L \equiv r \times p \label{introEquation:angularMomentumDefinition}
46 \end{equation}
47 The torque $\tau$ with respect to the same origin is defined to be
48 \begin{equation}
49 N \equiv r \times F \label{introEquation:torqueDefinition}
50 \end{equation}
51 Differentiating Eq.~\ref{introEquation:angularMomentumDefinition},
52 \[
53 \dot L = \frac{d}{{dt}}(r \times p) = (\dot r \times p) + (r \times
54 \dot p)
55 \]
56 since
57 \[
58 \dot r \times p = \dot r \times mv = m\dot r \times \dot r \equiv 0
59 \]
60 thus,
61 \begin{equation}
62 \dot L = r \times \dot p = N
63 \end{equation}
64 If there are no external torques acting on a body, the angular
65 momentum of it is conserved. The last conservation theorem state
66 that if all forces are conservative, Energy
67 \begin{equation}E = T + V \label{introEquation:energyConservation}
68 \end{equation}
69 is conserved. All of these conserved quantities are
70 important factors to determine the quality of numerical integration
71 scheme for rigid body \cite{Dullweber1997}.
72
73 \subsection{\label{introSection:lagrangian}Lagrangian Mechanics}
74
75 Newtonian Mechanics suffers from two important limitations: it
76 describes their motion in special cartesian coordinate systems.
77 Another limitation of Newtonian mechanics becomes obvious when we
78 try to describe systems with large numbers of particles. It becomes
79 very difficult to predict the properties of the system by carrying
80 out calculations involving the each individual interaction between
81 all the particles, even if we know all of the details of the
82 interaction. In order to overcome some of the practical difficulties
83 which arise in attempts to apply Newton's equation to complex
84 system, alternative procedures may be developed.
85
86 \subsubsection{\label{introSection:halmiltonPrinciple}Hamilton's
87 Principle}
88
89 Hamilton introduced the dynamical principle upon which it is
90 possible to base all of mechanics and, indeed, most of classical
91 physics. Hamilton's Principle may be stated as follow,
92
93 The actual trajectory, along which a dynamical system may move from
94 one point to another within a specified time, is derived by finding
95 the path which minimizes the time integral of the difference between
96 the kinetic, $K$, and potential energies, $U$ \cite{tolman79}.
97 \begin{equation}
98 \delta \int_{t_1 }^{t_2 } {(K - U)dt = 0} ,
99 \label{introEquation:halmitonianPrinciple1}
100 \end{equation}
101
102 For simple mechanical systems, where the forces acting on the
103 different part are derivable from a potential and the velocities are
104 small compared with that of light, the Lagrangian function $L$ can
105 be define as the difference between the kinetic energy of the system
106 and its potential energy,
107 \begin{equation}
108 L \equiv K - U = L(q_i ,\dot q_i ) ,
109 \label{introEquation:lagrangianDef}
110 \end{equation}
111 then Eq.~\ref{introEquation:halmitonianPrinciple1} becomes
112 \begin{equation}
113 \delta \int_{t_1 }^{t_2 } {L dt = 0} ,
114 \label{introEquation:halmitonianPrinciple2}
115 \end{equation}
116
117 \subsubsection{\label{introSection:equationOfMotionLagrangian}The
118 Equations of Motion in Lagrangian Mechanics}
119
120 For a holonomic system of $f$ degrees of freedom, the equations of
121 motion in the Lagrangian form is
122 \begin{equation}
123 \frac{d}{{dt}}\frac{{\partial L}}{{\partial \dot q_i }} -
124 \frac{{\partial L}}{{\partial q_i }} = 0,{\rm{ }}i = 1, \ldots,f
125 \label{introEquation:eqMotionLagrangian}
126 \end{equation}
127 where $q_{i}$ is generalized coordinate and $\dot{q_{i}}$ is
128 generalized velocity.
129
130 \subsection{\label{introSection:hamiltonian}Hamiltonian Mechanics}
131
132 Arising from Lagrangian Mechanics, Hamiltonian Mechanics was
133 introduced by William Rowan Hamilton in 1833 as a re-formulation of
134 classical mechanics. If the potential energy of a system is
135 independent of generalized velocities, the generalized momenta can
136 be defined as
137 \begin{equation}
138 p_i = \frac{\partial L}{\partial \dot q_i}
139 \label{introEquation:generalizedMomenta}
140 \end{equation}
141 The Lagrange equations of motion are then expressed by
142 \begin{equation}
143 p_i = \frac{{\partial L}}{{\partial q_i }}
144 \label{introEquation:generalizedMomentaDot}
145 \end{equation}
146
147 With the help of the generalized momenta, we may now define a new
148 quantity $H$ by the equation
149 \begin{equation}
150 H = \sum\limits_k {p_k \dot q_k } - L ,
151 \label{introEquation:hamiltonianDefByLagrangian}
152 \end{equation}
153 where $ \dot q_1 \ldots \dot q_f $ are generalized velocities and
154 $L$ is the Lagrangian function for the system.
155
156 Differentiating Eq.~\ref{introEquation:hamiltonianDefByLagrangian},
157 one can obtain
158 \begin{equation}
159 dH = \sum\limits_k {\left( {p_k d\dot q_k + \dot q_k dp_k -
160 \frac{{\partial L}}{{\partial q_k }}dq_k - \frac{{\partial
161 L}}{{\partial \dot q_k }}d\dot q_k } \right)} - \frac{{\partial
162 L}}{{\partial t}}dt \label{introEquation:diffHamiltonian1}
163 \end{equation}
164 Making use of Eq.~\ref{introEquation:generalizedMomenta}, the
165 second and fourth terms in the parentheses cancel. Therefore,
166 Eq.~\ref{introEquation:diffHamiltonian1} can be rewritten as
167 \begin{equation}
168 dH = \sum\limits_k {\left( {\dot q_k dp_k - \dot p_k dq_k }
169 \right)} - \frac{{\partial L}}{{\partial t}}dt
170 \label{introEquation:diffHamiltonian2}
171 \end{equation}
172 By identifying the coefficients of $dq_k$, $dp_k$ and dt, we can
173 find
174 \begin{equation}
175 \frac{{\partial H}}{{\partial p_k }} = q_k
176 \label{introEquation:motionHamiltonianCoordinate}
177 \end{equation}
178 \begin{equation}
179 \frac{{\partial H}}{{\partial q_k }} = - p_k
180 \label{introEquation:motionHamiltonianMomentum}
181 \end{equation}
182 and
183 \begin{equation}
184 \frac{{\partial H}}{{\partial t}} = - \frac{{\partial L}}{{\partial
185 t}}
186 \label{introEquation:motionHamiltonianTime}
187 \end{equation}
188
189 Eq.~\ref{introEquation:motionHamiltonianCoordinate} and
190 Eq.~\ref{introEquation:motionHamiltonianMomentum} are Hamilton's
191 equation of motion. Due to their symmetrical formula, they are also
192 known as the canonical equations of motions \cite{Goldstein01}.
193
194 An important difference between Lagrangian approach and the
195 Hamiltonian approach is that the Lagrangian is considered to be a
196 function of the generalized velocities $\dot q_i$ and the
197 generalized coordinates $q_i$, while the Hamiltonian is considered
198 to be a function of the generalized momenta $p_i$ and the conjugate
199 generalized coordinate $q_i$. Hamiltonian Mechanics is more
200 appropriate for application to statistical mechanics and quantum
201 mechanics, since it treats the coordinate and its time derivative as
202 independent variables and it only works with 1st-order differential
203 equations\cite{Marion90}.
204
205 In Newtonian Mechanics, a system described by conservative forces
206 conserves the total energy \ref{introEquation:energyConservation}.
207 It follows that Hamilton's equations of motion conserve the total
208 Hamiltonian.
209 \begin{equation}
210 \frac{{dH}}{{dt}} = \sum\limits_i {\left( {\frac{{\partial
211 H}}{{\partial q_i }}\dot q_i + \frac{{\partial H}}{{\partial p_i
212 }}\dot p_i } \right)} = \sum\limits_i {\left( {\frac{{\partial
213 H}}{{\partial q_i }}\frac{{\partial H}}{{\partial p_i }} -
214 \frac{{\partial H}}{{\partial p_i }}\frac{{\partial H}}{{\partial
215 q_i }}} \right) = 0} \label{introEquation:conserveHalmitonian}
216 \end{equation}
217
218 \section{\label{introSection:statisticalMechanics}Statistical
219 Mechanics}
220
221 The thermodynamic behaviors and properties of Molecular Dynamics
222 simulation are governed by the principle of Statistical Mechanics.
223 The following section will give a brief introduction to some of the
224 Statistical Mechanics concepts and theorem presented in this
225 dissertation.
226
227 \subsection{\label{introSection:ensemble}Phase Space and Ensemble}
228
229 Mathematically, phase space is the space which represents all
230 possible states. Each possible state of the system corresponds to
231 one unique point in the phase space. For mechanical systems, the
232 phase space usually consists of all possible values of position and
233 momentum variables. Consider a dynamic system in a cartesian space,
234 where each of the $6f$ coordinates and momenta is assigned to one of
235 $6f$ mutually orthogonal axes, the phase space of this system is a
236 $6f$ dimensional space. A point, $x = (q_1 , \ldots ,q_f ,p_1 ,
237 \ldots ,p_f )$, with a unique set of values of $6f$ coordinates and
238 momenta is a phase space vector.
