ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Introduction.tex
(Generate patch)

Comparing trunk/tengDissertation/Introduction.tex (file contents):
Revision 2706 by tim, Thu Apr 13 04:47:47 2006 UTC vs.
Revision 2776 by tim, Thu May 25 21:32:14 2006 UTC

# Line 570 | Line 570 | The free rigid body is an example of Poisson system (a
570   \dot x = J(x)\nabla _x H \label{introEquation:poissonHamiltonian}
571   \end{equation}
572   The most obvious change being that matrix $J$ now depends on $x$.
573 The free rigid body is an example of Poisson system (actually a
574 Lie-Poisson system) with Hamiltonian function of angular kinetic
575 energy.
576 \begin{equation}
577 J(\pi ) = \left( {\begin{array}{*{20}c}
578   0 & {\pi _3 } & { - \pi _2 }  \\
579   { - \pi _3 } & 0 & {\pi _1 }  \\
580   {\pi _2 } & { - \pi _1 } & 0  \\
581 \end{array}} \right)
582 \end{equation}
573  
584 \begin{equation}
585 H = \frac{1}{2}\left( {\frac{{\pi _1^2 }}{{I_1 }} + \frac{{\pi _2^2
586 }}{{I_2 }} + \frac{{\pi _3^2 }}{{I_3 }}} \right)
587 \end{equation}
588
574   \subsection{\label{introSection:exactFlow}Exact Flow}
575  
576   Let $x(t)$ be the exact solution of the ODE system,
# Line 837 | Line 822 | q(\Delta t)} \right]. %
822   %
823   q(\Delta t) &= q(0) + \frac{{\Delta t}}{2}\left[ {\dot q(0) + \dot
824   q(\Delta t)} \right]. %
825 < \label{introEquation:positionVerlet1}
825 > \label{introEquation:positionVerlet2}
826   \end{align}
827  
828   \subsubsection{\label{introSection:errorAnalysis}Error Analysis and Higher Order Methods}
# Line 846 | Line 831 | $\varphi_1(t)$ and $\varphi_2(t$ respectively , we hav
831   error of splitting method in terms of commutator of the
832   operators(\ref{introEquation:exponentialOperator}) associated with
833   the sub-flow. For operators $hX$ and $hY$ which are associate to
834 < $\varphi_1(t)$ and $\varphi_2(t$ respectively , we have
834 > $\varphi_1(t)$ and $\varphi_2(t)$ respectively , we have
835   \begin{equation}
836   \exp (hX + hY) = \exp (hZ)
837   \end{equation}
# Line 861 | Line 846 | can obtain
846   \]
847   Applying Baker-Campbell-Hausdorff formula to Sprang splitting, we
848   can obtain
849 < \begin{eqnarray*}
849 > \begin{equation}
850   \exp (h X/2)\exp (h Y)\exp (h X/2) & = & \exp (h X + h Y + h^2
851   [X,Y]/4 + h^2 [Y,X]/4 \\ & & \mbox{} + h^2 [X,X]/8 + h^2 [Y,Y]/8 \\
852   & & \mbox{} + h^3 [Y,[Y,X]]/12 - h^3 [X,[X,Y]]/24 & & \mbox{} +
853   \ldots )
854 < \end{eqnarray*}
854 > \end{equation}
855   Since \[ [X,Y] + [Y,X] = 0\] and \[ [X,X] = 0\], the dominant local
856   error of Spring splitting is proportional to $h^3$. The same
857   procedure can be applied to general splitting,  of the form
# Line 898 | Line 883 | As a special discipline of molecular modeling, Molecul
883  
884   \section{\label{introSection:molecularDynamics}Molecular Dynamics}
885  
886 < As a special discipline of molecular modeling, Molecular dynamics
887 < has proven to be a powerful tool for studying the functions of
888 < biological systems, providing structural, thermodynamic and
889 < dynamical information.
886 > As one of the principal tools of molecular modeling, Molecular
887 > dynamics has proven to be a powerful tool for studying the functions
888 > of biological systems, providing structural, thermodynamic and
889 > dynamical information. The basic idea of molecular dynamics is that
890 > macroscopic properties are related to microscopic behavior and
891 > microscopic behavior can be calculated from the trajectories in
892 > simulations. For instance, instantaneous temperature of an
893 > Hamiltonian system of $N$ particle can be measured by
894 > \[
895 > T = \sum\limits_{i = 1}^N {\frac{{m_i v_i^2 }}{{fk_B }}}
896 > \]
897 > where $m_i$ and $v_i$ are the mass and velocity of $i$th particle
898 > respectively, $f$ is the number of degrees of freedom, and $k_B$ is
899 > the boltzman constant.
900  
901 < \subsection{\label{introSec:mdInit}Initialization}
902 <
903 < \subsection{\label{introSec:forceEvaluation}Force Evaluation}
901 > A typical molecular dynamics run consists of three essential steps:
902 > \begin{enumerate}
903 >  \item Initialization
904 >    \begin{enumerate}
905 >    \item Preliminary preparation
906 >    \item Minimization
907 >    \item Heating
908 >    \item Equilibration
909 >    \end{enumerate}
910 >  \item Production
911 >  \item Analysis
912 > \end{enumerate}
913 > These three individual steps will be covered in the following
914 > sections. Sec.~\ref{introSec:initialSystemSettings} deals with the
915 > initialization of a simulation. Sec.~\ref{introSec:production} will
916 > discusses issues in production run. Sec.~\ref{introSection:Analysis}
917 > provides the theoretical tools for trajectory analysis.
918  
919 < \subsection{\label{introSection:mdIntegration} Integration of the Equations of Motion}
919 > \subsection{\label{introSec:initialSystemSettings}Initialization}
920  
921 + \subsubsection{Preliminary preparation}
922 +
923 + When selecting the starting structure of a molecule for molecular
924 + simulation, one may retrieve its Cartesian coordinates from public
925 + databases, such as RCSB Protein Data Bank \textit{etc}. Although
926 + thousands of crystal structures of molecules are discovered every
927 + year, many more remain unknown due to the difficulties of
928 + purification and crystallization. Even for the molecule with known
929 + structure, some important information is missing. For example, the
930 + missing hydrogen atom which acts as donor in hydrogen bonding must
931 + be added. Moreover, in order to include electrostatic interaction,
932 + one may need to specify the partial charges for individual atoms.
933 + Under some circumstances, we may even need to prepare the system in
934 + a special setup. For instance, when studying transport phenomenon in
935 + membrane system, we may prepare the lipids in bilayer structure
936 + instead of placing lipids randomly in solvent, since we are not
937 + interested in self-aggregation and it takes a long time to happen.
938 +
939 + \subsubsection{Minimization}
940 +
941 + It is quite possible that some of molecules in the system from
942 + preliminary preparation may be overlapped with each other. This
943 + close proximity leads to high potential energy which consequently
944 + jeopardizes any molecular dynamics simulations. To remove these
945 + steric overlaps, one typically performs energy minimization to find
946 + a more reasonable conformation. Several energy minimization methods
947 + have been developed to exploit the energy surface and to locate the
948 + local minimum. While converging slowly near the minimum, steepest
949 + descent method is extremely robust when systems are far from
950 + harmonic. Thus, it is often used to refine structure from
951 + crystallographic data. Relied on the gradient or hessian, advanced
952 + methods like conjugate gradient and Newton-Raphson converge rapidly
953 + to a local minimum, while become unstable if the energy surface is
954 + far from quadratic. Another factor must be taken into account, when
955 + choosing energy minimization method, is the size of the system.
956 + Steepest descent and conjugate gradient can deal with models of any
957 + size. Because of the limit of computation power to calculate hessian
958 + matrix and insufficient storage capacity to store them, most
959 + Newton-Raphson methods can not be used with very large models.
960 +
961 + \subsubsection{Heating}
962 +
963 + Typically, Heating is performed by assigning random velocities
964 + according to a Gaussian distribution for a temperature. Beginning at
965 + a lower temperature and gradually increasing the temperature by
966 + assigning greater random velocities, we end up with setting the
967 + temperature of the system to a final temperature at which the
968 + simulation will be conducted. In heating phase, we should also keep
969 + the system from drifting or rotating as a whole. Equivalently, the
970 + net linear momentum and angular momentum of the system should be
971 + shifted to zero.
972 +
973 + \subsubsection{Equilibration}
974 +
975 + The purpose of equilibration is to allow the system to evolve
976 + spontaneously for a period of time and reach equilibrium. The
977 + procedure is continued until various statistical properties, such as
978 + temperature, pressure, energy, volume and other structural
979 + properties \textit{etc}, become independent of time. Strictly
980 + speaking, minimization and heating are not necessary, provided the
981 + equilibration process is long enough. However, these steps can serve
982 + as a means to arrive at an equilibrated structure in an effective
983 + way.
