ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Langevin.tex
Revision: 2851
Committed: Sun Jun 11 02:06:01 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 25179 byte(s)
Log Message:
seperate Langevin chapter

File Contents

# User Rev Content
1 tim 2851
2     \chapter{\label{chapt:methodology}Langevin Dynamics for Rigid Bodies of Arbitrary Shape}
3    
4     \section{Introduction}
5    
6     %applications of langevin dynamics
7     As an excellent alternative to newtonian dynamics, Langevin
8     dynamics, which mimics a simple heat bath with stochastic and
9     dissipative forces, has been applied in a variety of studies. The
10     stochastic treatment of the solvent enables us to carry out
11     substantially longer time simulation. Implicit solvent Langevin
12     dynamics simulation of met-enkephalin not only outperforms explicit
13     solvent simulation on computation efficiency, but also agrees very
14     well with explicit solvent simulation on dynamics
15     properties\cite{Shen2002}. Recently, applying Langevin dynamics with
16     UNRES model, Liow and his coworkers suggest that protein folding
17     pathways can be possibly exploited within a reasonable amount of
18     time\cite{Liwo2005}. The stochastic nature of the Langevin dynamics
19     also enhances the sampling of the system and increases the
20     probability of crossing energy barrier\cite{Banerjee2004, Cui2003}.
21     Combining Langevin dynamics with Kramers's theory, Klimov and
22     Thirumalai identified the free-energy barrier by studying the
23     viscosity dependence of the protein folding rates\cite{Klimov1997}.
24     In order to account for solvent induced interactions missing from
25     implicit solvent model, Kaya incorporated desolvation free energy
26     barrier into implicit coarse-grained solvent model in protein
27     folding/unfolding study and discovered a higher free energy barrier
28     between the native and denatured states. Because of its stability
29     against noise, Langevin dynamics is very suitable for studying
30     remagnetization processes in various
31     systems\cite{Garcia-Palacios1998,Berkov2002,Denisov2003}. For
32     instance, the oscillation power spectrum of nanoparticles from
33     Langevin dynamics simulation has the same peak frequencies for
34     different wave vectors,which recovers the property of magnetic
35     excitations in small finite structures\cite{Berkov2005a}. In an
36     attempt to reduce the computational cost of simulation, multiple
37     time stepping (MTS) methods have been introduced and have been of
38     great interest to macromolecule and protein
39     community\cite{Tuckerman1992}. Relying on the observation that
40     forces between distant atoms generally demonstrate slower
41     fluctuations than forces between close atoms, MTS method are
42     generally implemented by evaluating the slowly fluctuating forces
43     less frequently than the fast ones. Unfortunately, nonlinear
44     instability resulting from increasing timestep in MTS simulation
45     have became a critical obstruction preventing the long time
46     simulation. Due to the coupling to the heat bath, Langevin dynamics
47     has been shown to be able to damp out the resonance artifact more
48     efficiently\cite{Sandu1999}.
49    
50     %review rigid body dynamics
51     Rigid bodies are frequently involved in the modeling of different
52     areas, from engineering, physics, to chemistry. For example,
53     missiles and vehicle are usually modeled by rigid bodies. The
54     movement of the objects in 3D gaming engine or other physics
55     simulator is governed by the rigid body dynamics. In molecular
56     simulation, rigid body is used to simplify the model in
57     protein-protein docking study{\cite{Gray2003}}.
58    
59     It is very important to develop stable and efficient methods to
60     integrate the equations of motion of orientational degrees of
61     freedom. Euler angles are the nature choice to describe the
62     rotational degrees of freedom. However, due to its singularity, the
63     numerical integration of corresponding equations of motion is very
64     inefficient and inaccurate. Although an alternative integrator using
65     different sets of Euler angles can overcome this difficulty\cite{},
66     the computational penalty and the lost of angular momentum
67     conservation still remain. In 1977, a singularity free
68     representation utilizing quaternions was developed by
69     Evans\cite{Evans1977}. Unfortunately, this approach suffer from the
70     nonseparable Hamiltonian resulted from quaternion representation,
71     which prevents the symplectic algorithm to be utilized. Another
72     different approach is to apply holonomic constraints to the atoms
73     belonging to the rigid body\cite{}. Each atom moves independently
74     under the normal forces deriving from potential energy and
75     constraint forces which are used to guarantee the rigidness.