239
240 A microscopic state or microstate of a classical system is
241 specification of the complete phase space vector of a system at any
242 instant in time. An ensemble is defined as a collection of systems
243 sharing one or more macroscopic characteristics but each being in a
244 unique microstate. The complete ensemble is specified by giving all
245 systems or microstates consistent with the common macroscopic
246 characteristics of the ensemble. Although the state of each
247 individual system in the ensemble could be precisely described at
248 any instance in time by a suitable phase space vector, when using
249 ensembles for statistical purposes, there is no need to maintain
250 distinctions between individual systems, since the numbers of
251 systems at any time in the different states which correspond to
252 different regions of the phase space are more interesting. Moreover,
253 in the point of view of statistical mechanics, one would prefer to
254 use ensembles containing a large enough population of separate
255 members so that the numbers of systems in such different states can
256 be regarded as changing continuously as we traverse different
257 regions of the phase space. The condition of an ensemble at any time
258 can be regarded as appropriately specified by the density $\rho$
259 with which representative points are distributed over the phase
260 space. The density of distribution for an ensemble with $f$ degrees
261 of freedom is defined as,
262 \begin{equation}
263 \rho = \rho (q_1 , \ldots ,q_f ,p_1 , \ldots ,p_f ,t).
264 \label{introEquation:densityDistribution}
265 \end{equation}
266 Governed by the principles of mechanics, the phase points change
267 their value which would change the density at any time at phase
268 space. Hence, the density of distribution is also to be taken as a
269 function of the time.
270
271 The number of systems $\delta N$ at time $t$ can be determined by,
272 \begin{equation}
273 \delta N = \rho (q,p,t)dq_1 \ldots dq_f dp_1 \ldots dp_f.
274 \label{introEquation:deltaN}
275 \end{equation}
276 Assuming a large enough population of systems are exploited, we can
277 sufficiently approximate $\delta N$ without introducing
278 discontinuity when we go from one region in the phase space to
279 another. By integrating over the whole phase space,
280 \begin{equation}
281 N = \int { \ldots \int {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f
282 \label{introEquation:totalNumberSystem}
283 \end{equation}
284 gives us an expression for the total number of the systems. Hence,
285 the probability per unit in the phase space can be obtained by,
286 \begin{equation}
287 \frac{{\rho (q,p,t)}}{N} = \frac{{\rho (q,p,t)}}{{\int { \ldots \int
288 {\rho (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}.
289 \label{introEquation:unitProbability}
290 \end{equation}
291 With the help of Equation(\ref{introEquation:unitProbability}) and
292 the knowledge of the system, it is possible to calculate the average
293 value of any desired quantity which depends on the coordinates and
294 momenta of the system. Even when the dynamics of the real system is
295 complex, or stochastic, or even discontinuous, the average
296 properties of the ensemble of possibilities as a whole may still
297 remain well defined. For a classical system in thermal equilibrium
298 with its environment, the ensemble average of a mechanical quantity,
299 $\langle A(q , p) \rangle_t$, takes the form of an integral over the
300 phase space of the system,
301 \begin{equation}
302 \langle A(q , p) \rangle_t = \frac{{\int { \ldots \int {A(q,p)\rho
303 (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}{{\int { \ldots \int {\rho
304 (q,p,t)dq_1 } ...dq_f dp_1 } ...dp_f }}
305 \label{introEquation:ensembelAverage}
306 \end{equation}
307
308 There are several different types of ensembles with different
309 statistical characteristics. As a function of macroscopic
310 parameters, such as temperature \textit{etc}, partition function can
311 be used to describe the statistical properties of a system in
312 thermodynamic equilibrium.
313
314 As an ensemble of systems, each of which is known to be thermally
315 isolated and conserve energy, Microcanonical ensemble(NVE) has a
316 partition function like,
317 \begin{equation}
318 \Omega (N,V,E) = e^{\beta TS} \label{introEquation:NVEPartition}.
319 \end{equation}
320 A canonical ensemble(NVT)is an ensemble of systems, each of which
321 can share its energy with a large heat reservoir. The distribution
322 of the total energy amongst the possible dynamical states is given
323 by the partition function,
324 \begin{equation}
325 \Omega (N,V,T) = e^{ - \beta A}
326 \label{introEquation:NVTPartition}
327 \end{equation}
328 Here, $A$ is the Helmholtz free energy which is defined as $ A = U -
329 TS$. Since most experiment are carried out under constant pressure
330 condition, isothermal-isobaric ensemble(NPT) play a very important
331 role in molecular simulation. The isothermal-isobaric ensemble allow
332 the system to exchange energy with a heat bath of temperature $T$
333 and to change the volume as well. Its partition function is given as
334 \begin{equation}
335 \Delta (N,P,T) = - e^{\beta G}.
336 \label{introEquation:NPTPartition}
337 \end{equation}
338 Here, $G = U - TS + PV$, and $G$ is called Gibbs free energy.
339
340 \subsection{\label{introSection:liouville}Liouville's theorem}
341
342 The Liouville's theorem is the foundation on which statistical
343 mechanics rests. It describes the time evolution of phase space
344 distribution function. In order to calculate the rate of change of
345 $\rho$, we begin from Equation(\ref{introEquation:deltaN}). If we
346 consider the two faces perpendicular to the $q_1$ axis, which are
347 located at $q_1$ and $q_1 + \delta q_1$, the number of phase points
348 leaving the opposite face is given by the expression,
349 \begin{equation}
350 \left( {\rho + \frac{{\partial \rho }}{{\partial q_1 }}\delta q_1 }
351 \right)\left( {\dot q_1 + \frac{{\partial \dot q_1 }}{{\partial q_1
352 }}\delta q_1 } \right)\delta q_2 \ldots \delta q_f \delta p_1
353 \ldots \delta p_f .
354 \end{equation}
355 Summing all over the phase space, we obtain
356 \begin{equation}
357 \frac{{d(\delta N)}}{{dt}} = - \sum\limits_{i = 1}^f {\left[ {\rho
358 \left( {\frac{{\partial \dot q_i }}{{\partial q_i }} +
359 \frac{{\partial \dot p_i }}{{\partial p_i }}} \right) + \left(
360 {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i + \frac{{\partial
361 \rho }}{{\partial p_i }}\dot p_i } \right)} \right]} \delta q_1
362 \ldots \delta q_f \delta p_1 \ldots \delta p_f .
363 \end{equation}
364 Differentiating the equations of motion in Hamiltonian formalism
365 (\ref{introEquation:motionHamiltonianCoordinate},
366 \ref{introEquation:motionHamiltonianMomentum}), we can show,
367 \begin{equation}
368 \sum\limits_i {\left( {\frac{{\partial \dot q_i }}{{\partial q_i }}
369 + \frac{{\partial \dot p_i }}{{\partial p_i }}} \right)} = 0 ,
370 \end{equation}
371 which cancels the first terms of the right hand side. Furthermore,
372 divining $ \delta q_1 \ldots \delta q_f \delta p_1 \ldots \delta
373 p_f $ in both sides, we can write out Liouville's theorem in a
374 simple form,
375 \begin{equation}
376 \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{i = 1}^f
377 {\left( {\frac{{\partial \rho }}{{\partial q_i }}\dot q_i +
378 \frac{{\partial \rho }}{{\partial p_i }}\dot p_i } \right)} = 0 .
379 \label{introEquation:liouvilleTheorem}
380 \end{equation}
381
382 Liouville's theorem states that the distribution function is
383 constant along any trajectory in phase space. In classical
384 statistical mechanics, since the number of particles in the system
385 is huge, we may be able to believe the system is stationary,
386 \begin{equation}
387 \frac{{\partial \rho }}{{\partial t}} = 0.
388 \label{introEquation:stationary}
389 \end{equation}
390 In such stationary system, the density of distribution $\rho$ can be
391 connected to the Hamiltonian $H$ through Maxwell-Boltzmann
392 distribution,
393 \begin{equation}
394 \rho \propto e^{ - \beta H}
395 \label{introEquation:densityAndHamiltonian}
396 \end{equation}
397
398 \subsubsection{\label{introSection:phaseSpaceConservation}Conservation of Phase Space}
399 Lets consider a region in the phase space,
400 \begin{equation}
401 \delta v = \int { \ldots \int {dq_1 } ...dq_f dp_1 } ..dp_f .
402 \end{equation}
403 If this region is small enough, the density $\rho$ can be regarded
404 as uniform over the whole phase space. Thus, the number of phase
405 points inside this region is given by,
406 \begin{equation}
407 \delta N = \rho \delta v = \rho \int { \ldots \int {dq_1 } ...dq_f
408 dp_1 } ..dp_f.
409 \end{equation}
410
411 \begin{equation}
412 \frac{{d(\delta N)}}{{dt}} = \frac{{d\rho }}{{dt}}\delta v + \rho
413 \frac{d}{{dt}}(\delta v) = 0.
414 \end{equation}
415 With the help of stationary assumption
416 (\ref{introEquation:stationary}), we obtain the principle of the
417 \emph{conservation of extension in phase space},
418 \begin{equation}
419 \frac{d}{{dt}}(\delta v) = \frac{d}{{dt}}\int { \ldots \int {dq_1 }
420 ...dq_f dp_1 } ..dp_f = 0.
421 \label{introEquation:volumePreserving}
422 \end{equation}
423
424 \subsubsection{\label{introSection:liouvilleInOtherForms}Liouville's Theorem in Other Forms}
425
426 Liouville's theorem can be expresses in a variety of different forms
427 which are convenient within different contexts. For any two function
428 $F$ and $G$ of the coordinates and momenta of a system, the Poisson
429 bracket ${F, G}$ is defined as
430 \begin{equation}
431 \left\{ {F,G} \right\} = \sum\limits_i {\left( {\frac{{\partial
432 F}}{{\partial q_i }}\frac{{\partial G}}{{\partial p_i }} -
433 \frac{{\partial F}}{{\partial p_i }}\frac{{\partial G}}{{\partial
434 q_i }}} \right)}.