984 +
985 + \subsection{\label{introSection:production}Production}
986 +
987 + Production run is the most important steps of the simulation, in
988 + which the equilibrated structure is used as a starting point and the
989 + motions of the molecules are collected for later analysis. In order
990 + to capture the macroscopic properties of the system, the molecular
991 + dynamics simulation must be performed in correct and efficient way.
992 +
993 + The most expensive part of a molecular dynamics simulation is the
994 + calculation of non-bonded forces, such as van der Waals force and
995 + Coulombic forces \textit{etc}. For a system of $N$ particles, the
996 + complexity of the algorithm for pair-wise interactions is $O(N^2 )$,
997 + which making large simulations prohibitive in the absence of any
998 + computation saving techniques.
999 +
1000 + A natural approach to avoid system size issue is to represent the
1001 + bulk behavior by a finite number of the particles. However, this
1002 + approach will suffer from the surface effect. To offset this,
1003 + \textit{Periodic boundary condition} is developed to simulate bulk
1004 + properties with a relatively small number of particles. In this
1005 + method, the simulation box is replicated throughout space to form an
1006 + infinite lattice. During the simulation, when a particle moves in
1007 + the primary cell, its image in other cells move in exactly the same
1008 + direction with exactly the same orientation. Thus, as a particle
1009 + leaves the primary cell, one of its images will enter through the
1010 + opposite face.
1011 + %\begin{figure}
1012 + %\centering
1013 + %\includegraphics[width=\linewidth]{pbcFig.eps}
1014 + %\caption[An illustration of periodic boundary conditions]{A 2-D
1015 + %illustration of periodic boundary conditions. As one particle leaves
1016 + %the right of the simulation box, an image of it enters the left.}
1017 + %\label{introFig:pbc}
1018 + %\end{figure}
1019 +
1020 + %cutoff and minimum image convention
1021 + Another important technique to improve the efficiency of force
1022 + evaluation is to apply cutoff where particles farther than a
1023 + predetermined distance, are not included in the calculation
1024 + \cite{Frenkel1996}. The use of a cutoff radius will cause a
1025 + discontinuity in the potential energy curve. Fortunately, one can
1026 + shift the potential to ensure the potential curve go smoothly to
1027 + zero at the cutoff radius. Cutoff strategy works pretty well for
1028 + Lennard-Jones interaction because of its short range nature.
1029 + However, simply truncating the electrostatic interaction with the
1030 + use of cutoff has been shown to lead to severe artifacts in
1031 + simulations. Ewald summation, in which the slowly conditionally
1032 + convergent Coulomb potential is transformed into direct and
1033 + reciprocal sums with rapid and absolute convergence, has proved to
1034 + minimize the periodicity artifacts in liquid simulations. Taking the
1035 + advantages of the fast Fourier transform (FFT) for calculating
1036 + discrete Fourier transforms, the particle mesh-based methods are
1037 + accelerated from $O(N^{3/2})$ to $O(N logN)$. An alternative
1038 + approach is \emph{fast multipole method}, which treats Coulombic
1039 + interaction exactly at short range, and approximate the potential at
1040 + long range through multipolar expansion. In spite of their wide
1041 + acceptances at the molecular simulation community, these two methods
1042 + are hard to be implemented correctly and efficiently. Instead, we
1043 + use a damped and charge-neutralized Coulomb potential method
1044 + developed by Wolf and his coworkers. The shifted Coulomb potential
1045 + for particle $i$ and particle $j$ at distance $r_{rj}$ is given by:
1046 + \begin{equation}
1047 + V(r_{ij})= \frac{q_i q_j \textrm{erfc}(\alpha
1048 + r_{ij})}{r_{ij}}-\lim_{r_{ij}\rightarrow
1049 + R_\textrm{c}}\left\{\frac{q_iq_j \textrm{erfc}(\alpha
1050 + r_{ij})}{r_{ij}}\right\}. \label{introEquation:shiftedCoulomb}
1051 + \end{equation}
1052 + where $\alpha$ is the convergence parameter. Due to the lack of
1053 + inherent periodicity and rapid convergence,this method is extremely
1054 + efficient and easy to implement.
1055 + %\begin{figure}
1056 + %\centering
1057 + %\includegraphics[width=\linewidth]{pbcFig.eps}
1058 + %\caption[An illustration of shifted Coulomb potential]{An illustration of shifted Coulomb potential.}
1059 + %\label{introFigure:shiftedCoulomb}
1060 + %\end{figure}
1061 +
1062 + %multiple time step
1063 +
1064 + \subsection{\label{introSection:Analysis} Analysis}
1065 +
1066 + Recently, advanced visualization technique are widely applied to
1067 + monitor the motions of molecules. Although the dynamics of the
1068 + system can be described qualitatively from animation, quantitative
1069 + trajectory analysis are more appreciable. According to the
1070 + principles of Statistical Mechanics,
1071 + Sec.~\ref{introSection:statisticalMechanics}, one can compute
1072 + thermodynamics properties, analyze fluctuations of structural
1073 + parameters, and investigate time-dependent processes of the molecule
1074 + from the trajectories.
1075 +
1076 + \subsubsection{\label{introSection:thermodynamicsProperties}Thermodynamics Properties}
1077 +
1078 + Thermodynamics properties, which can be expressed in terms of some
1079 + function of the coordinates and momenta of all particles in the
1080 + system, can be directly computed from molecular dynamics. The usual
1081 + way to measure the pressure is based on virial theorem of Clausius
1082 + which states that the virial is equal to $-3Nk_BT$. For a system
1083 + with forces between particles, the total virial, $W$, contains the
1084 + contribution from external pressure and interaction between the
1085 + particles:
1086 + \[
1087 + W =  - 3PV + \left\langle {\sum\limits_{i < j} {r{}_{ij} \cdot
1088 + f_{ij} } } \right\rangle
1089 + \]
1090 + where $f_{ij}$ is the force between particle $i$ and $j$ at a
1091 + distance $r_{ij}$. Thus, the expression for the pressure is given
1092 + by:
1093 + \begin{equation}
1094 + P = \frac{{Nk_B T}}{V} - \frac{1}{{3V}}\left\langle {\sum\limits_{i
1095 + < j} {r{}_{ij} \cdot f_{ij} } } \right\rangle
1096 + \end{equation}
1097 +
1098 + \subsubsection{\label{introSection:structuralProperties}Structural Properties}
1099 +
1100 + Structural Properties of a simple fluid can be described by a set of
1101 + distribution functions. Among these functions,\emph{pair
1102 + distribution function}, also known as \emph{radial distribution
1103 + function}, is of most fundamental importance to liquid-state theory.
1104 + Pair distribution function can be gathered by Fourier transforming
1105 + raw data from a series of neutron diffraction experiments and
1106 + integrating over the surface factor \cite{Powles73}. The experiment
1107 + result can serve as a criterion to justify the correctness of the
1108 + theory. Moreover, various equilibrium thermodynamic and structural
1109 + properties can also be expressed in terms of radial distribution
1110 + function \cite{allen87:csl}.
1111 +
1112 + A pair distribution functions $g(r)$ gives the probability that a
1113 + particle $i$ will be located at a distance $r$ from a another
1114 + particle $j$ in the system
1115 + \[
1116 + g(r) = \frac{V}{{N^2 }}\left\langle {\sum\limits_i {\sum\limits_{j
1117 + \ne i} {\delta (r - r_{ij} )} } } \right\rangle.
1118 + \]
1119 + Note that the delta function can be replaced by a histogram in
1120 + computer simulation. Figure
1121 + \ref{introFigure:pairDistributionFunction} shows a typical pair
1122 + distribution function for the liquid argon system. The occurrence of
1123 + several peaks in the plot of $g(r)$ suggests that it is more likely
1124 + to find particles at certain radial values than at others. This is a
1125 + result of the attractive interaction at such distances. Because of
1126 + the strong repulsive forces at short distance, the probability of
1127 + locating particles at distances less than about 2.5{\AA} from each
1128 + other is essentially zero.