76     However, due to their iterative nature, SHAKE and Rattle algorithm
77     converge very slowly when the number of constraint increases.
78    
79     The break through in geometric literature suggests that, in order to
80     develop a long-term integration scheme, one should preserve the
81     geometric structure of the flow. Matubayasi and Nakahara developed a
82     time-reversible integrator for rigid bodies in quaternion
83     representation. Although it is not symplectic, this integrator still
84     demonstrates a better long-time energy conservation than traditional
85     methods because of the time-reversible nature. Extending
86     Trotter-Suzuki to general system with a flat phase space, Miller and
87     his colleagues devised an novel symplectic, time-reversible and
88     volume-preserving integrator in quaternion representation. However,
89     all of the integrators in quaternion representation suffer from the
90     computational penalty of constructing a rotation matrix from
91     quaternions to evolve coordinates and velocities at every time step.
92     An alternative integration scheme utilizing rotation matrix directly
93     is RSHAKE , in which a conjugate momentum to rotation matrix is
94     introduced to re-formulate the Hamiltonian's equation and the
95     Hamiltonian is evolved in a constraint manifold by iteratively
96     satisfying the orthogonality constraint. However, RSHAKE is
97     inefficient because of the iterative procedure. An extremely
98     efficient integration scheme in rotation matrix representation,
99     which also preserves the same structural properties of the
100     Hamiltonian flow as Miller's integrator, is proposed by Dullweber,
101     Leimkuhler and McLachlan (DLM).
102    
103     %review langevin/browninan dynamics for arbitrarily shaped rigid body
104     Combining Langevin or Brownian dynamics with rigid body dynamics,
105     one can study the slow processes in biomolecular systems. Modeling
106     the DNA as a chain of rigid spheres beads, which subject to harmonic
107     potentials as well as excluded volume potentials, Mielke and his
108     coworkers discover rapid superhelical stress generations from the
109     stochastic simulation of twin supercoiling DNA with response to
110     induced torques\cite{Mielke2004}. Membrane fusion is another key
111     biological process which controls a variety of physiological
112     functions, such as release of neurotransmitters \textit{etc}. A
113     typical fusion event happens on the time scale of millisecond, which
114     is impracticable to study using all atomistic model with newtonian
115     mechanics. With the help of coarse-grained rigid body model and
116     stochastic dynamics, the fusion pathways were exploited by many
117     researchers\cite{Noguchi2001,Noguchi2002,Shillcock2005}. Due to the
118     difficulty of numerical integration of anisotropy rotation, most of
119     the rigid body models are simply modeled by sphere, cylinder,
120     ellipsoid or other regular shapes in stochastic simulations. In an
121     effort to account for the diffusion anisotropy of the arbitrary
122     particles, Fernandes and de la Torre improved the original Brownian
123     dynamics simulation algorithm\cite{Ermak1978,Allison1991} by
124     incorporating a generalized $6\times6$ diffusion tensor and
125     introducing a simple rotation evolution scheme consisting of three
126     consecutive rotations\cite{Fernandes2002}. Unfortunately, unexpected
127     error and bias are introduced into the system due to the arbitrary
128     order of applying the noncommuting rotation
129     operators\cite{Beard2003}. Based on the observation the momentum
130     relaxation time is much less than the time step, one may ignore the
131     inertia in Brownian dynamics. However, assumption of the zero
132     average acceleration is not always true for cooperative motion which
133     is common in protein motion. An inertial Brownian dynamics (IBD) was
134     proposed to address this issue by adding an inertial correction
135     term\cite{Beard2001}. As a complement to IBD which has a lower bound
136     in time step because of the inertial relaxation time, long-time-step
137     inertial dynamics (LTID) can be used to investigate the inertial
138     behavior of the polymer segments in low friction
139     regime\cite{Beard2001}. LTID can also deal with the rotational
140     dynamics for nonskew bodies without translation-rotation coupling by
141     separating the translation and rotation motion and taking advantage
142     of the analytical solution of hydrodynamics properties. However,
143     typical nonskew bodies like cylinder and ellipsoid are inadequate to
144     represent most complex macromolecule assemblies. These intricate
145     molecules have been represented by a set of beads and their
146     hydrodynamics properties can be calculated using variant
147     hydrodynamic interaction tensors.