435 \label{introEquation:poissonBracket}
436 \end{equation}
437 Substituting equations of motion in Hamiltonian formalism(
438 \ref{introEquation:motionHamiltonianCoordinate} ,
439 \ref{introEquation:motionHamiltonianMomentum} ) into
440 (\ref{introEquation:liouvilleTheorem}), we can rewrite Liouville's
441 theorem using Poisson bracket notion,
442 \begin{equation}
443 \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - \left\{
444 {\rho ,H} \right\}.
445 \label{introEquation:liouvilleTheromInPoissin}
446 \end{equation}
447 Moreover, the Liouville operator is defined as
448 \begin{equation}
449 iL = \sum\limits_{i = 1}^f {\left( {\frac{{\partial H}}{{\partial
450 p_i }}\frac{\partial }{{\partial q_i }} - \frac{{\partial
451 H}}{{\partial q_i }}\frac{\partial }{{\partial p_i }}} \right)}
452 \label{introEquation:liouvilleOperator}
453 \end{equation}
454 In terms of Liouville operator, Liouville's equation can also be
455 expressed as
456 \begin{equation}
457 \left( {\frac{{\partial \rho }}{{\partial t}}} \right) = - iL\rho
458 \label{introEquation:liouvilleTheoremInOperator}
459 \end{equation}
460
461 \subsection{\label{introSection:ergodic}The Ergodic Hypothesis}
462
463 Various thermodynamic properties can be calculated from Molecular
464 Dynamics simulation. By comparing experimental values with the
465 calculated properties, one can determine the accuracy of the
466 simulation and the quality of the underlying model. However, both of
467 experiment and computer simulation are usually performed during a
468 certain time interval and the measurements are averaged over a
469 period of them which is different from the average behavior of
470 many-body system in Statistical Mechanics. Fortunately, Ergodic
471 Hypothesis is proposed to make a connection between time average and
472 ensemble average. It states that time average and average over the
473 statistical ensemble are identical \cite{Frenkel1996, leach01:mm}.
474 \begin{equation}
475 \langle A(q , p) \rangle_t = \mathop {\lim }\limits_{t \to \infty }
476 \frac{1}{t}\int\limits_0^t {A(q(t),p(t))dt = \int\limits_\Gamma
477 {A(q(t),p(t))} } \rho (q(t), p(t)) dqdp
478 \end{equation}
479 where $\langle A(q , p) \rangle_t$ is an equilibrium value of a
480 physical quantity and $\rho (p(t), q(t))$ is the equilibrium
481 distribution function. If an observation is averaged over a
482 sufficiently long time (longer than relaxation time), all accessible
483 microstates in phase space are assumed to be equally probed, giving
484 a properly weighted statistical average. This allows the researcher
485 freedom of choice when deciding how best to measure a given
486 observable. In case an ensemble averaged approach sounds most
487 reasonable, the Monte Carlo techniques\cite{metropolis:1949} can be
488 utilized. Or if the system lends itself to a time averaging
489 approach, the Molecular Dynamics techniques in
490 Sec.~\ref{introSection:molecularDynamics} will be the best
491 choice\cite{Frenkel1996}.
492
493 \section{\label{introSection:geometricIntegratos}Geometric Integrators}
494 A variety of numerical integrators were proposed to simulate the
495 motions. They usually begin with an initial conditionals and move
496 the objects in the direction governed by the differential equations.
497 However, most of them ignore the hidden physical law contained
498 within the equations. Since 1990, geometric integrators, which
499 preserve various phase-flow invariants such as symplectic structure,
500 volume and time reversal symmetry, are developed to address this
501 issue. The velocity verlet method, which happens to be a simple
502 example of symplectic integrator, continues to gain its popularity
503 in molecular dynamics community. This fact can be partly explained
504 by its geometric nature.
505
506 \subsection{\label{introSection:symplecticManifold}Symplectic Manifold}
507 A \emph{manifold} is an abstract mathematical space. It locally
508 looks like Euclidean space, but when viewed globally, it may have
509 more complicate structure. A good example of manifold is the surface
510 of Earth. It seems to be flat locally, but it is round if viewed as
511 a whole. A \emph{differentiable manifold} (also known as
512 \emph{smooth manifold}) is a manifold with an open cover in which
513 the covering neighborhoods are all smoothly isomorphic to one
514 another. In other words,it is possible to apply calculus on
515 \emph{differentiable manifold}. A \emph{symplectic manifold} is
516 defined as a pair $(M, \omega)$ which consisting of a
517 \emph{differentiable manifold} $M$ and a close, non-degenerated,
518 bilinear symplectic form, $\omega$. A symplectic form on a vector
519 space $V$ is a function $\omega(x, y)$ which satisfies
520 $\omega(\lambda_1x_1+\lambda_2x_2, y) = \lambda_1\omega(x_1, y)+
521 \lambda_2\omega(x_2, y)$, $\omega(x, y) = - \omega(y, x)$ and
522 $\omega(x, x) = 0$. Cross product operation in vector field is an
523 example of symplectic form.
524
525 One of the motivations to study \emph{symplectic manifold} in
526 Hamiltonian Mechanics is that a symplectic manifold can represent
527 all possible configurations of the system and the phase space of the
528 system can be described by it's cotangent bundle. Every symplectic
529 manifold is even dimensional. For instance, in Hamilton equations,
530 coordinate and momentum always appear in pairs.
531
532 Let $(M,\omega)$ and $(N, \eta)$ be symplectic manifolds. A map
533 \[
534 f : M \rightarrow N
535 \]
536 is a \emph{symplectomorphism} if it is a \emph{diffeomorphims} and
537 the \emph{pullback} of $\eta$ under f is equal to $\omega$.
538 Canonical transformation is an example of symplectomorphism in
539 classical mechanics.
540
541 \subsection{\label{introSection:ODE}Ordinary Differential Equations}
542
543 For a ordinary differential system defined as
544 \begin{equation}
545 \dot x = f(x)
546 \end{equation}
547 where $x = x(q,p)^T$, this system is canonical Hamiltonian, if
548 \begin{equation}
549 f(r) = J\nabla _x H(r).
550 \end{equation}
551 $H = H (q, p)$ is Hamiltonian function and $J$ is the skew-symmetric
552 matrix
553 \begin{equation}
554 J = \left( {\begin{array}{*{20}c}
555 0 & I \\
556 { - I} & 0 \\
557 \end{array}} \right)
558 \label{introEquation:canonicalMatrix}
559 \end{equation}
560 where $I$ is an identity matrix. Using this notation, Hamiltonian
561 system can be rewritten as,
562 \begin{equation}
563 \frac{d}{{dt}}x = J\nabla _x H(x)
564 \label{introEquation:compactHamiltonian}
565 \end{equation}In this case, $f$ is
566 called a \emph{Hamiltonian vector field}.
567
568 Another generalization of Hamiltonian dynamics is Poisson Dynamics,
569 \begin{equation}
570 \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571 \end{equation}
572 The most obvious change being that matrix $J$ now depends on $x$.
573
574 \subsection{\label{introSection:exactFlow}Exact Flow}
575
576 Let $x(t)$ be the exact solution of the ODE system,
577 \begin{equation}
578 \frac{{dx}}{{dt}} = f(x) \label{introEquation:ODE}
579 \end{equation}
580 The exact flow(solution) $\varphi_\tau$ is defined by
581 \[
582 x(t+\tau) =\varphi_\tau(x(t))
583 \]
584 where $\tau$ is a fixed time step and $\varphi$ is a map from phase
585 space to itself. The flow has the continuous group property,
586 \begin{equation}
587 \varphi _{\tau _1 } \circ \varphi _{\tau _2 } = \varphi _{\tau _1
588 + \tau _2 } .
589 \end{equation}
590 In particular,
591 \begin{equation}
592 \varphi _\tau \circ \varphi _{ - \tau } = I
593 \end{equation}
594 Therefore, the exact flow is self-adjoint,
595 \begin{equation}
596 \varphi _\tau = \varphi _{ - \tau }^{ - 1}.
597 \end{equation}
598 The exact flow can also be written in terms of the of an operator,
599 \begin{equation}
600 \varphi _\tau (x) = e^{\tau \sum\limits_i {f_i (x)\frac{\partial
601 }{{\partial x_i }}} } (x) \equiv \exp (\tau f)(x).
602 \label{introEquation:exponentialOperator}
603 \end{equation}
604
605 In most cases, it is not easy to find the exact flow $\varphi_\tau$.
606 Instead, we use a approximate map, $\psi_\tau$, which is usually
607 called integrator. The order of an integrator $\psi_\tau$ is $p$, if
608 the Taylor series of $\psi_\tau$ agree to order $p$,
609 \begin{equation}
610 \psi_tau(x) = x + \tau f(x) + O(\tau^{p+1})
611 \end{equation}
612
613 \subsection{\label{introSection:geometricProperties}Geometric Properties}
614
615 The hidden geometric properties of ODE and its flow play important
616 roles in numerical studies. Many of them can be found in systems
617 which occur naturally in applications.
618
619 Let $\varphi$ be the flow of Hamiltonian vector field, $\varphi$ is
620 a \emph{symplectic} flow if it satisfies,
621 \begin{equation}
622 {\varphi '}^T J \varphi ' = J.
623 \end{equation}
624 According to Liouville's theorem, the symplectic volume is invariant
625 under a Hamiltonian flow, which is the basis for classical
626 statistical mechanics. Furthermore, the flow of a Hamiltonian vector
627 field on a symplectic manifold can be shown to be a
628 symplectomorphism. As to the Poisson system,
629 \begin{equation}
630 {\varphi '}^T J \varphi ' = J \circ \varphi
631 \end{equation}
632 is the property must be preserved by the integrator.