1129 +
1130 + %\begin{figure}
1131 + %\centering
1132 + %\includegraphics[width=\linewidth]{pdf.eps}
1133 + %\caption[Pair distribution function for the liquid argon
1134 + %]{Pair distribution function for the liquid argon}
1135 + %\label{introFigure:pairDistributionFunction}
1136 + %\end{figure}
1137 +
1138 + \subsubsection{\label{introSection:timeDependentProperties}Time-dependent
1139 + Properties}
1140 +
1141 + Time-dependent properties are usually calculated using \emph{time
1142 + correlation function}, which correlates random variables $A$ and $B$
1143 + at two different time
1144 + \begin{equation}
1145 + C_{AB} (t) = \left\langle {A(t)B(0)} \right\rangle.
1146 + \label{introEquation:timeCorrelationFunction}
1147 + \end{equation}
1148 + If $A$ and $B$ refer to same variable, this kind of correlation
1149 + function is called \emph{auto correlation function}. One example of
1150 + auto correlation function is velocity auto-correlation function
1151 + which is directly related to transport properties of molecular
1152 + liquids:
1153 + \[
1154 + D = \frac{1}{3}\int\limits_0^\infty  {\left\langle {v(t) \cdot v(0)}
1155 + \right\rangle } dt
1156 + \]
1157 + where $D$ is diffusion constant. Unlike velocity autocorrelation
1158 + function which is averaging over time origins and over all the
1159 + atoms, dipole autocorrelation are calculated for the entire system.
1160 + The dipole autocorrelation function is given by:
1161 + \[
1162 + c_{dipole}  = \left\langle {u_{tot} (t) \cdot u_{tot} (t)}
1163 + \right\rangle
1164 + \]
1165 + Here $u_{tot}$ is the net dipole of the entire system and is given
1166 + by
1167 + \[
1168 + u_{tot} (t) = \sum\limits_i {u_i (t)}
1169 + \]
1170 + In principle, many time correlation functions can be related with
1171 + Fourier transforms of the infrared, Raman, and inelastic neutron
1172 + scattering spectra of molecular liquids. In practice, one can
1173 + extract the IR spectrum from the intensity of dipole fluctuation at
1174 + each frequency using the following relationship:
1175 + \[
1176 + \hat c_{dipole} (v) = \int_{ - \infty }^\infty  {c_{dipole} (t)e^{ -
1177 + i2\pi vt} dt}
1178 + \]
1179 +
1180   \section{\label{introSection:rigidBody}Dynamics of Rigid Bodies}
1181  
1182   Rigid bodies are frequently involved in the modeling of different
# Line 942 | Line 1210 | rotation matrix $A$ and re-formulating Hamiltonian's e
1210   The break through in geometric literature suggests that, in order to
1211   develop a long-term integration scheme, one should preserve the
1212   symplectic structure of the flow. Introducing conjugate momentum to
1213 < rotation matrix $A$ and re-formulating Hamiltonian's equation, a
1213 > rotation matrix $Q$ and re-formulating Hamiltonian's equation, a
1214   symplectic integrator, RSHAKE, was proposed to evolve the
1215   Hamiltonian system in a constraint manifold by iteratively
1216 < satisfying the orthogonality constraint $A_t A = 1$. An alternative
1216 > satisfying the orthogonality constraint $Q_T Q = 1$. An alternative
1217   method using quaternion representation was developed by Omelyan.
1218   However, both of these methods are iterative and inefficient. In
1219   this section, we will present a symplectic Lie-Poisson integrator
1220 < for rigid body developed by Dullweber and his coworkers\cite{}.
1220 > for rigid body developed by Dullweber and his
1221 > coworkers\cite{Dullweber1997} in depth.
1222  
954 \subsection{\label{introSection:lieAlgebra}Lie Algebra}
955
1223   \subsection{\label{introSection:constrainedHamiltonianRB}Constrained Hamiltonian for Rigid Body}
1224 <
1224 > The motion of the rigid body is Hamiltonian with the Hamiltonian
1225 > function
1226   \begin{equation}
1227   H = \frac{1}{2}(p^T m^{ - 1} p) + \frac{1}{2}tr(PJ^{ - 1} P) +
1228   V(q,Q) + \frac{1}{2}tr[(QQ^T  - 1)\Lambda ].
# Line 969 | Line 1237 | Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
1237   where $I_{ii}$ is the diagonal element of the inertia tensor. This
1238   constrained Hamiltonian equation subjects to a holonomic constraint,
1239   \begin{equation}
1240 < Q^T Q = 1$, \label{introEquation:orthogonalConstraint}
1240 > Q^T Q = 1, \label{introEquation:orthogonalConstraint}
1241   \end{equation}
1242   which is used to ensure rotation matrix's orthogonality.
1243   Differentiating \ref{introEquation:orthogonalConstraint} and using
1244   Equation \ref{introEquation:RBMotionMomentum}, one may obtain,
1245   \begin{equation}
1246 < Q^t PJ^{ - 1}  + J^{ - 1} P^t Q = 0 . \\
1246 > Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0 . \\
1247   \label{introEquation:RBFirstOrderConstraint}
1248   \end{equation}
1249  
# Line 987 | Line 1255 | the equations of motion,
1255   \frac{{dq}}{{dt}} = \frac{p}{m} \label{introEquation:RBMotionPosition}\\
1256   \frac{{dp}}{{dt}} =  - \nabla _q V(q,Q) \label{introEquation:RBMotionMomentum}\\
1257   \frac{{dQ}}{{dt}} = PJ^{ - 1}  \label{introEquation:RBMotionRotation}\\
1258 < \frac{{dP}}{{dt}} =  - \nabla _q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
1258 > \frac{{dP}}{{dt}} =  - \nabla _Q V(q,Q) - 2Q\Lambda . \label{introEquation:RBMotionP}\\
1259   \end{array}
1260   \]
1261  
1262 <
1262 > In general, there are two ways to satisfy the holonomic constraints.
1263 > We can use constraint force provided by lagrange multiplier on the
1264 > normal manifold to keep the motion on constraint space. Or we can
1265 > simply evolve the system in constraint manifold. These two methods
1266 > are proved to be equivalent. The holonomic constraint and equations
1267 > of motions define a constraint manifold for rigid body
1268   \[
1269 < M = \left\{ {(Q,P):Q^T Q = 1,Q^t PJ^{ - 1}  + J^{ - 1} P^t Q = 0}
1270 < \right\} .
1269 > M = \left\{ {(Q,P):Q^T Q = 1,Q^T PJ^{ - 1}  + J^{ - 1} P^T Q = 0}
1270 > \right\}.
1271   \]
1272  
1273 < \subsection{\label{introSection:DLMMotionEquation}The Euler Equations of Rigid Body Motion}
1274 <
1275 < \subsection{\label{introSection:symplecticDiscretizationRB}Symplectic Discretization of Euler Equations}
1276 <
1004 <
1005 < \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1006 <
1007 < \subsection{\label{introSection:LDIntroduction}Introduction and application of Langevin Dynamics}
1008 <
1009 < \subsection{\label{introSection:generalizedLangevinDynamics}Generalized Langevin Dynamics}
1010 <
1011 < \begin{equation}
1012 < H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1013 < \label{introEquation:bathGLE}
1014 < \end{equation}
1015 < where $H_B$ is harmonic bath Hamiltonian,
1273 > Unfortunately, this constraint manifold is not the cotangent bundle
1274 > $T_{\star}SO(3)$. However, it turns out that under symplectic
1275 > transformation, the cotangent space and the phase space are
1276 > diffeomorphic. Introducing
1277   \[
1278 < H_B  =\sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1018 < }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  w_\alpha ^2 } \right\}}
1278 > \tilde Q = Q,\tilde P = \frac{1}{2}\left( {P - QP^T Q} \right),
1279   \]
1280 < and $\Delta U$ is bilinear system-bath coupling,
1280 > the mechanical system subject to a holonomic constraint manifold $M$
1281 > can be re-formulated as a Hamiltonian system on the cotangent space
1282   \[
1283 < \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1283 > T^* SO(3) = \left\{ {(\tilde Q,\tilde P):\tilde Q^T \tilde Q =
1284 > 1,\tilde Q^T \tilde PJ^{ - 1}  + J^{ - 1} P^T \tilde Q = 0} \right\}
1285   \]
1286 < Completing the square,
1286 >
1287 > For a body fixed vector $X_i$ with respect to the center of mass of
1288 > the rigid body, its corresponding lab fixed vector $X_0^{lab}$  is
1289 > given as
1290 > \begin{equation}
1291 > X_i^{lab} = Q X_i + q.
1292 > \end{equation}
1293 > Therefore, potential energy $V(q,Q)$ is defined by
1294   \[
1295 < H_B  + \Delta U = \sum\limits_{\alpha  = 1}^N {\left\{
1027 < {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1028 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1029 < w_\alpha ^2 }}x} \right)^2 } \right\}}  - \sum\limits_{\alpha  =
1030 < 1}^N {\frac{{g_\alpha ^2 }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1295 > V(q,Q) = V(Q X_0 + q).