148    
149     The goal of the present work is to develop a Langevin dynamics
150     algorithm for arbitrary rigid particles by integrating the accurate
151     estimation of friction tensor from hydrodynamics theory into the
152     sophisticated rigid body dynamics.
153    
154     \section{Method{\label{methodSec}}}
155    
156     \subsection{\label{introSection:frictionTensor} Friction Tensor}
157     Theoretically, the friction kernel can be determined using velocity
158     autocorrelation function. However, this approach become impractical
159     when the system become more and more complicate. Instead, various
160     approaches based on hydrodynamics have been developed to calculate
161     the friction coefficients. The friction effect is isotropic in
162     Equation, $\zeta$ can be taken as a scalar. In general, friction
163     tensor $\Xi$ is a $6\times 6$ matrix given by
164     \[
165     \Xi = \left( {\begin{array}{*{20}c}
166     {\Xi _{}^{tt} } & {\Xi _{}^{rt} } \\
167     {\Xi _{}^{tr} } & {\Xi _{}^{rr} } \\
168     \end{array}} \right).
169     \]
170     Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
171     tensor and rotational resistance (friction) tensor respectively,
172     while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
173     {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
174     particle moves in a fluid, it may experience friction force or
175     torque along the opposite direction of the velocity or angular
176     velocity,
177     \[
178     \left( \begin{array}{l}
179     F_R \\
180     \tau _R \\
181     \end{array} \right) = - \left( {\begin{array}{*{20}c}
182     {\Xi ^{tt} } & {\Xi ^{rt} } \\
183     {\Xi ^{tr} } & {\Xi ^{rr} } \\
184     \end{array}} \right)\left( \begin{array}{l}
185     v \\
186     w \\
187     \end{array} \right)
188     \]
189     where $F_r$ is the friction force and $\tau _R$ is the friction
190     toque.
191    
192     \subsubsection{\label{introSection:resistanceTensorRegular}\textbf{The Resistance Tensor for Regular Shape}}
193    
194     For a spherical particle, the translational and rotational friction
195     constant can be calculated from Stoke's law,
196     \[
197     \Xi ^{tt} = \left( {\begin{array}{*{20}c}
198     {6\pi \eta R} & 0 & 0 \\
199     0 & {6\pi \eta R} & 0 \\
200     0 & 0 & {6\pi \eta R} \\
201     \end{array}} \right)
202     \]
203     and
204     \[
205     \Xi ^{rr} = \left( {\begin{array}{*{20}c}
206     {8\pi \eta R^3 } & 0 & 0 \\
207     0 & {8\pi \eta R^3 } & 0 \\
208     0 & 0 & {8\pi \eta R^3 } \\
209     \end{array}} \right)
210     \]
211     where $\eta$ is the viscosity of the solvent and $R$ is the
212     hydrodynamics radius.