633
634 It is possible to construct a \emph{volume-preserving} flow for a
635 source free($ \nabla \cdot f = 0 $) ODE, if the flow satisfies $
636 \det d\varphi = 1$. One can show easily that a symplectic flow will
637 be volume-preserving.
638
639 Changing the variables $y = h(x)$ in a ODE\ref{introEquation:ODE}
640 will result in a new system,
641 \[
642 \dot y = \tilde f(y) = ((dh \cdot f)h^{ - 1} )(y).
643 \]
644 The vector filed $f$ has reversing symmetry $h$ if $f = - \tilde f$.
645 In other words, the flow of this vector field is reversible if and
646 only if $ h \circ \varphi ^{ - 1} = \varphi \circ h $.
647
648 A \emph{first integral}, or conserved quantity of a general
649 differential function is a function $ G:R^{2d} \to R^d $ which is
650 constant for all solutions of the ODE $\frac{{dx}}{{dt}} = f(x)$ ,
651 \[
652 \frac{{dG(x(t))}}{{dt}} = 0.
653 \]
654 Using chain rule, one may obtain,
655 \[
656 \sum\limits_i {\frac{{dG}}{{dx_i }}} f_i (x) = f \bullet \nabla G,
657 \]
658 which is the condition for conserving \emph{first integral}. For a
659 canonical Hamiltonian system, the time evolution of an arbitrary
660 smooth function $G$ is given by,
661 \begin{equation}
662 \begin{array}{c}
663 \frac{{dG(x(t))}}{{dt}} = [\nabla _x G(x(t))]^T \dot x(t) \\
664 = [\nabla _x G(x(t))]^T J\nabla _x H(x(t)). \\
665 \end{array}
666 \label{introEquation:firstIntegral1}
667 \end{equation}
668 Using poisson bracket notion, Equation
669 \ref{introEquation:firstIntegral1} can be rewritten as
670 \[
671 \frac{d}{{dt}}G(x(t)) = \left\{ {G,H} \right\}(x(t)).
672 \]
673 Therefore, the sufficient condition for $G$ to be the \emph{first
674 integral} of a Hamiltonian system is
675 \[
676 \left\{ {G,H} \right\} = 0.
677 \]
678 As well known, the Hamiltonian (or energy) H of a Hamiltonian system
679 is a \emph{first integral}, which is due to the fact $\{ H,H\} =
680 0$.
681
682
683 When designing any numerical methods, one should always try to
684 preserve the structural properties of the original ODE and its flow.
685
686 \subsection{\label{introSection:constructionSymplectic}Construction of Symplectic Methods}
687 A lot of well established and very effective numerical methods have
688 been successful precisely because of their symplecticities even
689 though this fact was not recognized when they were first
690 constructed. The most famous example is leapfrog methods in
691 molecular dynamics. In general, symplectic integrators can be
692 constructed using one of four different methods.
693 \begin{enumerate}
694 \item Generating functions
695 \item Variational methods
696 \item Runge-Kutta methods
697 \item Splitting methods
698 \end{enumerate}
699
700 Generating function tends to lead to methods which are cumbersome
701 and difficult to use. In dissipative systems, variational methods
702 can capture the decay of energy accurately. Since their
703 geometrically unstable nature against non-Hamiltonian perturbations,
704 ordinary implicit Runge-Kutta methods are not suitable for
705 Hamiltonian system. Recently, various high-order explicit
706 Runge--Kutta methods have been developed to overcome this
707 instability. However, due to computational penalty involved in
708 implementing the Runge-Kutta methods, they do not attract too much
709 attention from Molecular Dynamics community. Instead, splitting have
710 been widely accepted since they exploit natural decompositions of
711 the system\cite{Tuckerman92}.
712
713 \subsubsection{\label{introSection:splittingMethod}Splitting Method}
714
715 The main idea behind splitting methods is to decompose the discrete
716 $\varphi_h$ as a composition of simpler flows,
717 \begin{equation}
718 \varphi _h = \varphi _{h_1 } \circ \varphi _{h_2 } \ldots \circ
719 \varphi _{h_n }
720 \label{introEquation:FlowDecomposition}
721 \end{equation}
722 where each of the sub-flow is chosen such that each represent a
723 simpler integration of the system.
724
725 Suppose that a Hamiltonian system takes the form,
726 \[
727 H = H_1 + H_2.
728 \]
729 Here, $H_1$ and $H_2$ may represent different physical processes of
730 the system. For instance, they may relate to kinetic and potential
731 energy respectively, which is a natural decomposition of the
732 problem. If $H_1$ and $H_2$ can be integrated using exact flows
733 $\varphi_1(t)$ and $\varphi_2(t)$, respectively, a simple first
734 order is then given by the Lie-Trotter formula
735 \begin{equation}
736 \varphi _h = \varphi _{1,h} \circ \varphi _{2,h},
737 \label{introEquation:firstOrderSplitting}
738 \end{equation}
739 where $\varphi _h$ is the result of applying the corresponding
740 continuous $\varphi _i$ over a time $h$. By definition, as
741 $\varphi_i(t)$ is the exact solution of a Hamiltonian system, it
742 must follow that each operator $\varphi_i(t)$ is a symplectic map.
743 It is easy to show that any composition of symplectic flows yields a
744 symplectic map,
745 \begin{equation}
746 (\varphi '\phi ')^T J\varphi '\phi ' = \phi '^T \varphi '^T J\varphi
747 '\phi ' = \phi '^T J\phi ' = J,
748 \label{introEquation:SymplecticFlowComposition}
749 \end{equation}
750 where $\phi$ and $\psi$ both are symplectic maps. Thus operator
751 splitting in this context automatically generates a symplectic map.
752
753 The Lie-Trotter splitting(\ref{introEquation:firstOrderSplitting})
754 introduces local errors proportional to $h^2$, while Strang
755 splitting gives a second-order decomposition,
756 \begin{equation}
757 \varphi _h = \varphi _{1,h/2} \circ \varphi _{2,h} \circ \varphi
758 _{1,h/2} , \label{introEquation:secondOrderSplitting}
759 \end{equation}
760 which has a local error proportional to $h^3$. Sprang splitting's
761 popularity in molecular simulation community attribute to its
762 symmetric property,
763 \begin{equation}
764 \varphi _h^{ - 1} = \varphi _{ - h}.
765 \label{introEquation:timeReversible}
766 \end{equation}
767
768 \subsubsection{\label{introSection:exampleSplittingMethod}Example of Splitting Method}
769 The classical equation for a system consisting of interacting
770 particles can be written in Hamiltonian form,
771 \[
772 H = T + V
773 \]
774 where $T$ is the kinetic energy and $V$ is the potential energy.
775 Setting $H_1 = T, H_2 = V$ and applying Strang splitting, one
776 obtains the following:
777 \begin{align}
778 q(\Delta t) &= q(0) + \dot{q}(0)\Delta t +
779 \frac{F[q(0)]}{m}\frac{\Delta t^2}{2}, %
780 \label{introEquation:Lp10a} \\%
781 %
782 \dot{q}(\Delta t) &= \dot{q}(0) + \frac{\Delta t}{2m}
783 \biggl [F[q(0)] + F[q(\Delta t)] \biggr]. %
784 \label{introEquation:Lp10b}
785 \end{align}
786 where $F(t)$ is the force at time $t$. This integration scheme is
787 known as \emph{velocity verlet} which is
788 symplectic(\ref{introEquation:SymplecticFlowComposition}),
789 time-reversible(\ref{introEquation:timeReversible}) and
790 volume-preserving (\ref{introEquation:volumePreserving}). These
791 geometric properties attribute to its long-time stability and its
792 popularity in the community. However, the most commonly used
793 velocity verlet integration scheme is written as below,
794 \begin{align}
795 \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) &=
796 \dot{q}(0) + \frac{\Delta t}{2m}\, F[q(0)], \label{introEquation:Lp9a}\\%
797 %
798 q(\Delta t) &= q(0) + \Delta t\, \dot{q}\biggl (\frac{\Delta t}{2}\biggr ),%
799 \label{introEquation:Lp9b}\\%
800 %
801 \dot{q}(\Delta t) &= \dot{q}\biggl (\frac{\Delta t}{2}\biggr ) +
802 \frac{\Delta t}{2m}\, F[q(0)]. \label{introEquation:Lp9c}
803 \end{align}
804 From the preceding splitting, one can see that the integration of
805 the equations of motion would follow:
806 \begin{enumerate}
807 \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
808
809 \item Use the half step velocities to move positions one whole step, $\Delta t$.
810
811 \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
812
813 \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
814 \end{enumerate}
815
816 Simply switching the order of splitting and composing, a new
817 integrator, the \emph{position verlet} integrator, can be generated,
818 \begin{align}
819 \dot q(\Delta t) &= \dot q(0) + \Delta tF(q(0))\left[ {q(0) +
820 \frac{{\Delta t}}{{2m}}\dot q(0)} \right], %
821 \label{introEquation:positionVerlet1} \\%
822 %
823 q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
824 q(\Delta t)} \right]. %
825 \label{introEquation:positionVerlet1}
826 \end{align}
827
828 \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
829
830 Baker-Campbell-Hausdorff formula can be used to determine the local
831 error of splitting method in terms of commutator of the
832 operators(\ref{introEquation:exponentialOperator}) associated with
833 the sub-flow. For operators $hX$ and $hY$ which are associate to
834 $\varphi_1(t)$ and $\varphi_2(t$ respectively , we have
835 \begin{equation}
836 \exp (hX + hY) = \exp (hZ)
837 \end{equation}
838 where
839 \begin{equation}
840 hZ = hX + hY + \frac{{h^2 }}{2}[X,Y] + \frac{{h^3 }}{2}\left(
841 {[X,[X,Y]] + [Y,[Y,X]]} \right) + \ldots .