1296   \]
1297 < and putting it back into Eq.~\ref{introEquation:bathGLE},
1297 > Hence, the force and torque are given by
1298   \[
1299 < H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1035 < {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1036 < w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1037 < w_\alpha ^2 }}x} \right)^2 } \right\}}
1299 > \nabla _q V(q,Q) = F(q,Q) = \sum\limits_i {F_i (q,Q)},
1300   \]
1301 < where
1301 > and
1302   \[
1303 < W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1042 < }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1303 > \nabla _Q V(q,Q) = F(q,Q)X_i^t
1304   \]
1305 < Since the first two terms of the new Hamiltonian depend only on the
1045 < system coordinates, we can get the equations of motion for
1046 < Generalized Langevin Dynamics by Hamilton's equations
1047 < \ref{introEquation:motionHamiltonianCoordinate,
1048 < introEquation:motionHamiltonianMomentum},
1049 < \begin{align}
1050 < \dot p &=  - \frac{{\partial H}}{{\partial x}}
1051 <       &= m\ddot x
1052 <       &= - \frac{{\partial W(x)}}{{\partial x}} - \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)}
1053 < \label{introEquation:Lp5}
1054 < \end{align}
1055 < , and
1056 < \begin{align}
1057 < \dot p_\alpha   &=  - \frac{{\partial H}}{{\partial x_\alpha  }}
1058 <                &= m\ddot x_\alpha
1059 <                &= \- m_\alpha  w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha}}{{m_\alpha  w_\alpha ^2 }}x} \right)
1060 < \end{align}
1305 > respectively.
1306  
1307 < \subsection{\label{introSection:laplaceTransform}The Laplace Transform}
1308 <
1307 > As a common choice to describe the rotation dynamics of the rigid
1308 > body, angular momentum on body frame $\Pi  = Q^t P$ is introduced to
1309 > rewrite the equations of motion,
1310 > \begin{equation}
1311 > \begin{array}{l}
1312 > \mathop \Pi \limits^ \bullet   = J^{ - 1} \Pi ^T \Pi  + Q^T \sum\limits_i {F_i (q,Q)X_i^T }  - \Lambda  \\
1313 > \mathop Q\limits^{{\rm{   }} \bullet }  = Q\Pi {\rm{ }}J^{ - 1}  \\
1314 > \end{array}
1315 > \label{introEqaution:RBMotionPI}
1316 > \end{equation}
1317 > , as well as holonomic constraints,
1318   \[
1319 < L(x) = \int_0^\infty  {x(t)e^{ - pt} dt}
1319 > \begin{array}{l}
1320 > \Pi J^{ - 1}  + J^{ - 1} \Pi ^t  = 0 \\
1321 > Q^T Q = 1 \\
1322 > \end{array}
1323   \]
1324  
1325 + For a vector $v(v_1 ,v_2 ,v_3 ) \in R^3$ and a matrix $\hat v \in
1326 + so(3)^ \star$, the hat-map isomorphism,
1327 + \begin{equation}
1328 + v(v_1 ,v_2 ,v_3 ) \Leftrightarrow \hat v = \left(
1329 + {\begin{array}{*{20}c}
1330 +   0 & { - v_3 } & {v_2 }  \\
1331 +   {v_3 } & 0 & { - v_1 }  \\
1332 +   { - v_2 } & {v_1 } & 0  \\
1333 + \end{array}} \right),
1334 + \label{introEquation:hatmapIsomorphism}
1335 + \end{equation}
1336 + will let us associate the matrix products with traditional vector
1337 + operations
1338   \[
1339 < L(x + y) = L(x) + L(y)
1339 > \hat vu = v \times u
1340   \]
1341  
1342 + Using \ref{introEqaution:RBMotionPI}, one can construct a skew
1343 + matrix,
1344 + \begin{equation}
1345 + (\mathop \Pi \limits^ \bullet   - \mathop \Pi \limits^ \bullet  ^T
1346 + ){\rm{ }} = {\rm{ }}(\Pi  - \Pi ^T ){\rm{ }}(J^{ - 1} \Pi  + \Pi J^{
1347 + - 1} ) + \sum\limits_i {[Q^T F_i (r,Q)X_i^T  - X_i F_i (r,Q)^T Q]} -
1348 + (\Lambda  - \Lambda ^T ) . \label{introEquation:skewMatrixPI}
1349 + \end{equation}
1350 + Since $\Lambda$ is symmetric, the last term of Equation
1351 + \ref{introEquation:skewMatrixPI} is zero, which implies the Lagrange
1352 + multiplier $\Lambda$ is absent from the equations of motion. This
1353 + unique property eliminate the requirement of iterations which can
1354 + not be avoided in other methods\cite{}.
1355 +
1356 + Applying hat-map isomorphism, we obtain the equation of motion for
1357 + angular momentum on body frame
1358 + \begin{equation}
1359 + \dot \pi  = \pi  \times I^{ - 1} \pi  + \sum\limits_i {\left( {Q^T
1360 + F_i (r,Q)} \right) \times X_i }.
1361 + \label{introEquation:bodyAngularMotion}
1362 + \end{equation}
1363 + In the same manner, the equation of motion for rotation matrix is
1364 + given by
1365   \[
1366 < L(ax) = aL(x)
1366 > \dot Q = Qskew(I^{ - 1} \pi )
1367   \]
1368  
1369 + \subsection{\label{introSection:SymplecticFreeRB}Symplectic
1370 + Lie-Poisson Integrator for Free Rigid Body}
1371 +
1372 + If there is not external forces exerted on the rigid body, the only
1373 + contribution to the rotational is from the kinetic potential (the
1374 + first term of \ref{ introEquation:bodyAngularMotion}). The free
1375 + rigid body is an example of Lie-Poisson system with Hamiltonian
1376 + function
1377 + \begin{equation}
1378 + T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1379 + \label{introEquation:rotationalKineticRB}
1380 + \end{equation}
1381 + where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1382 + Lie-Poisson structure matrix,
1383 + \begin{equation}
1384 + J(\pi ) = \left( {\begin{array}{*{20}c}
1385 +   0 & {\pi _3 } & { - \pi _2 }  \\
1386 +   { - \pi _3 } & 0 & {\pi _1 }  \\
1387 +   {\pi _2 } & { - \pi _1 } & 0  \\
1388 + \end{array}} \right)
1389 + \end{equation}
1390 + Thus, the dynamics of free rigid body is governed by
1391 + \begin{equation}
1392 + \frac{d}{{dt}}\pi  = J(\pi )\nabla _\pi  T^r (\pi )
1393 + \end{equation}
1394 +
1395 + One may notice that each $T_i^r$ in Equation
1396 + \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1397 + instance, the equations of motion due to $T_1^r$ are given by
1398 + \begin{equation}
1399 + \frac{d}{{dt}}\pi  = R_1 \pi ,\frac{d}{{dt}}Q = QR_1
1400 + \label{introEqaution:RBMotionSingleTerm}
1401 + \end{equation}
1402 + where
1403 + \[ R_1  = \left( {\begin{array}{*{20}c}
1404 +   0 & 0 & 0  \\
1405 +   0 & 0 & {\pi _1 }  \\
1406 +   0 & { - \pi _1 } & 0  \\
1407 + \end{array}} \right).
1408 + \]
1409 + The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1410   \[
1411 < L(\dot x) = pL(x) - px(0)
1411 > \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),Q(\Delta t) =
1412 > Q(0)e^{\Delta tR_1 }
1413   \]
1414 <
1414 > with
1415   \[
1416 < L(\ddot x) = p^2 L(x) - px(0) - \dot x(0)
1416 > e^{\Delta tR_1 }  = \left( {\begin{array}{*{20}c}
1417 >   0 & 0 & 0  \\
1418 >   0 & {\cos \theta _1 } & {\sin \theta _1 }  \\
1419 >   0 & { - \sin \theta _1 } & {\cos \theta _1 }  \\
1420 > \end{array}} \right),\theta _1  = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1421   \]
1422 <
1422 > To reduce the cost of computing expensive functions in $e^{\Delta
1423 > tR_1 }$, we can use Cayley transformation,
1424   \[
1425 < L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p)
1425 > e^{\Delta tR_1 }  \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1426 > )
1427   \]
1428 + The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1429 + manner.