213    
214     Other non-spherical shape, such as cylinder and ellipsoid
215     \textit{etc}, are widely used as reference for developing new
216     hydrodynamics theory, because their properties can be calculated
217     exactly. In 1936, Perrin extended Stokes's law to general ellipsoid,
218     also called a triaxial ellipsoid, which is given in Cartesian
219     coordinates by\cite{Perrin1934, Perrin1936}
220     \[
221     \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
222     }} = 1
223     \]
224     where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
225     due to the complexity of the elliptic integral, only the ellipsoid
226     with the restriction of two axes having to be equal, \textit{i.e.}
227     prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
228     exactly. Introducing an elliptic integral parameter $S$ for prolate,
229     \[
230     S = \frac{2}{{\sqrt {a^2 - b^2 } }}\ln \frac{{a + \sqrt {a^2 - b^2
231     } }}{b},
232     \]
233     and oblate,
234     \[
235     S = \frac{2}{{\sqrt {b^2 - a^2 } }}arctg\frac{{\sqrt {b^2 - a^2 }
236     }}{a}
237     \],
238     one can write down the translational and rotational resistance
239     tensors
240     \[
241     \begin{array}{l}
242     \Xi _a^{tt} = 16\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - b^2 )S - 2a}} \\
243     \Xi _b^{tt} = \Xi _c^{tt} = 32\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - 3b^2 )S + 2a}} \\
244     \end{array},
245     \]
246     and
247     \[
248     \begin{array}{l}
249     \Xi _a^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^2 - b^2 )b^2 }}{{2a - b^2 S}} \\
250     \Xi _b^{rr} = \Xi _c^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^4 - b^4 )}}{{(2a^2 - b^2 )S - 2a}} \\
251     \end{array}.
252     \]
253    
254     \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}\textbf{The Resistance Tensor for Arbitrary Shape}}
255    
256     Unlike spherical and other regular shaped molecules, there is not
257     analytical solution for friction tensor of any arbitrary shaped
258     rigid molecules. The ellipsoid of revolution model and general
259     triaxial ellipsoid model have been used to approximate the
260     hydrodynamic properties of rigid bodies. However, since the mapping
261     from all possible ellipsoidal space, $r$-space, to all possible
262     combination of rotational diffusion coefficients, $D$-space is not
263     unique\cite{Wegener1979} as well as the intrinsic coupling between
264     translational and rotational motion of rigid body, general ellipsoid
265     is not always suitable for modeling arbitrarily shaped rigid
266     molecule. A number of studies have been devoted to determine the
267     friction tensor for irregularly shaped rigid bodies using more
268     advanced method where the molecule of interest was modeled by
269     combinations of spheres(beads)\cite{Carrasco1999} and the
270     hydrodynamics properties of the molecule can be calculated using the
271     hydrodynamic interaction tensor. Let us consider a rigid assembly of
272     $N$ beads immersed in a continuous medium. Due to hydrodynamics
273     interaction, the ``net'' velocity of $i$th bead, $v'_i$ is different
274     than its unperturbed velocity $v_i$,
275     \[
276     v'_i = v_i - \sum\limits_{j \ne i} {T_{ij} F_j }
277     \]
278     where $F_i$ is the frictional force, and $T_{ij}$ is the
279     hydrodynamic interaction tensor. The friction force of $i$th bead is
280     proportional to its ``net'' velocity
281     \begin{equation}
282     F_i = \zeta _i v_i - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
283     \label{introEquation:tensorExpression}
284     \end{equation}
285     This equation is the basis for deriving the hydrodynamic tensor. In
286     1930, Oseen and Burgers gave a simple solution to Equation
287     \ref{introEquation:tensorExpression}
288     \begin{equation}
289     T_{ij} = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
290     R_{ij}^T }}{{R_{ij}^2 }}} \right). \label{introEquation:oseenTensor}
291     \end{equation}
292     Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
293     A second order expression for element of different size was
294     introduced by Rotne and Prager\cite{Rotne1969} and improved by
295     Garc\'{i}a de la Torre and Bloomfield\cite{Torre1977},
296     \begin{equation}
297     T_{ij} = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
298     \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
299     _i^2 + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
300     \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
301     \label{introEquation:RPTensorNonOverlapped}
302     \end{equation}
303     Both of the Equation \ref{introEquation:oseenTensor} and Equation
304     \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
305     \ge \sigma _i + \sigma _j$. An alternative expression for