842 \end{equation}
843 Here, $[X,Y]$ is the commutators of operator $X$ and $Y$ given by
844 \[
845 [X,Y] = XY - YX .
846 \]
847 Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
848 can obtain
849 \begin{eqnarray*}
850 \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
851 [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
852 & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 & & \mbox{} +
853 \ldots )
854 \end{eqnarray*}
855 Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
856 error of Spring splitting is proportional to $h^3$. The same
857 procedure can be applied to general splitting, of the form
858 \begin{equation}
859 \varphi _{b_m h}^2 \circ \varphi _{a_m h}^1 \circ \varphi _{b_{m -
860 1} h}^2 \circ \ldots \circ \varphi _{a_1 h}^1 .
861 \end{equation}
862 Careful choice of coefficient $a_1 ,\ldot , b_m$ will lead to higher
863 order method. Yoshida proposed an elegant way to compose higher
864 order methods based on symmetric splitting. Given a symmetric second
865 order base method $ \varphi _h^{(2)} $, a fourth-order symmetric
866 method can be constructed by composing,
867 \[
868 \varphi _h^{(4)} = \varphi _{\alpha h}^{(2)} \circ \varphi _{\beta
869 h}^{(2)} \circ \varphi _{\alpha h}^{(2)}
870 \]
871 where $ \alpha = - \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$ and $ \beta
872 = \frac{{2^{1/3} }}{{2 - 2^{1/3} }}$. Moreover, a symmetric
873 integrator $ \varphi _h^{(2n + 2)}$ can be composed by
874 \begin{equation}
875 \varphi _h^{(2n + 2)} = \varphi _{\alpha h}^{(2n)} \circ \varphi
876 _{\beta h}^{(2n)} \circ \varphi _{\alpha h}^{(2n)}
877 \end{equation}
878 , if the weights are chosen as
879 \[
880 \alpha = - \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }},\beta =
881 \frac{{2^{1/(2n + 1)} }}{{2 - 2^{1/(2n + 1)} }} .
882 \]
883
884 \section{\label{introSection:molecularDynamics}Molecular Dynamics}
885
886 As a special discipline of molecular modeling, Molecular dynamics
887 has proven to be a powerful tool for studying the functions of
888 biological systems, providing structural, thermodynamic and
889 dynamical information.
890
891 \subsection{\label{introSec:mdInit}Initialization}
892
893 \subsection{\label{introSec:forceEvaluation}Force Evaluation}
894
895 \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
896
897 \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
898
899 Rigid bodies are frequently involved in the modeling of different
900 areas, from engineering, physics, to chemistry. For example,
901 missiles and vehicle are usually modeled by rigid bodies. The
902 movement of the objects in 3D gaming engine or other physics
903 simulator is governed by the rigid body dynamics. In molecular
904 simulation, rigid body is used to simplify the model in
905 protein-protein docking study{\cite{Gray03}}.
906
907 It is very important to develop stable and efficient methods to
908 integrate the equations of motion of orientational degrees of
909 freedom. Euler angles are the nature choice to describe the
910 rotational degrees of freedom. However, due to its singularity, the
911 numerical integration of corresponding equations of motion is very
912 inefficient and inaccurate. Although an alternative integrator using
913 different sets of Euler angles can overcome this difficulty\cite{},
914 the computational penalty and the lost of angular momentum
915 conservation still remain. A singularity free representation
916 utilizing quaternions was developed by Evans in 1977. Unfortunately,
917 this approach suffer from the nonseparable Hamiltonian resulted from
918 quaternion representation, which prevents the symplectic algorithm
919 to be utilized. Another different approach is to apply holonomic
920 constraints to the atoms belonging to the rigid body. Each atom
921 moves independently under the normal forces deriving from potential
922 energy and constraint forces which are used to guarantee the
923 rigidness. However, due to their iterative nature, SHAKE and Rattle
924 algorithm converge very slowly when the number of constraint
925 increases.
926
927 The break through in geometric literature suggests that, in order to
928 develop a long-term integration scheme, one should preserve the
929 symplectic structure of the flow. Introducing conjugate momentum to
930 rotation matrix $A$ and re-formulating Hamiltonian's equation, a
931 symplectic integrator, RSHAKE, was proposed to evolve the
932 Hamiltonian system in a constraint manifold by iteratively
933 satisfying the orthogonality constraint $A_t A = 1$. An alternative
934 method using quaternion representation was developed by Omelyan.
935 However, both of these methods are iterative and inefficient. In
936 this section, we will present a symplectic Lie-Poisson integrator
937 for rigid body developed by Dullweber and his
938 coworkers\cite{Dullweber1997} in depth.
939
940 \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
941 The motion of the rigid body is Hamiltonian with the Hamiltonian
942 function
943 \begin{equation}
944 H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
945 V(q,Q) + \frac{1}{2}tr[(QQ^T - 1)\Lambda ].
946 \label{introEquation:RBHamiltonian}
947 \end{equation}
948 Here, $q$ and $Q$ are the position and rotation matrix for the
949 rigid-body, $p$ and $P$ are conjugate momenta to $q$ and $Q$ , and
950 $J$, a diagonal matrix, is defined by
951 \[
952 I_{ii}^{ - 1} = \frac{1}{2}\sum\limits_{i \ne j} {J_{jj}^{ - 1} }
953 \]
954 where $I_{ii}$ is the diagonal element of the inertia tensor. This
955 constrained Hamiltonian equation subjects to a holonomic constraint,
956 \begin{equation}
957 Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
958 \end{equation}
959 which is used to ensure rotation matrix's orthogonality.
960 Differentiating \ref{introEquation:orthogonalConstraint} and using
961 Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
962 \begin{equation}
963 Q^T PJ^{ - 1} + J^{ - 1} P^T Q = 0 . \\
964 \label{introEquation:RBFirstOrderConstraint}
965 \end{equation}
966
967 Using Equation (\ref{introEquation:motionHamiltonianCoordinate},
968 \ref{introEquation:motionHamiltonianMomentum}), one can write down
969 the equations of motion,
970 \[
971 \begin{array}{c}
972 \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
973 \frac{{dp}}{{dt}} = - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
974 \frac{{dQ}}{{dt}} = PJ^{ - 1} \label{introEquation:RBMotionRotation}\\
975 \frac{{dP}}{{dt}} = - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
976 \end{array}
977 \]
978
979 In general, there are two ways to satisfy the holonomic constraints.
980 We can use constraint force provided by lagrange multiplier on the
981 normal manifold to keep the motion on constraint space. Or we can
982 simply evolve the system in constraint manifold. The two method are
983 proved to be equivalent. The holonomic constraint and equations of
984 motions define a constraint manifold for rigid body
985 \[
986 M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1} + J^{ - 1} P^T Q = 0}
987 \right\}.
988 \]
989
990 Unfortunately, this constraint manifold is not the cotangent bundle
991 $T_{\star}SO(3)$. However, it turns out that under symplectic
992 transformation, the cotangent space and the phase space are
993 diffeomorphic. Introducing
994 \[
995 \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
996 \]
997 the mechanical system subject to a holonomic constraint manifold $M$
998 can be re-formulated as a Hamiltonian system on the cotangent space
999 \[
1000 T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1001 1,\tilde Q^T \tilde PJ^{ - 1} + J^{ - 1} P^T \tilde Q = 0} \right\}
1002 \]
1003
1004 For a body fixed vector $X_i$ with respect to the center of mass of
1005 the rigid body, its corresponding lab fixed vector $X_0^{lab}$ is
1006 given as
1007 \begin{equation}
1008 X_i^{lab} = Q X_i + q.
1009 \end{equation}
1010 Therefore, potential energy $V(q,Q)$ is defined by
1011 \[
1012 V(q,Q) = V(Q X_0 + q).
1013 \]
1014 Hence, the force and torque are given by
1015 \[
1016 \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1017 \]
1018 and
1019 \[
1020 \nabla _Q V(q,Q) = F(q,Q)X_i^t
1021 \]
1022 respectively.
1023
1024 As a common choice to describe the rotation dynamics of the rigid
1025 body, angular momentum on body frame $\Pi = Q^t P$ is introduced to
1026 rewrite the equations of motion,
1027 \begin{equation}
1028 \begin{array}{l}
1029 \mathop \Pi \limits^ \bullet = J^{ - 1} \Pi ^T \Pi + Q^T \sum\limits_i {F_i (q,Q)X_i^T } - \Lambda \\
1030 \mathop Q\limits^{{\rm{ }} \bullet } = Q\Pi {\rm{ }}J^{ - 1} \\
1031 \end{array}
1032 \label{introEqaution:RBMotionPI}
1033 \end{equation}
1034 , as well as holonomic constraints,
1035 \[
1036 \begin{array}{l}
1037 \Pi J^{ - 1} + J^{ - 1} \Pi ^t = 0 \\
1038 Q^T Q = 1 \\
1039 \end{array}
1040 \]
1041
1042 For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1043 so(3)^ \star$, the hat-map isomorphism,
1044 \begin{equation}
1045 v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1046 {\begin{array}{*{20}c}
1047 0 & { - v_3 } & {v_2 } \\
1048 {v_3 } & 0 & { - v_1 } \\
1049 { - v_2 } & {v_1 } & 0 \\
1050 \end{array}} \right),
1051 \label{introEquation:hatmapIsomorphism}
1052 \end{equation}
1053 will let us associate the matrix products with traditional vector
1054 operations
1055 \[
1056 \hat vu = v \times u
1057 \]
1058
1059 Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1060 matrix,
1061 \begin{equation}
1062 (\mathop \Pi \limits^ \bullet - \mathop \Pi \limits^ \bullet ^T
1063 ){\rm{ }} = {\rm{ }}(\Pi - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi + \Pi J^{
1064 - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T - X_i F_i (r,Q)^T Q]} -
1065 (\Lambda - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1066 \end{equation}
1067 Since $\Lambda$ is symmetric, the last term of Equation
1068 \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1069 multiplier $\Lambda$ is absent from the equations of motion. This
1070 unique property eliminate the requirement of iterations which can
1071 not be avoided in other methods\cite{}.