1430  
1431 < Some relatively important transformation,
1431 > In order to construct a second-order symplectic method, we split the
1432 > angular kinetic Hamiltonian function can into five terms
1433   \[
1434 < L(\cos at) = \frac{p}{{p^2  + a^2 }}
1434 > T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1435 > ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1436 > (\pi _1 )
1437 > \].
1438 > Concatenating flows corresponding to these five terms, we can obtain
1439 > an symplectic integrator,
1440 > \[
1441 > \varphi _{\Delta t,T^r }  = \varphi _{\Delta t/2,\pi _1 }  \circ
1442 > \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }
1443 > \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi
1444 > _1 }.
1445   \]
1446  
1447 + The non-canonical Lie-Poisson bracket ${F, G}$ of two function
1448 + $F(\pi )$ and $G(\pi )$ is defined by
1449   \[
1450 < L(\sin at) = \frac{a}{{p^2  + a^2 }}
1450 > \{ F,G\} (\pi ) = [\nabla _\pi  F(\pi )]^T J(\pi )\nabla _\pi  G(\pi
1451 > )
1452   \]
1453 <
1453 > If the Poisson bracket of a function $F$ with an arbitrary smooth
1454 > function $G$ is zero, $F$ is a \emph{Casimir}, which is the
1455 > conserved quantity in Poisson system. We can easily verify that the
1456 > norm of the angular momentum, $\parallel \pi
1457 > \parallel$, is a \emph{Casimir}. Let$ F(\pi ) = S(\frac{{\parallel
1458 > \pi \parallel ^2 }}{2})$ for an arbitrary function $ S:R \to R$ ,
1459 > then by the chain rule
1460   \[
1461 < L(1) = \frac{1}{p}
1461 > \nabla _\pi  F(\pi ) = S'(\frac{{\parallel \pi \parallel ^2
1462 > }}{2})\pi
1463   \]
1464 + Thus $ [\nabla _\pi  F(\pi )]^T J(\pi ) =  - S'(\frac{{\parallel \pi
1465 + \parallel ^2 }}{2})\pi  \times \pi  = 0 $. This explicit
1466 + Lie-Poisson integrator is found to be extremely efficient and stable
1467 + which can be explained by the fact the small angle approximation is
1468 + used and the norm of the angular momentum is conserved.
1469  
1470 < First, the bath coordinates,
1470 > \subsection{\label{introSection:RBHamiltonianSplitting} Hamiltonian
1471 > Splitting for Rigid Body}
1472 >
1473 > The Hamiltonian of rigid body can be separated in terms of kinetic
1474 > energy and potential energy,
1475   \[
1476 < p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega
1104 < _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha
1105 < }}L(x)
1476 > H = T(p,\pi ) + V(q,Q)
1477   \]
1478 < \[
1479 < L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) +
1480 < px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }}
1478 > The equations of motion corresponding to potential energy and
1479 > kinetic energy are listed in the below table,
1480 > \begin{table}
1481 > \caption{Equations of motion due to Potential and Kinetic Energies}
1482 > \begin{center}
1483 > \begin{tabular}{|l|l|}
1484 >  \hline
1485 >  % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1486 >  Potential & Kinetic \\
1487 >  $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1488 >  $\frac{d}{{dt}}p =  - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1489 >  $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1490 >  $ \frac{d}{{dt}}\pi  = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi  = \pi  \times I^{ - 1} \pi$\\
1491 >  \hline
1492 > \end{tabular}
1493 > \end{center}
1494 > \end{table}
1495 > A second-order symplectic method is now obtained by the
1496 > composition of the flow maps,
1497 > \[
1498 > \varphi _{\Delta t}  = \varphi _{\Delta t/2,V}  \circ \varphi
1499 > _{\Delta t,T}  \circ \varphi _{\Delta t/2,V}.
1500   \]
1501 < Then, the system coordinates,
1502 < \begin{align}
1503 < mL(\ddot x) &=  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1504 < \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{\frac{{g_\alpha
1505 < }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha
1506 < (0)}}{{p^2  + \omega _\alpha ^2 }} - \frac{{g_\alpha ^2 }}{{m_\alpha
1507 < }}\omega _\alpha ^2 L(x)} \right\}}
1508 < %
1509 < &= - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} -
1120 < \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x)
1121 < - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0)
1122 < - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}
1123 < \end{align}
1124 < Then, the inverse transform,
1501 > Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
1502 > sub-flows which corresponding to force and torque respectively,
1503 > \[
1504 > \varphi _{\Delta t/2,V}  = \varphi _{\Delta t/2,F}  \circ \varphi
1505 > _{\Delta t/2,\tau }.
1506 > \]
1507 > Since the associated operators of $\varphi _{\Delta t/2,F} $ and
1508 > $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
1509 > order inside $\varphi _{\Delta t/2,V}$ does not matter.
1510  
1511 + Furthermore, kinetic potential can be separated to translational
1512 + kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
1513 + \begin{equation}
1514 + T(p,\pi ) =T^t (p) + T^r (\pi ).
1515 + \end{equation}
1516 + where $ T^t (p) = \frac{1}{2}p^T m^{ - 1} p $ and $T^r (\pi )$ is
1517 + defined by \ref{introEquation:rotationalKineticRB}. Therefore, the
1518 + corresponding flow maps are given by
1519 + \[
1520 + \varphi _{\Delta t,T}  = \varphi _{\Delta t,T^t }  \circ \varphi
1521 + _{\Delta t,T^r }.
1522 + \]
1523 + Finally, we obtain the overall symplectic flow maps for free moving
1524 + rigid body
1525 + \begin{equation}
1526 + \begin{array}{c}
1527 + \varphi _{\Delta t}  = \varphi _{\Delta t/2,F}  \circ \varphi _{\Delta t/2,\tau }  \\
1528 +  \circ \varphi _{\Delta t,T^t }  \circ \varphi _{\Delta t/2,\pi _1 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t,\pi _3 }  \circ \varphi _{\Delta t/2,\pi _2 }  \circ \varphi _{\Delta t/2,\pi _1 }  \\
1529 +  \circ \varphi _{\Delta t/2,\tau }  \circ \varphi _{\Delta t/2,F}  .\\
1530 + \end{array}
1531 + \label{introEquation:overallRBFlowMaps}
1532 + \end{equation}
1533 +
1534 + \section{\label{introSection:langevinDynamics}Langevin Dynamics}
1535 + As an alternative to newtonian dynamics, Langevin dynamics, which
1536 + mimics a simple heat bath with stochastic and dissipative forces,
1537 + has been applied in a variety of studies. This section will review
1538 + the theory of Langevin dynamics simulation. A brief derivation of
1539 + generalized Langevin equation will be given first. Follow that, we
1540 + will discuss the physical meaning of the terms appearing in the
1541 + equation as well as the calculation of friction tensor from
1542 + hydrodynamics theory.
1543 +
1544 + \subsection{\label{introSection:generalizedLangevinDynamics}Derivation of Generalized Langevin Equation}
1545 +
1546 + Harmonic bath model, in which an effective set of harmonic
1547 + oscillators are used to mimic the effect of a linearly responding
1548 + environment, has been widely used in quantum chemistry and
1549 + statistical mechanics. One of the successful applications of
1550 + Harmonic bath model is the derivation of Deriving Generalized
1551 + Langevin Dynamics. Lets consider a system, in which the degree of
1552 + freedom $x$ is assumed to couple to the bath linearly, giving a
1553 + Hamiltonian of the form
1554 + \begin{equation}
1555 + H = \frac{{p^2 }}{{2m}} + U(x) + H_B  + \Delta U(x,x_1 , \ldots x_N)
1556 + \label{introEquation:bathGLE}.