306     overlapping beads with the same radius, $\sigma$, is given by
307     \begin{equation}
308     T_{ij} = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
309     \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
310     \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
311     \label{introEquation:RPTensorOverlapped}
312     \end{equation}
313    
314     To calculate the resistance tensor at an arbitrary origin $O$, we
315     construct a $3N \times 3N$ matrix consisting of $N \times N$
316     $B_{ij}$ blocks
317     \begin{equation}
318     B = \left( {\begin{array}{*{20}c}
319     {B_{11} } & \ldots & {B_{1N} } \\
320     \vdots & \ddots & \vdots \\
321     {B_{N1} } & \cdots & {B_{NN} } \\
322     \end{array}} \right),
323     \end{equation}
324     where $B_{ij}$ is given by
325     \[
326     B_{ij} = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
327     )T_{ij}
328     \]
329     where $\delta _{ij}$ is Kronecker delta function. Inverting matrix
330     $B$, we obtain
331    
332     \[
333     C = B^{ - 1} = \left( {\begin{array}{*{20}c}
334     {C_{11} } & \ldots & {C_{1N} } \\
335     \vdots & \ddots & \vdots \\
336     {C_{N1} } & \cdots & {C_{NN} } \\
337     \end{array}} \right)
338     \]
339     , which can be partitioned into $N \times N$ $3 \times 3$ block
340     $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
341     \[
342     U_i = \left( {\begin{array}{*{20}c}
343     0 & { - z_i } & {y_i } \\
344     {z_i } & 0 & { - x_i } \\
345     { - y_i } & {x_i } & 0 \\
346     \end{array}} \right)
347     \]
348     where $x_i$, $y_i$, $z_i$ are the components of the vector joining
349     bead $i$ and origin $O$. Hence, the elements of resistance tensor at
350     arbitrary origin $O$ can be written as
351     \begin{equation}
352     \begin{array}{l}
353     \Xi _{}^{tt} = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
354     \Xi _{}^{tr} = \Xi _{}^{rt} = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
355     \Xi _{}^{rr} = - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j \\
356     \end{array}
357     \label{introEquation:ResistanceTensorArbitraryOrigin}
358     \end{equation}
359    
360     The resistance tensor depends on the origin to which they refer. The
361     proper location for applying friction force is the center of
362     resistance (reaction), at which the trace of rotational resistance
363     tensor, $ \Xi ^{rr}$ reaches minimum. Mathematically, the center of
364     resistance is defined as an unique point of the rigid body at which
365     the translation-rotation coupling tensor are symmetric,
366     \begin{equation}
367     \Xi^{tr} = \left( {\Xi^{tr} } \right)^T
368     \label{introEquation:definitionCR}
369     \end{equation}
370     Form Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
371     we can easily find out that the translational resistance tensor is
372     origin independent, while the rotational resistance tensor and
373     translation-rotation coupling resistance tensor depend on the
374     origin. Given resistance tensor at an arbitrary origin $O$, and a
375     vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
376     obtain the resistance tensor at $P$ by
377     \begin{equation}
378     \begin{array}{l}
379     \Xi _P^{tt} = \Xi _O^{tt} \\
380     \Xi _P^{tr} = \Xi _P^{rt} = \Xi _O^{tr} - U_{OP} \Xi _O^{tt} \\
381     \Xi _P^{rr} = \Xi _O^{rr} - U_{OP} \Xi _O^{tt} U_{OP} + \Xi _O^{tr} U_{OP} - U_{OP} \Xi _O^{{tr} ^{^T }} \\
382     \end{array}
383     \label{introEquation:resistanceTensorTransformation}
384     \end{equation}
385     where
386     \[
387     U_{OP} = \left( {\begin{array}{*{20}c}
388     0 & { - z_{OP} } & {y_{OP} } \\
389     {z_i } & 0 & { - x_{OP} } \\
390     { - y_{OP} } & {x_{OP} } & 0 \\
391     \end{array}} \right)
392     \]
393     Using Equations \ref{introEquation:definitionCR} and
394     \ref{introEquation:resistanceTensorTransformation}, one can locate
395     the position of center of resistance,
396     \begin{eqnarray*}
397     \left( \begin{array}{l}
398     x_{OR} \\
399     y_{OR} \\
400     z_{OR} \\
401     \end{array} \right) & = &\left( {\begin{array}{*{20}c}
402     {(\Xi _O^{rr} )_{yy} + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} } \\
403     { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz} + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} } \\
404     { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx} + (\Xi _O^{rr} )_{yy} } \\
405     \end{array}} \right)^{ - 1} \\
406     & & \left( \begin{array}{l}
407     (\Xi _O^{tr} )_{yz} - (\Xi _O^{tr} )_{zy} \\
408     (\Xi _O^{tr} )_{zx} - (\Xi _O^{tr} )_{xz} \\
409     (\Xi _O^{tr} )_{xy} - (\Xi _O^{tr} )_{yx} \\
410     \end{array} \right) \\
411     \end{eqnarray*}
412    
413     where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
414     joining center of resistance $R$ and origin $O$.