1072
1073 Applying hat-map isomorphism, we obtain the equation of motion for
1074 angular momentum on body frame
1075 \begin{equation}
1076 \dot \pi = \pi \times I^{ - 1} \pi + \sum\limits_i {\left( {Q^T
1077 F_i (r,Q)} \right) \times X_i }.
1078 \label{introEquation:bodyAngularMotion}
1079 \end{equation}
1080 In the same manner, the equation of motion for rotation matrix is
1081 given by
1082 \[
1083 \dot Q = Qskew(I^{ - 1} \pi )
1084 \]
1085
1086 \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1087 Lie-Poisson Integrator for Free Rigid Body}
1088
1089 If there is not external forces exerted on the rigid body, the only
1090 contribution to the rotational is from the kinetic potential (the
1091 first term of \ref{ introEquation:bodyAngularMotion}). The free
1092 rigid body is an example of Lie-Poisson system with Hamiltonian
1093 function
1094 \begin{equation}
1095 T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1096 \label{introEquation:rotationalKineticRB}
1097 \end{equation}
1098 where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1099 Lie-Poisson structure matrix,
1100 \begin{equation}
1101 J(\pi ) = \left( {\begin{array}{*{20}c}
1102 0 & {\pi _3 } & { - \pi _2 } \\
1103 { - \pi _3 } & 0 & {\pi _1 } \\
1104 {\pi _2 } & { - \pi _1 } & 0 \\
1105 \end{array}} \right)
1106 \end{equation}
1107 Thus, the dynamics of free rigid body is governed by
1108 \begin{equation}
1109 \frac{d}{{dt}}\pi = J(\pi )\nabla _\pi T^r (\pi )
1110 \end{equation}
1111
1112 One may notice that each $T_i^r$ in Equation
1113 \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1114 instance, the equations of motion due to $T_1^r$ are given by
1115 \begin{equation}
1116 \frac{d}{{dt}}\pi = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1117 \label{introEqaution:RBMotionSingleTerm}
1118 \end{equation}
1119 where
1120 \[ R_1 = \left( {\begin{array}{*{20}c}
1121 0 & 0 & 0 \\
1122 0 & 0 & {\pi _1 } \\
1123 0 & { - \pi _1 } & 0 \\
1124 \end{array}} \right).
1125 \]
1126 The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1127 \[
1128 \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1129 Q(0)e^{\Delta tR_1 }
1130 \]
1131 with
1132 \[
1133 e^{\Delta tR_1 } = \left( {\begin{array}{*{20}c}
1134 0 & 0 & 0 \\
1135 0 & {\cos \theta _1 } & {\sin \theta _1 } \\
1136 0 & { - \sin \theta _1 } & {\cos \theta _1 } \\
1137 \end{array}} \right),\theta _1 = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1138 \]
1139 To reduce the cost of computing expensive functions in e^{\Delta
1140 tR_1 }, we can use Cayley transformation,
1141 \[
1142 e^{\Delta tR_1 } \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1143 )
1144 \]
1145
1146 The flow maps for $T_2^r$ and $T_2^r$ can be found in the same
1147 manner.
1148
1149 In order to construct a second-order symplectic method, we split the
1150 angular kinetic Hamiltonian function can into five terms
1151 \[
1152 T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1153 ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1154 (\pi _1 )
1155 \].
1156 Concatenating flows corresponding to these five terms, we can obtain
1157 an symplectic integrator,
1158 \[
1159 \varphi _{\Delta t,T^r } = \varphi _{\Delta t/2,\pi _1 } \circ
1160 \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 }
1161 \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi
1162 _1 }.
1163 \]
1164
1165 The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1166 $F(\pi )$ and $G(\pi )$ is defined by
1167 \[
1168 \{ F,G\} (\pi ) = [\nabla _\pi F(\pi )]^T J(\pi )\nabla _\pi G(\pi
1169 )
1170 \]
1171 If the Poisson bracket of a function $F$ with an arbitrary smooth
1172 function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1173 conserved quantity in Poisson system. We can easily verify that the
1174 norm of the angular momentum, $\parallel \pi
1175 \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1176 \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1177 then by the chain rule
1178 \[
1179 \nabla _\pi F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1180 }}{2})\pi
1181 \]
1182 Thus $ [\nabla _\pi F(\pi )]^T J(\pi ) = - S'(\frac{{\parallel \pi
1183 \parallel ^2 }}{2})\pi \times \pi = 0 $. This explicit
1184 Lie-Poisson integrator is found to be extremely efficient and stable
1185 which can be explained by the fact the small angle approximation is
1186 used and the norm of the angular momentum is conserved.
1187
1188 \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1189 Splitting for Rigid Body}
1190
1191 The Hamiltonian of rigid body can be separated in terms of kinetic
1192 energy and potential energy,
1193 \[
1194 H = T(p,\pi ) + V(q,Q)
1195 \]
1196 The equations of motion corresponding to potential energy and
1197 kinetic energy are listed in the below table,
1198 \begin{center}
1199 \begin{tabular}{|l|l|}
1200 \hline
1201 % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1202 Potential & Kinetic \\
1203 $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1204 $\frac{d}{{dt}}p = - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1205 $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1206 $ \frac{d}{{dt}}\pi = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi = \pi \times I^{ - 1} \pi$\\
1207 \hline
1208 \end{tabular}
1209 \end{center}
1210 A second-order symplectic method is now obtained by the composition
1211 of the flow maps,
1212 \[
1213 \varphi _{\Delta t} = \varphi _{\Delta t/2,V} \circ \varphi
1214 _{\Delta t,T} \circ \varphi _{\Delta t/2,V}.
1215 \]
1216 Moreover, \varphi _{\Delta t/2,V} can be divided into two sub-flows
1217 which corresponding to force and torque respectively,
1218 \[
1219 \varphi _{\Delta t/2,V} = \varphi _{\Delta t/2,F} \circ \varphi
1220 _{\Delta t/2,\tau }.
1221 \]
1222 Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1223 $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1224 order inside \varphi _{\Delta t/2,V} does not matter.
1225
1226 Furthermore, kinetic potential can be separated to translational
1227 kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1228 \begin{equation}
1229 T(p,\pi ) =T^t (p) + T^r (\pi ).
1230 \end{equation}
1231 where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1232 defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1233 corresponding flow maps are given by
1234 \[
1235 \varphi _{\Delta t,T} = \varphi _{\Delta t,T^t } \circ \varphi
1236 _{\Delta t,T^r }.
1237 \]
1238 Finally, we obtain the overall symplectic flow maps for free moving
1239 rigid body
1240 \begin{equation}
1241 \begin{array}{c}
1242 \varphi _{\Delta t} = \varphi _{\Delta t/2,F} \circ \varphi _{\Delta t/2,\tau } \\
1243 \circ \varphi _{\Delta t,T^t } \circ \varphi _{\Delta t/2,\pi _1 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi _1 } \\
1244 \circ \varphi _{\Delta t/2,\tau } \circ \varphi _{\Delta t/2,F} .\\
1245 \end{array}
1246 \label{introEquation:overallRBFlowMaps}
1247 \end{equation}
1248
1249 \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1250 As an alternative to newtonian dynamics, Langevin dynamics, which
1251 mimics a simple heat bath with stochastic and dissipative forces,
1252 has been applied in a variety of studies. This section will review
1253 the theory of Langevin dynamics simulation. A brief derivation of
1254 generalized Langevin Dynamics will be given first. Follow that, we
1255 will discuss the physical meaning of the terms appearing in the
1256 equation as well as the calculation of friction tensor from
1257 hydrodynamics theory.