1557 + \end{equation}
1558 + Here $p$ is a momentum conjugate to $q$, $m$ is the mass associated
1559 + with this degree of freedom, $H_B$ is harmonic bath Hamiltonian,
1560 + \[
1561 + H_B  = \sum\limits_{\alpha  = 1}^N {\left\{ {\frac{{p_\alpha ^2
1562 + }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha  \omega _\alpha ^2 }
1563 + \right\}}
1564 + \]
1565 + where the index $\alpha$ runs over all the bath degrees of freedom,
1566 + $\omega _\alpha$ are the harmonic bath frequencies, $m_\alpha$ are
1567 + the harmonic bath masses, and $\Delta U$ is bilinear system-bath
1568 + coupling,
1569 + \[
1570 + \Delta U =  - \sum\limits_{\alpha  = 1}^N {g_\alpha  x_\alpha  x}
1571 + \]
1572 + where $g_\alpha$ are the coupling constants between the bath and the
1573 + coordinate $x$. Introducing
1574 + \[
1575 + W(x) = U(x) - \sum\limits_{\alpha  = 1}^N {\frac{{g_\alpha ^2
1576 + }}{{2m_\alpha  w_\alpha ^2 }}} x^2
1577 + \] and combining the last two terms in Equation
1578 + \ref{introEquation:bathGLE}, we may rewrite the Harmonic bath
1579 + Hamiltonian as
1580 + \[
1581 + H = \frac{{p^2 }}{{2m}} + W(x) + \sum\limits_{\alpha  = 1}^N
1582 + {\left\{ {\frac{{p_\alpha ^2 }}{{2m_\alpha  }} + \frac{1}{2}m_\alpha
1583 + w_\alpha ^2 \left( {x_\alpha   - \frac{{g_\alpha  }}{{m_\alpha
1584 + w_\alpha ^2 }}x} \right)^2 } \right\}}
1585 + \]
1586 + Since the first two terms of the new Hamiltonian depend only on the
1587 + system coordinates, we can get the equations of motion for
1588 + Generalized Langevin Dynamics by Hamilton's equations
1589 + \ref{introEquation:motionHamiltonianCoordinate,
1590 + introEquation:motionHamiltonianMomentum},
1591 + \begin{equation}
1592 + m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} -
1593 + \sum\limits_{\alpha  = 1}^N {g_\alpha  \left( {x_\alpha   -
1594 + \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right)},
1595 + \label{introEquation:coorMotionGLE}
1596 + \end{equation}
1597 + and
1598 + \begin{equation}
1599 + m\ddot x_\alpha   =  - m_\alpha  w_\alpha ^2 \left( {x_\alpha   -
1600 + \frac{{g_\alpha  }}{{m_\alpha  w_\alpha ^2 }}x} \right).
1601 + \label{introEquation:bathMotionGLE}
1602 + \end{equation}
1603 +
1604 + In order to derive an equation for $x$, the dynamics of the bath
1605 + variables $x_\alpha$ must be solved exactly first. As an integral
1606 + transform which is particularly useful in solving linear ordinary
1607 + differential equations, Laplace transform is the appropriate tool to
1608 + solve this problem. The basic idea is to transform the difficult
1609 + differential equations into simple algebra problems which can be
1610 + solved easily. Then applying inverse Laplace transform, also known
1611 + as the Bromwich integral, we can retrieve the solutions of the
1612 + original problems.
1613 +
1614 + Let $f(t)$ be a function defined on $ [0,\infty ) $. The Laplace
1615 + transform of f(t) is a new function defined as
1616 + \[
1617 + L(f(t)) \equiv F(p) = \int_0^\infty  {f(t)e^{ - pt} dt}
1618 + \]
1619 + where  $p$ is real and  $L$ is called the Laplace Transform
1620 + Operator. Below are some important properties of Laplace transform
1621 + \begin{equation}
1622 + \begin{array}{c}
1623 + L(x + y) = L(x) + L(y) \\
1624 + L(ax) = aL(x) \\
1625 + L(\dot x) = pL(x) - px(0) \\
1626 + L(\ddot x) = p^2 L(x) - px(0) - \dot x(0) \\
1627 + L\left( {\int_0^t {g(t - \tau )h(\tau )d\tau } } \right) = G(p)H(p) \\
1628 + \end{array}
1629 + \end{equation}
1630 +
1631 + Applying Laplace transform to the bath coordinates, we obtain
1632 + \[
1633 + \begin{array}{c}
1634 + p^2 L(x_\alpha  ) - px_\alpha  (0) - \dot x_\alpha  (0) =  - \omega _\alpha ^2 L(x_\alpha  ) + \frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) \\
1635 + L(x_\alpha  ) = \frac{{\frac{{g_\alpha  }}{{\omega _\alpha  }}L(x) + px_\alpha  (0) + \dot x_\alpha  (0)}}{{p^2  + \omega _\alpha ^2 }} \\
1636 + \end{array}
1637 + \]
1638 + By the same way, the system coordinates become
1639 + \[
1640 + \begin{array}{c}
1641 + mL(\ddot x) =  - \frac{1}{p}\frac{{\partial W(x)}}{{\partial x}} \\
1642 +  - \sum\limits_{\alpha  = 1}^N {\left\{ { - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}\frac{p}{{p^2  + \omega _\alpha ^2 }}pL(x) - \frac{p}{{p^2  + \omega _\alpha ^2 }}g_\alpha  x_\alpha  (0) - \frac{1}{{p^2  + \omega _\alpha ^2 }}g_\alpha  \dot x_\alpha  (0)} \right\}}  \\
1643 + \end{array}
1644 + \]
1645 +
1646 + With the help of some relatively important inverse Laplace
1647 + transformations:
1648 + \[
1649 + \begin{array}{c}
1650 + L(\cos at) = \frac{p}{{p^2  + a^2 }} \\
1651 + L(\sin at) = \frac{a}{{p^2  + a^2 }} \\
1652 + L(1) = \frac{1}{p} \\
1653 + \end{array}
1654 + \]
1655 + , we obtain
1656   \begin{align}
1657   m\ddot x &=  - \frac{{\partial W(x)}}{{\partial x}} -
1658   \sum\limits_{\alpha  = 1}^N {\left\{ {\left( { - \frac{{g_\alpha ^2
# Line 1142 | Line 1672 | t)\dot x(t - \tau )d} \tau }  + \sum\limits_{\alpha  =
1672   (\omega _\alpha  t)} \right\}}
1673   \end{align}
1674  
1675 + Introducing a \emph{dynamic friction kernel}
1676   \begin{equation}
1677 + \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1678 + }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1679 + \label{introEquation:dynamicFrictionKernelDefinition}
1680 + \end{equation}
1681 + and \emph{a random force}
1682 + \begin{equation}
1683 + R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1684 + - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1685 + \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1686 + (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t),
1687 + \label{introEquation:randomForceDefinition}
1688 + \end{equation}
1689 + the equation of motion can be rewritten as
1690 + \begin{equation}
1691   m\ddot x =  - \frac{{\partial W}}{{\partial x}} - \int_0^t {\xi
1692   (t)\dot x(t - \tau )d\tau }  + R(t)
1693   \label{introEuqation:GeneralizedLangevinDynamics}
1694   \end{equation}
1695 < %where $ {\xi (t)}$ is friction kernel, $R(t)$ is random force and
1696 < %$W$ is the potential of mean force. $W(x) =  - kT\ln p(x)$
1695 > which is known as the \emph{generalized Langevin equation}.
1696 >
1697 > \subsubsection{\label{introSection:randomForceDynamicFrictionKernel}Random Force and Dynamic Friction Kernel}
1698 >
1699 > One may notice that $R(t)$ depends only on initial conditions, which
1700 > implies it is completely deterministic within the context of a
1701 > harmonic bath. However, it is easy to verify that $R(t)$ is totally
1702 > uncorrelated to $x$ and $\dot x$,
1703   \[
1704 < \xi (t) = \sum\limits_{\alpha  = 1}^N {\left( { - \frac{{g_\alpha ^2
1705 < }}{{m_\alpha  \omega _\alpha ^2 }}} \right)\cos (\omega _\alpha  t)}
1704 > \begin{array}{l}
1705 > \left\langle {x(t)R(t)} \right\rangle  = 0, \\
1706 > \left\langle {\dot x(t)R(t)} \right\rangle  = 0. \\
1707 > \end{array}
1708   \]
1709 < For an infinite harmonic bath, we can use the spectral density and
1710 < an integral over frequencies.
1709 > This property is what we expect from a truly random process. As long
1710 > as the model, which is gaussian distribution in general, chosen for
1711 > $R(t)$ is a truly random process, the stochastic nature of the GLE
1712 > still remains.
1713  
1714 + %dynamic friction kernel
1715 + The convolution integral
1716   \[
1717 < R(t) = \sum\limits_{\alpha  = 1}^N {\left( {g_\alpha  x_\alpha  (0)
1161 < - \frac{{g_\alpha ^2 }}{{m_\alpha  \omega _\alpha ^2 }}x(0)}
1162 < \right)\cos (\omega _\alpha  t)}  + \frac{{\dot x_\alpha
1163 < (0)}}{{\omega _\alpha  }}\sin (\omega _\alpha  t)
1717 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }
1718   \]
1719 < The random forces depend only on initial conditions.