415    
416     \subsection{Langevin dynamics for rigid particles of arbitrary shape}
417    
418     Consider a Langevin equation of motions in generalized coordinates
419     \begin{equation}
420     M_i \dot V_i (t) = F_{s,i} (t) + F_{f,i(t)} + F_{r,i} (t)
421     \label{LDGeneralizedForm}
422     \end{equation}
423     where $M_i$ is a $6\times6$ generalized diagonal mass (include mass
424     and moment of inertial) matrix and $V_i$ is a generalized velocity,
425     $V_i = V_i(v_i,\omega _i)$. The right side of Eq.
426     (\ref{LDGeneralizedForm}) consists of three generalized forces in
427     lab-fixed frame, systematic force $F_{s,i}$, dissipative force
428     $F_{f,i}$ and stochastic force $F_{r,i}$. While the evolution of the
429     system in Newtownian mechanics typically refers to lab-fixed frame,
430     it is also convenient to handle the rotation of rigid body in
431     body-fixed frame. Thus the friction and random forces are calculated
432     in body-fixed frame and converted back to lab-fixed frame by:
433     \[
434     \begin{array}{l}
435     F_{f,i}^l (t) = A^T F_{f,i}^b (t), \\
436     F_{r,i}^l (t) = A^T F_{r,i}^b (t) \\
437     \end{array}.
438     \]
439     Here, the body-fixed friction force $F_{r,i}^b$ is proportional to
440     the body-fixed velocity at center of resistance $v_{R,i}^b$ and
441     angular velocity $\omega _i$,
442     \begin{equation}
443     F_{r,i}^b (t) = \left( \begin{array}{l}
444     f_{r,i}^b (t) \\
445     \tau _{r,i}^b (t) \\
446     \end{array} \right) = - \left( {\begin{array}{*{20}c}
447     {\Xi _{R,t} } & {\Xi _{R,c}^T } \\
448     {\Xi _{R,c} } & {\Xi _{R,r} } \\
449     \end{array}} \right)\left( \begin{array}{l}
450     v_{R,i}^b (t) \\
451     \omega _i (t) \\
452     \end{array} \right),
453     \end{equation}
454     while the random force $F_{r,i}^l$ is a Gaussian stochastic variable
455     with zero mean and variance
456     \begin{equation}
457     \left\langle {F_{r,i}^l (t)(F_{r,i}^l (t'))^T } \right\rangle =
458     \left\langle {F_{r,i}^b (t)(F_{r,i}^b (t'))^T } \right\rangle =
459     2k_B T\Xi _R \delta (t - t').