1258
1259 \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
1260
1261 \begin{equation}
1262 H = \frac{{p^2 }}{{2m}} + U(x) + H_B + \Delta U(x,x_1 , \ldots x_N)
1263 \label{introEquation:bathGLE}
1264 \end{equation}
1265 where $H_B$ is harmonic bath Hamiltonian,
1266 \[
1267 H_B =\sum\limits_{\alpha = 1}^N {\left\{ {\frac{{p_\alpha ^2
1268 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha w_\alpha ^2 } \right\}}
1269 \]
1270 and $\Delta U$ is bilinear system-bath coupling,
1271 \[
1272 \Delta U = - \sum\limits_{\alpha = 1}^N {g_\alpha x_\alpha x}
1273 \]
1274 Completing the square,
1275 \[
1276 H_B + \Delta U = \sum\limits_{\alpha = 1}^N {\left\{
1277 {\frac{{p_\alpha ^2 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha
1278 w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha
1279 w_\alpha ^2 }}x} \right)^2 } \right\}} - \sum\limits_{\alpha =
1280 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha w_\alpha ^2 }}} x^2
1281 \]
1282 and putting it back into Eq.~\ref{introEquation:bathGLE},
1283 \[
1284 H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha = 1}^N
1285 {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha }} + \frac{1}{2}m_\alpha
1286 w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha
1287 w_\alpha ^2 }}x} \right)^2 } \right\}}
1288 \]
1289 where
1290 \[
1291 W(x) = U(x) - \sum\limits_{\alpha = 1}^N {\frac{{g_\alpha ^2
1292 }}{{2m_\alpha w_\alpha ^2 }}} x^2
1293 \]
1294 Since the first two terms of the new Hamiltonian depend only on the
1295 system coordinates, we can get the equations of motion for
1296 Generalized Langevin Dynamics by Hamilton's equations
1297 \ref{introEquation:motionHamiltonianCoordinate,
1298 introEquation:motionHamiltonianMomentum},
1299 \begin{align}
1300 \dot p &= - \frac{{\partial H}}{{\partial x}}
1301 &= m\ddot x
1302 &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha = 1}^N {g_\alpha \left( {x_\alpha - \frac{{g_\alpha }}{{m_\alpha w_\alpha ^2 }}x} \right)}
1303 \label{introEquation:Lp5}
1304 \end{align}
1305 , and
1306 \begin{align}
1307 \dot p_\alpha &= - \frac{{\partial H}}{{\partial x_\alpha }}
1308 &= m\ddot x_\alpha
1309 &= \- m_\alpha w_\alpha ^2 \left( {x_\alpha - \frac{{g_\alpha}}{{m_\alpha w_\alpha ^2 }}x} \right)
1310 \end{align}
1311
1312 \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
1313
1314 \[
1315 L(x) = \int_0^\infty {x(t)e^{ - pt} dt}
1316 \]
1317
1318 \[
1319 L(x + y) = L(x) + L(y)
1320 \]
1321
1322 \[
1323 L(ax) = aL(x)
1324 \]
1325
1326 \[
1327 L(\dot x) = pL(x) - px(0)
1328 \]
1329
1330 \[
1331 L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
1332 \]
1333
1334 \[
1335 L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
1336 \]
1337
1338 Some relatively important transformation,
1339 \[
1340 L(\cos at) = \frac{p}{{p^2 + a^2 }}
1341 \]
1342
1343 \[
1344 L(\sin at) = \frac{a}{{p^2 + a^2 }}
1345 \]
1346
1347 \[
1348 L(1) = \frac{1}{p}
1349 \]
1350
1351 First, the bath coordinates,
1352 \[
1353 p^2 L(x_\alpha ) - px_\alpha (0) - \dot x_\alpha (0) = - \omega
1354 _\alpha ^2 L(x_\alpha ) + \frac{{g_\alpha }}{{\omega _\alpha
1355 }}L(x)
1356 \]
1357 \[
1358 L(x_\alpha ) = \frac{{\frac{{g_\alpha }}{{\omega _\alpha }}L(x) +
1359 px_\alpha (0) + \dot x_\alpha (0)}}{{p^2 + \omega _\alpha ^2 }}
1360 \]
1361 Then, the system coordinates,
1362 \begin{align}
1363 mL(\ddot x) &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1364 \sum\limits_{\alpha = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
1365 }}{{\omega _\alpha }}L(x) + px_\alpha (0) + \dot x_\alpha
1366 (0)}}{{p^2 + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
1367 }}\omega _\alpha ^2 L(x)} \right\}}
1368 %
1369 &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1370 \sum\limits_{\alpha = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}\frac{p}{{p^2 + \omega _\alpha ^2 }}pL(x)
1371 - \frac{p}{{p^2 + \omega _\alpha ^2 }}g_\alpha x_\alpha (0)
1372 - \frac{1}{{p^2 + \omega _\alpha ^2 }}g_\alpha \dot x_\alpha (0)} \right\}}
1373 \end{align}
1374 Then, the inverse transform,
1375
1376 \begin{align}
1377 m\ddot x &= - \frac{{\partial W(x)}}{{\partial x}} -
1378 \sum\limits_{\alpha = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
1379 }}{{m_\alpha \omega _\alpha ^2 }}} \right)\int_0^t {\cos (\omega
1380 _\alpha t)\dot x(t - \tau )d\tau - \left[ {g_\alpha x_\alpha (0)
1381 - \frac{{g_\alpha }}{{m_\alpha \omega _\alpha }}} \right]\cos
1382 (\omega _\alpha t) - \frac{{g_\alpha \dot x_\alpha (0)}}{{\omega
1383 _\alpha }}\sin (\omega _\alpha t)} } \right\}}
1384 %
1385 &= - \frac{{\partial W(x)}}{{\partial x}} - \int_0^t
1386 {\sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
1387 }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha
1388 t)\dot x(t - \tau )d} \tau } + \sum\limits_{\alpha = 1}^N {\left\{
1389 {\left[ {g_\alpha x_\alpha (0) - \frac{{g_\alpha }}{{m_\alpha
1390 \omega _\alpha }}} \right]\cos (\omega _\alpha t) +
1391 \frac{{g_\alpha \dot x_\alpha (0)}}{{\omega _\alpha }}\sin
1392 (\omega _\alpha t)} \right\}}
1393 \end{align}
1394
1395 \begin{equation}
1396 m\ddot x = - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1397 (t)\dot x(t - \tau )d\tau } + R(t)
1398 \label{introEuqation:GeneralizedLangevinDynamics}
1399 \end{equation}
1400 %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1401 %$W$ is the potential of mean force. $W(x) = - kT\ln p(x)$
1402 \[
1403 \xi (t) = \sum\limits_{\alpha = 1}^N {\left( { - \frac{{g_\alpha ^2
1404 }}{{m_\alpha \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha t)}
1405 \]
1406 For an infinite harmonic bath, we can use the spectral density and
1407 an integral over frequencies.
1408
1409 \[
1410 R(t) = \sum\limits_{\alpha = 1}^N {\left( {g_\alpha x_\alpha (0)
1411 - \frac{{g_\alpha ^2 }}{{m_\alpha \omega _\alpha ^2 }}x(0)}
1412 \right)\cos (\omega _\alpha t)} + \frac{{\dot x_\alpha
1413 (0)}}{{\omega _\alpha }}\sin (\omega _\alpha t)
1414 \]
1415 The random forces depend only on initial conditions.
1416
1417 \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1418 So we can define a new set of coordinates,
1419 \[
1420 q_\alpha (t) = x_\alpha (t) - \frac{1}{{m_\alpha \omega _\alpha
1421 ^2 }}x(0)
1422 \]
1423 This makes
1424 \[
1425 R(t) = \sum\limits_{\alpha = 1}^N {g_\alpha q_\alpha (t)}
1426 \]
1427 And since the $q$ coordinates are harmonic oscillators,
1428 \[
1429 \begin{array}{l}
1430 \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha t) \\
1431 \left\langle {q_\alpha (t)q_\beta (0)} \right\rangle = \delta _{\alpha \beta } \left\langle {q_\alpha (t)q_\alpha (0)} \right\rangle \\
1432 \end{array}
1433 \]
1434
1435 \begin{align}
1436 \left\langle {R(t)R(0)} \right\rangle &= \sum\limits_\alpha
1437 {\sum\limits_\beta {g_\alpha g_\beta \left\langle {q_\alpha
1438 (t)q_\beta (0)} \right\rangle } }
1439 %
1440 &= \sum\limits_\alpha {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
1441 \right\rangle \cos (\omega _\alpha t)}
1442 %
1443 &= kT\xi (t)
1444 \end{align}
1445
1446 \begin{equation}
1447 \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1448 \label{introEquation:secondFluctuationDissipation}
1449 \end{equation}
1450
1451 \subsection{\label{introSection:frictionTensor} Friction Tensor}
1452 Theoretically, the friction kernel can be determined using velocity
1453 autocorrelation function. However, this approach become impractical
1454 when the system become more and more complicate. Instead, various
1455 approaches based on hydrodynamics have been developed to calculate
1456 the friction coefficients. The friction effect is isotropic in
1457 Equation, \zeta can be taken as a scalar. In general, friction
1458 tensor \Xi is a $6\times 6$ matrix given by
1459 \[
1460 \Xi = \left( {\begin{array}{*{20}c}
1461 {\Xi _{}^{tt} } & {\Xi _{}^{rt} } \\
1462 {\Xi _{}^{tr} } & {\Xi _{}^{rr} } \\
1463 \end{array}} \right).
1464 \]
1465 Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1466 tensor and rotational resistance (friction) tensor respectively,
1467 while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1468 {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1469 particle moves in a fluid, it may experience friction force or
1470 torque along the opposite direction of the velocity or angular
1471 velocity,
1472 \[
1473 \left( \begin{array}{l}
1474 F_R \\
1475 \tau _R \\
1476 \end{array} \right) = - \left( {\begin{array}{*{20}c}
1477 {\Xi ^{tt} } & {\Xi ^{rt} } \\
1478 {\Xi ^{tr} } & {\Xi ^{rr} } \\
1479 \end{array}} \right)\left( \begin{array}{l}
1480 v \\
1481 w \\
1482 \end{array} \right)
1483 \]
1484 where $F_r$ is the friction force and $\tau _R$ is the friction
1485 toque.
1486
1487 \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1488
1489 For a spherical particle, the translational and rotational friction
1490 constant can be calculated from Stoke's law,
1491 \[
1492 \Xi ^{tt} = \left( {\begin{array}{*{20}c}
1493 {6\pi \eta R} & 0 & 0 \\
1494 0 & {6\pi \eta R} & 0 \\
1495 0 & 0 & {6\pi \eta R} \\
1496 \end{array}} \right)
1497 \]
1498 and
1499 \[
1500 \Xi ^{rr} = \left( {\begin{array}{*{20}c}
1501 {8\pi \eta R^3 } & 0 & 0 \\
1502 0 & {8\pi \eta R^3 } & 0 \\
1503 0 & 0 & {8\pi \eta R^3 } \\
1504 \end{array}} \right)
1505 \]
1506 where $\eta$ is the viscosity of the solvent and $R$ is the
1507 hydrodynamics radius.
1508
1509 Other non-spherical shape, such as cylinder and ellipsoid
1510 \textit{etc}, are widely used as reference for developing new
1511 hydrodynamics theory, because their properties can be calculated
1512 exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1513 also called a triaxial ellipsoid, which is given in Cartesian
1514 coordinates by
1515 \[
1516 \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1517 }} = 1
1518 \]
1519 where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1520 due to the complexity of the elliptic integral, only the ellipsoid
1521 with the restriction of two axes having to be equal, \textit{i.e.}
1522 prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1523 exactly. Introducing an elliptic integral parameter $S$ for prolate,
1524 \[
1525 S = \frac{2}{{\sqrt {a^2 - b^2 } }}\ln \frac{{a + \sqrt {a^2 - b^2
1526 } }}{b},
1527 \]
1528 and oblate,
1529 \[
1530 S = \frac{2}{{\sqrt {b^2 - a^2 } }}arctg\frac{{\sqrt {b^2 - a^2 }
1531 }}{a}
1532 \],
1533 one can write down the translational and rotational resistance
1534 tensors
1535 \[
1536 \begin{array}{l}
1537 \Xi _a^{tt} = 16\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - b^2 )S - 2a}} \\
1538 \Xi _b^{tt} = \Xi _c^{tt} = 32\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - 3b^2 )S + 2a}} \\
1539 \end{array},
1540 \]
1541 and
1542 \[
1543 \begin{array}{l}
1544 \Xi _a^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^2 - b^2 )b^2 }}{{2a - b^2 S}} \\
1545 \Xi _b^{rr} = \Xi _c^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^4 - b^4 )}}{{(2a^2 - b^2 )S - 2a}} \\
1546 \end{array}.
1547 \]
1548
1549 \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1550
1551 Unlike spherical and other regular shaped molecules, there is not
1552 analytical solution for friction tensor of any arbitrary shaped
1553 rigid molecules. The ellipsoid of revolution model and general
1554 triaxial ellipsoid model have been used to approximate the
1555 hydrodynamic properties of rigid bodies. However, since the mapping
1556 from all possible ellipsoidal space, $r$-space, to all possible
1557 combination of rotational diffusion coefficients, $D$-space is not
1558 unique\cite{Wegener79} as well as the intrinsic coupling between
1559 translational and rotational motion of rigid body\cite{}, general
1560 ellipsoid is not always suitable for modeling arbitrarily shaped
1561 rigid molecule. A number of studies have been devoted to determine
1562 the friction tensor for irregularly shaped rigid bodies using more
1563 advanced method\cite{} where the molecule of interest was modeled by
1564 combinations of spheres(beads)\cite{} and the hydrodynamics
1565 properties of the molecule can be calculated using the hydrodynamic
1566 interaction tensor. Let us consider a rigid assembly of $N$ beads
1567 immersed in a continuous medium. Due to hydrodynamics interaction,
1568 the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1569 unperturbed velocity $v_i$,
1570 \[
1571 v'_i = v_i - \sum\limits_{j \ne i} {T_{ij} F_j }
1572 \]
1573 where $F_i$ is the frictional force, and $T_{ij}$ is the
1574 hydrodynamic interaction tensor. The friction force of $i$th bead is
1575 proportional to its ``net'' velocity
1576 \begin{equation}
1577 F_i = \zeta _i v_i - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1578 \label{introEquation:tensorExpression}
1579 \end{equation}
1580 This equation is the basis for deriving the hydrodynamic tensor. In
1581 1930, Oseen and Burgers gave a simple solution to Equation
1582 \ref{introEquation:tensorExpression}
1583 \begin{equation}
1584 T_{ij} = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1585 R_{ij}^T }}{{R_{ij}^2 }}} \right).
1586 \label{introEquation:oseenTensor}
1587 \end{equation}
1588 Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1589 A second order expression for element of different size was
1590 introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1591 la Torre and Bloomfield,
1592 \begin{equation}
1593 T_{ij} = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1594 \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1595 _i^2 + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1596 \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1597 \label{introEquation:RPTensorNonOverlapped}
1598 \end{equation}
1599 Both of the Equation \ref{introEquation:oseenTensor} and Equation
1600 \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1601 \ge \sigma _i + \sigma _j$. An alternative expression for
1602 overlapping beads with the same radius, $\sigma$, is given by
1603 \begin{equation}
1604 T_{ij} = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1605 \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1606 \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1607 \label{introEquation:RPTensorOverlapped}
1608 \end{equation}
1609
1610 To calculate the resistance tensor at an arbitrary origin $O$, we
1611 construct a $3N \times 3N$ matrix consisting of $N \times N$
1612 $B_{ij}$ blocks
1613 \begin{equation}
1614 B = \left( {\begin{array}{*{20}c}
1615 {B_{11} } & \ldots & {B_{1N} } \\
1616 \vdots & \ddots & \vdots \\
1617 {B_{N1} } & \cdots & {B_{NN} } \\
1618 \end{array}} \right),
1619 \end{equation}
1620 where $B_{ij}$ is given by
1621 \[
1622 B_{ij} = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1623 )T_{ij}
1624 \]
1625 where \delta _{ij} is Kronecker delta function. Inverting matrix
1626 $B$, we obtain
1627
1628 \[
1629 C = B^{ - 1} = \left( {\begin{array}{*{20}c}
1630 {C_{11} } & \ldots & {C_{1N} } \\
1631 \vdots & \ddots & \vdots \\
1632 {C_{N1} } & \cdots & {C_{NN} } \\
1633 \end{array}} \right)
1634 \]
1635 , which can be partitioned into $N \times N$ $3 \times 3$ block
1636 $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1637 \[
1638 U_i = \left( {\begin{array}{*{20}c}
1639 0 & { - z_i } & {y_i } \\
1640 {z_i } & 0 & { - x_i } \\
1641 { - y_i } & {x_i } & 0 \\
1642 \end{array}} \right)
1643 \]
1644 where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1645 bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1646 arbitrary origin $O$ can be written as
1647 \begin{equation}
1648 \begin{array}{l}
1649 \Xi _{}^{tt} = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1650 \Xi _{}^{tr} = \Xi _{}^{rt} = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1651 \Xi _{}^{rr} = - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j \\
1652 \end{array}
1653 \label{introEquation:ResistanceTensorArbitraryOrigin}
1654 \end{equation}
1655
1656 The resistance tensor depends on the origin to which they refer. The
1657 proper location for applying friction force is the center of
1658 resistance (reaction), at which the trace of rotational resistance
1659 tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1660 resistance is defined as an unique point of the rigid body at which
1661 the translation-rotation coupling tensor are symmetric,
1662 \begin{equation}
1663 \Xi^{tr} = \left( {\Xi^{tr} } \right)^T
1664 \label{introEquation:definitionCR}
1665 \end{equation}
1666 Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
1667 we can easily find out that the translational resistance tensor is
1668 origin independent, while the rotational resistance tensor and
1669 translation-rotation coupling resistance tensor do depend on the
1670 origin. Given resistance tensor at an arbitrary origin $O$, and a
1671 vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
1672 obtain the resistance tensor at $P$ by
1673 \begin{equation}
1674 \begin{array}{l}
1675 \Xi _P^{tt} = \Xi _O^{tt} \\
1676 \Xi _P^{tr} = \Xi _P^{rt} = \Xi _O^{tr} - U_{OP} \Xi _O^{tt} \\
1677 \Xi _P^{rr} = \Xi _O^{rr} - U_{OP} \Xi _O^{tt} U_{OP} + \Xi _O^{tr} U_{OP} - U_{OP} \Xi _O^{tr} ^{^T } \\
1678 \end{array}
1679 \label{introEquation:resistanceTensorTransformation}
1680 \end{equation}
1681 where
1682 \[
1683 U_{OP} = \left( {\begin{array}{*{20}c}
1684 0 & { - z_{OP} } & {y_{OP} } \\
1685 {z_i } & 0 & { - x_{OP} } \\
1686 { - y_{OP} } & {x_{OP} } & 0 \\
1687 \end{array}} \right)
1688 \]
1689 Using Equations \ref{introEquation:definitionCR} and
1690 \ref{introEquation:resistanceTensorTransformation}, one can locate
1691 the position of center of resistance,
1692 \[
1693 \left( \begin{array}{l}
1694 x_{OR} \\
1695 y_{OR} \\
1696 z_{OR} \\
1697 \end{array} \right) = \left( {\begin{array}{*{20}c}
1698 {(\Xi _O^{rr} )_{yy} + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} } \\
1699 { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz} + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} } \\
1700 { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx} + (\Xi _O^{rr} )_{yy} } \\
1701 \end{array}} \right)^{ - 1} \left( \begin{array}{l}
1702 (\Xi _O^{tr} )_{yz} - (\Xi _O^{tr} )_{zy} \\
1703 (\Xi _O^{tr} )_{zx} - (\Xi _O^{tr} )_{xz} \\
1704 (\Xi _O^{tr} )_{xy} - (\Xi _O^{tr} )_{yx} \\
1705 \end{array} \right).
1706 \]
1707 where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
1708 joining center of resistance $R$ and origin $O$.
1709
1710 %\section{\label{introSection:correlationFunctions}Correlation Functions}