1719 > depends on the entire history of the evolution of $x$, which implies
1720 > that the bath retains memory of previous motions. In other words,
1721 > the bath requires a finite time to respond to change in the motion
1722 > of the system. For a sluggish bath which responds slowly to changes
1723 > in the system coordinate, we may regard $\xi(t)$ as a constant
1724 > $\xi(t) = \Xi_0$. Hence, the convolution integral becomes
1725 > \[
1726 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = \xi _0 (x(t) - x(0))
1727 > \]
1728 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1729 > \[
1730 > m\ddot x =  - \frac{\partial }{{\partial x}}\left( {W(x) +
1731 > \frac{1}{2}\xi _0 (x - x_0 )^2 } \right) + R(t),
1732 > \]
1733 > which can be used to describe dynamic caging effect. The other
1734 > extreme is the bath that responds infinitely quickly to motions in
1735 > the system. Thus, $\xi (t)$ can be taken as a $delta$ function in
1736 > time:
1737 > \[
1738 > \xi (t) = 2\xi _0 \delta (t)
1739 > \]
1740 > Hence, the convolution integral becomes
1741 > \[
1742 > \int_0^t {\xi (t)\dot x(t - \tau )d\tau }  = 2\xi _0 \int_0^t
1743 > {\delta (t)\dot x(t - \tau )d\tau }  = \xi _0 \dot x(t),
1744 > \]
1745 > and Equation \ref{introEuqation:GeneralizedLangevinDynamics} becomes
1746 > \begin{equation}
1747 > m\ddot x =  - \frac{{\partial W(x)}}{{\partial x}} - \xi _0 \dot
1748 > x(t) + R(t) \label{introEquation:LangevinEquation}
1749 > \end{equation}
1750 > which is known as the Langevin equation. The static friction
1751 > coefficient $\xi _0$ can either be calculated from spectral density
1752 > or be determined by Stokes' law for regular shaped particles.A
1753 > briefly review on calculating friction tensor for arbitrary shaped
1754 > particles is given in Sec.~\ref{introSection:frictionTensor}.
1755  
1756   \subsubsection{\label{introSection:secondFluctuationDissipation}The Second Fluctuation Dissipation Theorem}
1757 < So we can define a new set of coordinates,
1757 >
1758 > Defining a new set of coordinates,
1759   \[
1760   q_\alpha  (t) = x_\alpha  (t) - \frac{1}{{m_\alpha  \omega _\alpha
1761   ^2 }}x(0)
1762 < \]
1763 < This makes
1762 > \],
1763 > we can rewrite $R(T)$ as
1764   \[
1765 < R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}
1765 > R(t) = \sum\limits_{\alpha  = 1}^N {g_\alpha  q_\alpha  (t)}.
1766   \]
1767   And since the $q$ coordinates are harmonic oscillators,
1768   \[
1769 < \begin{array}{l}
1769 > \begin{array}{c}
1770 > \left\langle {q_\alpha ^2 } \right\rangle  = \frac{{kT}}{{m_\alpha  \omega _\alpha ^2 }} \\
1771   \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  = \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t) \\
1772   \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle  = \delta _{\alpha \beta } \left\langle {q_\alpha  (t)q_\alpha  (0)} \right\rangle  \\
1773 + \left\langle {R(t)R(0)} \right\rangle  = \sum\limits_\alpha  {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha  (t)q_\beta  (0)} \right\rangle } }  \\
1774 +  = \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)} \right\rangle \cos (\omega _\alpha  t)}  \\
1775 +  = kT\xi (t) \\
1776   \end{array}
1777   \]
1778 + Thus, we recover the \emph{second fluctuation dissipation theorem}
1779 + \begin{equation}
1780 + \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1781 + \label{introEquation:secondFluctuationDissipation}.
1782 + \end{equation}
1783 + In effect, it acts as a constraint on the possible ways in which one
1784 + can model the random force and friction kernel.
1785  
1786 < \begin{align}
1787 < \left\langle {R(t)R(0)} \right\rangle  &= \sum\limits_\alpha
1788 < {\sum\limits_\beta  {g_\alpha  g_\beta  \left\langle {q_\alpha
1789 < (t)q_\beta  (0)} \right\rangle } }
1790 < %
1791 < &= \sum\limits_\alpha  {g_\alpha ^2 \left\langle {q_\alpha ^2 (0)}
1792 < \right\rangle \cos (\omega _\alpha  t)}
1793 < %
1794 < &= kT\xi (t)
1795 < \end{align}
1786 > \subsection{\label{introSection:frictionTensor} Friction Tensor}
1787 > Theoretically, the friction kernel can be determined using velocity
1788 > autocorrelation function. However, this approach become impractical
1789 > when the system become more and more complicate. Instead, various
1790 > approaches based on hydrodynamics have been developed to calculate
1791 > the friction coefficients. The friction effect is isotropic in
1792 > Equation, $\zeta$ can be taken as a scalar. In general, friction
1793 > tensor $\Xi$ is a $6\times 6$ matrix given by
1794 > \[
1795 > \Xi  = \left( {\begin{array}{*{20}c}
1796 >   {\Xi _{}^{tt} } & {\Xi _{}^{rt} }  \\
1797 >   {\Xi _{}^{tr} } & {\Xi _{}^{rr} }  \\
1798 > \end{array}} \right).
1799 > \]
1800 > Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
1801 > tensor and rotational resistance (friction) tensor respectively,
1802 > while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
1803 > {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
1804 > particle moves in a fluid, it may experience friction force or
1805 > torque along the opposite direction of the velocity or angular
1806 > velocity,
1807 > \[
1808 > \left( \begin{array}{l}
1809 > F_R  \\
1810 > \tau _R  \\
1811 > \end{array} \right) =  - \left( {\begin{array}{*{20}c}
1812 >   {\Xi ^{tt} } & {\Xi ^{rt} }  \\
1813 >   {\Xi ^{tr} } & {\Xi ^{rr} }  \\
1814 > \end{array}} \right)\left( \begin{array}{l}
1815 > v \\
1816 > w \\
1817 > \end{array} \right)
1818 > \]
1819 > where $F_r$ is the friction force and $\tau _R$ is the friction
1820 > toque.
1821  
1822 < \begin{equation}
1197 < \xi (t) = \left\langle {R(t)R(0)} \right\rangle
1198 < \label{introEquation:secondFluctuationDissipation}
1199 < \end{equation}
1822 > \subsubsection{\label{introSection:resistanceTensorRegular}The Resistance Tensor for Regular Shape}
1823  
1824 < \section{\label{introSection:hydroynamics}Hydrodynamics}
1824 > For a spherical particle, the translational and rotational friction
1825 > constant can be calculated from Stoke's law,
1826 > \[
1827 > \Xi ^{tt}  = \left( {\begin{array}{*{20}c}
1828 >   {6\pi \eta R} & 0 & 0  \\
1829 >   0 & {6\pi \eta R} & 0  \\
1830 >   0 & 0 & {6\pi \eta R}  \\
1831 > \end{array}} \right)
1832 > \]
1833 > and
1834 > \[
1835 > \Xi ^{rr}  = \left( {\begin{array}{*{20}c}
1836 >   {8\pi \eta R^3 } & 0 & 0  \\
1837 >   0 & {8\pi \eta R^3 } & 0  \\
1838 >   0 & 0 & {8\pi \eta R^3 }  \\
1839 > \end{array}} \right)
1840 > \]
1841 > where $\eta$ is the viscosity of the solvent and $R$ is the
1842 > hydrodynamics radius.
1843  
1844 < \subsection{\label{introSection:frictionTensor} Friction Tensor}
1845 < \subsection{\label{introSection:analyticalApproach}Analytical
1846 < Approach}
1844 > Other non-spherical shape, such as cylinder and ellipsoid
1845 > \textit{etc}, are widely used as reference for developing new
1846 > hydrodynamics theory, because their properties can be calculated
1847 > exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
1848 > also called a triaxial ellipsoid, which is given in Cartesian
1849 > coordinates by
1850 > \[
1851 > \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
1852 > }} = 1
1853 > \]
1854 > where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
1855 > due to the complexity of the elliptic integral, only the ellipsoid
1856 > with the restriction of two axes having to be equal, \textit{i.e.}
1857 > prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
1858 > exactly. Introducing an elliptic integral parameter $S$ for prolate,
1859 > \[
1860 > S = \frac{2}{{\sqrt {a^2  - b^2 } }}\ln \frac{{a + \sqrt {a^2  - b^2
1861 > } }}{b},
1862 > \]
1863 > and oblate,
1864 > \[
1865 > S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
1866 > }}{a}
1867 > \],
1868 > one can write down the translational and rotational resistance
1869 > tensors
1870 > \[
1871 > \begin{array}{l}
1872 > \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}} \\
1873 > \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S + 2a}} \\
1874 > \end{array},
1875 > \]
1876 > and
1877 > \[
1878 > \begin{array}{l}
1879 > \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}} \\
1880 > \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}} \\
1881 > \end{array}.