460     \end{equation}
461    
462     The equation of motion for $v_i$ can be written as
463     \begin{equation}
464     m\dot v_i (t) = f_{t,i} (t) = f_{s,i} (t) + f_{f,i}^l (t) +
465     f_{r,i}^l (t)
466     \end{equation}
467     Since the frictional force is applied at the center of resistance
468     which generally does not coincide with the center of mass, an extra
469     torque is exerted at the center of mass. Thus, the net body-fixed
470     frictional torque at the center of mass, $\tau _{n,i}^b (t)$, is
471     given by
472     \begin{equation}
473     \tau _{r,i}^b = \tau _{r,i}^b +r_{MR} \times f_{r,i}^b
474     \end{equation}
475     where $r_{MR}$ is the vector from the center of mass to the center
476     of the resistance. Instead of integrating angular velocity in
477     lab-fixed frame, we consider the equation of motion of angular
478     momentum in body-fixed frame
479     \begin{equation}
480     \dot j_i (t) = \tau _{t,i} (t) = \tau _{s,i} (t) + \tau _{f,i}^b (t)
481     + \tau _{r,i}^b(t)
482     \end{equation}
483    
484     Embedding the friction terms into force and torque, one can
485     integrate the langevin equations of motion for rigid body of
486     arbitrary shape in a velocity-Verlet style 2-part algorithm, where
487     $h= \delta t$:
488    
489     {\tt moveA:}
490     \begin{align*}
491     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
492     + \frac{h}{2} \left( {\bf f}(t) / m \right), \\
493     %
494     {\bf r}(t + h) &\leftarrow {\bf r}(t)
495     + h {\bf v}\left(t + h / 2 \right), \\
496     %
497     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
498     + \frac{h}{2} {\bf \tau}^b(t), \\
499     %
500     \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
501     (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right).
502     \end{align*}
503    
504     In this context, the $\mathrm{rotate}$ function is the reversible
505     product of the three body-fixed rotations,
506     \begin{equation}
507     \mathrm{rotate}({\bf a}) = \mathsf{G}_x(a_x / 2) \cdot
508     \mathsf{G}_y(a_y / 2) \cdot \mathsf{G}_z(a_z) \cdot \mathsf{G}_y(a_y
509     / 2) \cdot \mathsf{G}_x(a_x /2),
510     \end{equation}
511     where each rotational propagator, $\mathsf{G}_\alpha(\theta)$,
512     rotates both the rotation matrix ($\mathsf{A}$) and the body-fixed
513     angular momentum (${\bf j}$) by an angle $\theta$ around body-fixed
514     axis $\alpha$,
515     \begin{equation}
516     \mathsf{G}_\alpha( \theta ) = \left\{
517     \begin{array}{lcl}
518     \mathsf{A}(t) & \leftarrow & \mathsf{A}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
519     {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf
520     j}(0).
521     \end{array}
522     \right.
523     \end{equation}
524     $\mathsf{R}_\alpha$ is a quadratic approximation to the single-axis
525     rotation matrix. For example, in the small-angle limit, the
526     rotation matrix around the body-fixed x-axis can be approximated as
527     \begin{equation}
528     \mathsf{R}_x(\theta) \approx \left(
529     \begin{array}{ccc}
530     1 & 0 & 0 \\
531     0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4} & -\frac{\theta}{1+
532     \theta^2 / 4} \\
533     0 & \frac{\theta}{1+ \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 +
534     \theta^2 / 4}
535     \end{array}
536     \right).
537     \end{equation}
538     All other rotations follow in a straightforward manner.
539    
540     After the first part of the propagation, the forces and body-fixed
541     torques are calculated at the new positions and orientations
542    
543     {\tt doForces:}
544     \begin{align*}
545     {\bf f}(t + h) &\leftarrow
546     - \left(\frac{\partial V}{\partial {\bf r}}\right)_{{\bf r}(t + h)}, \\
547     %
548     {\bf \tau}^{s}(t + h) &\leftarrow {\bf u}(t + h)
549     \times \frac{\partial V}{\partial {\bf u}}, \\
550     %
551     {\bf \tau}^{b}(t + h) &\leftarrow \mathsf{A}(t + h)
552     \cdot {\bf \tau}^s(t + h).
553     \end{align*}
554    
555     {\sc oopse} automatically updates ${\bf u}$ when the rotation matrix
556     $\mathsf{A}$ is calculated in {\tt moveA}. Once the forces and
557     torques have been obtained at the new time step, the velocities can
558     be advanced to the same time value.
559    
560     {\tt moveB:}
561     \begin{align*}
562     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t + h / 2
563     \right)
564     + \frac{h}{2} \left( {\bf f}(t + h) / m \right), \\
565     %
566     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t + h / 2
567     \right)
568     + \frac{h}{2} {\bf \tau}^b(t + h) .
569     \end{align*}
570    
571     \section{Results and discussion}
572    
573     \section{Conclusions}