1882 > \]
1883  
1884 < \subsection{\label{introSection:approximationApproach}Approximation
1208 < Approach}
1884 > \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}The Resistance Tensor for Arbitrary Shape}
1885  
1886 < \subsection{\label{introSection:centersRigidBody}Centers of Rigid
1887 < Body}
1886 > Unlike spherical and other regular shaped molecules, there is not
1887 > analytical solution for friction tensor of any arbitrary shaped
1888 > rigid molecules. The ellipsoid of revolution model and general
1889 > triaxial ellipsoid model have been used to approximate the
1890 > hydrodynamic properties of rigid bodies. However, since the mapping
1891 > from all possible ellipsoidal space, $r$-space, to all possible
1892 > combination of rotational diffusion coefficients, $D$-space is not
1893 > unique\cite{Wegener79} as well as the intrinsic coupling between
1894 > translational and rotational motion of rigid body\cite{}, general
1895 > ellipsoid is not always suitable for modeling arbitrarily shaped
1896 > rigid molecule. A number of studies have been devoted to determine
1897 > the friction tensor for irregularly shaped rigid bodies using more
1898 > advanced method\cite{} where the molecule of interest was modeled by
1899 > combinations of spheres(beads)\cite{} and the hydrodynamics
1900 > properties of the molecule can be calculated using the hydrodynamic
1901 > interaction tensor. Let us consider a rigid assembly of $N$ beads
1902 > immersed in a continuous medium. Due to hydrodynamics interaction,
1903 > the ``net'' velocity of $i$th bead, $v'_i$ is different than its
1904 > unperturbed velocity $v_i$,
1905 > \[
1906 > v'_i  = v_i  - \sum\limits_{j \ne i} {T_{ij} F_j }
1907 > \]
1908 > where $F_i$ is the frictional force, and $T_{ij}$ is the
1909 > hydrodynamic interaction tensor. The friction force of $i$th bead is
1910 > proportional to its ``net'' velocity
1911 > \begin{equation}
1912 > F_i  = \zeta _i v_i  - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
1913 > \label{introEquation:tensorExpression}
1914 > \end{equation}
1915 > This equation is the basis for deriving the hydrodynamic tensor. In
1916 > 1930, Oseen and Burgers gave a simple solution to Equation
1917 > \ref{introEquation:tensorExpression}
1918 > \begin{equation}
1919 > T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
1920 > R_{ij}^T }}{{R_{ij}^2 }}} \right).
1921 > \label{introEquation:oseenTensor}
1922 > \end{equation}
1923 > Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
1924 > A second order expression for element of different size was
1925 > introduced by Rotne and Prager\cite{} and improved by Garc\'{i}a de
1926 > la Torre and Bloomfield,
1927 > \begin{equation}
1928 > T_{ij}  = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
1929 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
1930 > _i^2  + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
1931 > \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
1932 > \label{introEquation:RPTensorNonOverlapped}
1933 > \end{equation}
1934 > Both of the Equation \ref{introEquation:oseenTensor} and Equation
1935 > \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
1936 > \ge \sigma _i  + \sigma _j$. An alternative expression for
1937 > overlapping beads with the same radius, $\sigma$, is given by
1938 > \begin{equation}
1939 > T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
1940 > \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
1941 > \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
1942 > \label{introEquation:RPTensorOverlapped}
1943 > \end{equation}
1944  
1945 < \section{\label{introSection:correlationFunctions}Correlation Functions}
1945 > To calculate the resistance tensor at an arbitrary origin $O$, we
1946 > construct a $3N \times 3N$ matrix consisting of $N \times N$
1947 > $B_{ij}$ blocks
1948 > \begin{equation}
1949 > B = \left( {\begin{array}{*{20}c}
1950 >   {B_{11} } &  \ldots  & {B_{1N} }  \\
1951 >    \vdots  &  \ddots  &  \vdots   \\
1952 >   {B_{N1} } &  \cdots  & {B_{NN} }  \\
1953 > \end{array}} \right),
1954 > \end{equation}
1955 > where $B_{ij}$ is given by
1956 > \[
1957 > B_{ij}  = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
1958 > )T_{ij}
1959 > \]
1960 > where $\delta _{ij}$ is Kronecker delta function. Inverting matrix
1961 > $B$, we obtain
1962 >
1963 > \[
1964 > C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
1965 >   {C_{11} } &  \ldots  & {C_{1N} }  \\
1966 >    \vdots  &  \ddots  &  \vdots   \\
1967 >   {C_{N1} } &  \cdots  & {C_{NN} }  \\
1968 > \end{array}} \right)
1969 > \]
1970 > , which can be partitioned into $N \times N$ $3 \times 3$ block
1971 > $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
1972 > \[
1973 > U_i  = \left( {\begin{array}{*{20}c}
1974 >   0 & { - z_i } & {y_i }  \\
1975 >   {z_i } & 0 & { - x_i }  \\
1976 >   { - y_i } & {x_i } & 0  \\
1977 > \end{array}} \right)
1978 > \]
1979 > where $x_i$, $y_i$, $z_i$ are the components of the vector joining
1980 > bead $i$ and origin $O$. Hence, the elements of resistance tensor at
1981 > arbitrary origin $O$ can be written as
1982 > \begin{equation}
1983 > \begin{array}{l}
1984 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
1985 > \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
1986 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
1987 > \end{array}
1988 > \label{introEquation:ResistanceTensorArbitraryOrigin}
1989 > \end{equation}
1990 >
1991 > The resistance tensor depends on the origin to which they refer. The
1992 > proper location for applying friction force is the center of
1993 > resistance (reaction), at which the trace of rotational resistance
1994 > tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
1995 > resistance is defined as an unique point of the rigid body at which
1996 > the translation-rotation coupling tensor are symmetric,
1997 > \begin{equation}
1998 > \Xi^{tr}  = \left( {\Xi^{tr} } \right)^T
1999 > \label{introEquation:definitionCR}
2000 > \end{equation}
2001 > Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
2002 > we can easily find out that the translational resistance tensor is
2003 > origin independent, while the rotational resistance tensor and
2004 > translation-rotation coupling resistance tensor depend on the
2005 > origin. Given resistance tensor at an arbitrary origin $O$, and a
2006 > vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
2007 > obtain the resistance tensor at $P$ by
2008 > \begin{equation}
2009 > \begin{array}{l}
2010 > \Xi _P^{tt}  = \Xi _O^{tt}  \\
2011 > \Xi _P^{tr}  = \Xi _P^{rt}  = \Xi _O^{tr}  - U_{OP} \Xi _O^{tt}  \\
2012 > \Xi _P^{rr}  = \Xi _O^{rr}  - U_{OP} \Xi _O^{tt} U_{OP}  + \Xi _O^{tr} U_{OP}  - U_{OP} \Xi _O^{tr} ^{^T }  \\
2013 > \end{array}
2014 > \label{introEquation:resistanceTensorTransformation}
2015 > \end{equation}
2016 > where
2017 > \[
2018 > U_{OP}  = \left( {\begin{array}{*{20}c}
2019 >   0 & { - z_{OP} } & {y_{OP} }  \\
2020 >   {z_i } & 0 & { - x_{OP} }  \\
2021 >   { - y_{OP} } & {x_{OP} } & 0  \\
2022 > \end{array}} \right)
2023 > \]
2024 > Using Equations \ref{introEquation:definitionCR} and
2025 > \ref{introEquation:resistanceTensorTransformation}, one can locate
2026 > the position of center of resistance,
2027 > \[
2028 > \left( \begin{array}{l}
2029 > x_{OR}  \\
2030 > y_{OR}  \\
2031 > z_{OR}  \\
2032 > \end{array} \right) = \left( {\begin{array}{*{20}c}
2033 >   {(\Xi _O^{rr} )_{yy}  + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} }  \\
2034 >   { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz}  + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} }  \\
2035 >   { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx}  + (\Xi _O^{rr} )_{yy} }  \\
2036 > \end{array}} \right)^{ - 1} \left( \begin{array}{l}
2037 > (\Xi _O^{tr} )_{yz}  - (\Xi _O^{tr} )_{zy}  \\
2038 > (\Xi _O^{tr} )_{zx}  - (\Xi _O^{tr} )_{xz}  \\
2039 > (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
2040 > \end{array} \right).
2041 > \]
2042 > where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
2043 > joining center of resistance $R$ and origin $O$.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines