ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Langevin.tex
Revision: 2886
Committed: Sun Jun 25 18:46:09 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 27163 byte(s)
Log Message:
more corrections

File Contents

# User Rev Content
1 tim 2851
2 tim 2880 \chapter{\label{chapt:langevin}LANGEVIN DYNAMICS FOR RIGID BODIES OF ARBITRARY SHAPE}
3 tim 2851
4     \section{Introduction}
5    
6     %applications of langevin dynamics
7     As an excellent alternative to newtonian dynamics, Langevin
8     dynamics, which mimics a simple heat bath with stochastic and
9     dissipative forces, has been applied in a variety of studies. The
10     stochastic treatment of the solvent enables us to carry out
11     substantially longer time simulation. Implicit solvent Langevin
12     dynamics simulation of met-enkephalin not only outperforms explicit
13     solvent simulation on computation efficiency, but also agrees very
14     well with explicit solvent simulation on dynamics
15     properties\cite{Shen2002}. Recently, applying Langevin dynamics with
16     UNRES model, Liow and his coworkers suggest that protein folding
17     pathways can be possibly exploited within a reasonable amount of
18     time\cite{Liwo2005}. The stochastic nature of the Langevin dynamics
19     also enhances the sampling of the system and increases the
20     probability of crossing energy barrier\cite{Banerjee2004, Cui2003}.
21     Combining Langevin dynamics with Kramers's theory, Klimov and
22     Thirumalai identified the free-energy barrier by studying the
23     viscosity dependence of the protein folding rates\cite{Klimov1997}.
24     In order to account for solvent induced interactions missing from
25     implicit solvent model, Kaya incorporated desolvation free energy
26     barrier into implicit coarse-grained solvent model in protein
27     folding/unfolding study and discovered a higher free energy barrier
28     between the native and denatured states. Because of its stability
29     against noise, Langevin dynamics is very suitable for studying
30     remagnetization processes in various
31     systems\cite{Garcia-Palacios1998,Berkov2002,Denisov2003}. For
32     instance, the oscillation power spectrum of nanoparticles from
33     Langevin dynamics simulation has the same peak frequencies for
34     different wave vectors,which recovers the property of magnetic
35     excitations in small finite structures\cite{Berkov2005a}. In an
36     attempt to reduce the computational cost of simulation, multiple
37     time stepping (MTS) methods have been introduced and have been of
38     great interest to macromolecule and protein
39     community\cite{Tuckerman1992}. Relying on the observation that
40     forces between distant atoms generally demonstrate slower
41     fluctuations than forces between close atoms, MTS method are
42     generally implemented by evaluating the slowly fluctuating forces
43     less frequently than the fast ones. Unfortunately, nonlinear
44     instability resulting from increasing timestep in MTS simulation
45     have became a critical obstruction preventing the long time
46     simulation. Due to the coupling to the heat bath, Langevin dynamics
47     has been shown to be able to damp out the resonance artifact more
48     efficiently\cite{Sandu1999}.
49    
50     %review langevin/browninan dynamics for arbitrarily shaped rigid body
51     Combining Langevin or Brownian dynamics with rigid body dynamics,
52     one can study the slow processes in biomolecular systems. Modeling
53     the DNA as a chain of rigid spheres beads, which subject to harmonic
54     potentials as well as excluded volume potentials, Mielke and his
55     coworkers discover rapid superhelical stress generations from the
56     stochastic simulation of twin supercoiling DNA with response to
57     induced torques\cite{Mielke2004}. Membrane fusion is another key
58     biological process which controls a variety of physiological
59     functions, such as release of neurotransmitters \textit{etc}. A
60     typical fusion event happens on the time scale of millisecond, which
61     is impracticable to study using all atomistic model with newtonian
62     mechanics. With the help of coarse-grained rigid body model and
63     stochastic dynamics, the fusion pathways were exploited by many
64     researchers\cite{Noguchi2001,Noguchi2002,Shillcock2005}. Due to the
65     difficulty of numerical integration of anisotropy rotation, most of
66     the rigid body models are simply modeled by sphere, cylinder,
67     ellipsoid or other regular shapes in stochastic simulations. In an
68     effort to account for the diffusion anisotropy of the arbitrary
69     particles, Fernandes and de la Torre improved the original Brownian
70     dynamics simulation algorithm\cite{Ermak1978,Allison1991} by
71     incorporating a generalized $6\times6$ diffusion tensor and
72     introducing a simple rotation evolution scheme consisting of three
73     consecutive rotations\cite{Fernandes2002}. Unfortunately, unexpected
74     error and bias are introduced into the system due to the arbitrary
75     order of applying the noncommuting rotation
76     operators\cite{Beard2003}. Based on the observation the momentum
77     relaxation time is much less than the time step, one may ignore the
78     inertia in Brownian dynamics. However, assumption of the zero
79     average acceleration is not always true for cooperative motion which
80     is common in protein motion. An inertial Brownian dynamics (IBD) was
81     proposed to address this issue by adding an inertial correction
82 tim 2886 term\cite{Beard2000}. As a complement to IBD which has a lower bound
83 tim 2851 in time step because of the inertial relaxation time, long-time-step
84     inertial dynamics (LTID) can be used to investigate the inertial
85     behavior of the polymer segments in low friction
86 tim 2886 regime\cite{Beard2000}. LTID can also deal with the rotational
87 tim 2851 dynamics for nonskew bodies without translation-rotation coupling by
88     separating the translation and rotation motion and taking advantage
89     of the analytical solution of hydrodynamics properties. However,
90     typical nonskew bodies like cylinder and ellipsoid are inadequate to
91     represent most complex macromolecule assemblies. These intricate
92     molecules have been represented by a set of beads and their
93     hydrodynamics properties can be calculated using variant
94     hydrodynamic interaction tensors.
95    
96     The goal of the present work is to develop a Langevin dynamics
97     algorithm for arbitrary rigid particles by integrating the accurate
98     estimation of friction tensor from hydrodynamics theory into the
99     sophisticated rigid body dynamics.
100    
101 tim 2867 \section{Computational Methods{\label{methodSec}}}
102 tim 2851
103 tim 2853 \subsection{\label{introSection:frictionTensor}Friction Tensor}
104 tim 2873 Theoretically, the friction kernel can be determined using the
105     velocity autocorrelation function. However, this approach become
106     impractical when the system become more and more complicate.
107     Instead, various approaches based on hydrodynamics have been
108     developed to calculate the friction coefficients. In general,
109     friction tensor $\Xi$ is a $6\times 6$ matrix given by
110 tim 2851 \[
111     \Xi = \left( {\begin{array}{*{20}c}
112     {\Xi _{}^{tt} } & {\Xi _{}^{rt} } \\
113     {\Xi _{}^{tr} } & {\Xi _{}^{rr} } \\
114     \end{array}} \right).
115     \]
116     Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
117     tensor and rotational resistance (friction) tensor respectively,
118     while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
119     {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
120     particle moves in a fluid, it may experience friction force or
121     torque along the opposite direction of the velocity or angular
122     velocity,
123     \[
124     \left( \begin{array}{l}
125     F_R \\
126     \tau _R \\
127     \end{array} \right) = - \left( {\begin{array}{*{20}c}
128     {\Xi ^{tt} } & {\Xi ^{rt} } \\
129     {\Xi ^{tr} } & {\Xi ^{rr} } \\
130     \end{array}} \right)\left( \begin{array}{l}
131     v \\
132     w \\
133     \end{array} \right)
134     \]
135     where $F_r$ is the friction force and $\tau _R$ is the friction
136     toque.
137    
138     \subsubsection{\label{introSection:resistanceTensorRegular}\textbf{The Resistance Tensor for Regular Shape}}
139    
140 tim 2873 For a spherical particle with slip boundary conditions, the
141     translational and rotational friction constant can be calculated
142     from Stoke's law,
143 tim 2851 \[
144     \Xi ^{tt} = \left( {\begin{array}{*{20}c}
145     {6\pi \eta R} & 0 & 0 \\
146     0 & {6\pi \eta R} & 0 \\
147     0 & 0 & {6\pi \eta R} \\
148     \end{array}} \right)
149     \]
150     and
151     \[
152     \Xi ^{rr} = \left( {\begin{array}{*{20}c}
153     {8\pi \eta R^3 } & 0 & 0 \\
154     0 & {8\pi \eta R^3 } & 0 \\
155     0 & 0 & {8\pi \eta R^3 } \\
156     \end{array}} \right)
157     \]
158     where $\eta$ is the viscosity of the solvent and $R$ is the
159     hydrodynamics radius.
160    
161     Other non-spherical shape, such as cylinder and ellipsoid
162     \textit{etc}, are widely used as reference for developing new
163     hydrodynamics theory, because their properties can be calculated
164 tim 2873 exactly. In 1936, Perrin extended Stokes's law to general
165     ellipsoids, also called a triaxial ellipsoid, which is given in
166     Cartesian coordinates by\cite{Perrin1934, Perrin1936}
167 tim 2851 \[
168     \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
169     }} = 1
170     \]
171     where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
172     due to the complexity of the elliptic integral, only the ellipsoid
173     with the restriction of two axes having to be equal, \textit{i.e.}
174     prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
175     exactly. Introducing an elliptic integral parameter $S$ for prolate,
176     \[
177     S = \frac{2}{{\sqrt {a^2 - b^2 } }}\ln \frac{{a + \sqrt {a^2 - b^2
178     } }}{b},
179     \]
180     and oblate,
181     \[
182     S = \frac{2}{{\sqrt {b^2 - a^2 } }}arctg\frac{{\sqrt {b^2 - a^2 }
183     }}{a}
184     \],
185     one can write down the translational and rotational resistance
186     tensors
187     \[
188     \begin{array}{l}
189     \Xi _a^{tt} = 16\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - b^2 )S - 2a}} \\
190     \Xi _b^{tt} = \Xi _c^{tt} = 32\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - 3b^2 )S + 2a}} \\
191     \end{array},
192     \]
193     and
194     \[
195     \begin{array}{l}
196     \Xi _a^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^2 - b^2 )b^2 }}{{2a - b^2 S}} \\
197     \Xi _b^{rr} = \Xi _c^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^4 - b^4 )}}{{(2a^2 - b^2 )S - 2a}} \\
198     \end{array}.
199     \]
200    
201 tim 2873 \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}\textbf{The Resistance Tensor for Arbitrary Shapes}}
202 tim 2851
203 tim 2873 Unlike spherical and other simply shaped molecules, there is no
204     analytical solution for the friction tensor for arbitrarily shaped
205 tim 2851 rigid molecules. The ellipsoid of revolution model and general
206     triaxial ellipsoid model have been used to approximate the
207     hydrodynamic properties of rigid bodies. However, since the mapping
208 tim 2873 from all possible ellipsoidal spaces, $r$-space, to all possible
209     combination of rotational diffusion coefficients, $D$-space, is not
210 tim 2851 unique\cite{Wegener1979} as well as the intrinsic coupling between
211 tim 2873 translational and rotational motion of rigid body, general
212     ellipsoids are not always suitable for modeling arbitrarily shaped
213     rigid molecule. A number of studies have been devoted to determine
214     the friction tensor for irregularly shaped rigid bodies using more
215 tim 2851 advanced method where the molecule of interest was modeled by
216     combinations of spheres(beads)\cite{Carrasco1999} and the
217     hydrodynamics properties of the molecule can be calculated using the
218     hydrodynamic interaction tensor. Let us consider a rigid assembly of
219     $N$ beads immersed in a continuous medium. Due to hydrodynamics
220     interaction, the ``net'' velocity of $i$th bead, $v'_i$ is different
221     than its unperturbed velocity $v_i$,
222     \[
223     v'_i = v_i - \sum\limits_{j \ne i} {T_{ij} F_j }
224     \]
225     where $F_i$ is the frictional force, and $T_{ij}$ is the
226     hydrodynamic interaction tensor. The friction force of $i$th bead is
227     proportional to its ``net'' velocity
228     \begin{equation}
229     F_i = \zeta _i v_i - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
230     \label{introEquation:tensorExpression}
231     \end{equation}
232     This equation is the basis for deriving the hydrodynamic tensor. In
233     1930, Oseen and Burgers gave a simple solution to Equation
234     \ref{introEquation:tensorExpression}
235     \begin{equation}
236     T_{ij} = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
237     R_{ij}^T }}{{R_{ij}^2 }}} \right). \label{introEquation:oseenTensor}
238     \end{equation}
239     Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
240     A second order expression for element of different size was
241     introduced by Rotne and Prager\cite{Rotne1969} and improved by
242     Garc\'{i}a de la Torre and Bloomfield\cite{Torre1977},
243     \begin{equation}
244     T_{ij} = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
245     \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
246     _i^2 + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
247     \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
248     \label{introEquation:RPTensorNonOverlapped}
249     \end{equation}
250     Both of the Equation \ref{introEquation:oseenTensor} and Equation
251     \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
252     \ge \sigma _i + \sigma _j$. An alternative expression for
253     overlapping beads with the same radius, $\sigma$, is given by
254     \begin{equation}
255     T_{ij} = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
256     \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
257     \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
258     \label{introEquation:RPTensorOverlapped}
259     \end{equation}
260    
261     To calculate the resistance tensor at an arbitrary origin $O$, we
262     construct a $3N \times 3N$ matrix consisting of $N \times N$
263     $B_{ij}$ blocks
264     \begin{equation}
265     B = \left( {\begin{array}{*{20}c}
266     {B_{11} } & \ldots & {B_{1N} } \\
267     \vdots & \ddots & \vdots \\
268     {B_{N1} } & \cdots & {B_{NN} } \\
269     \end{array}} \right),
270     \end{equation}
271     where $B_{ij}$ is given by
272     \[
273     B_{ij} = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
274     )T_{ij}
275     \]
276 tim 2873 where $\delta _{ij}$ is Kronecker delta function. Inverting the $B$
277     matrix, we obtain
278 tim 2851
279     \[
280     C = B^{ - 1} = \left( {\begin{array}{*{20}c}
281     {C_{11} } & \ldots & {C_{1N} } \\
282     \vdots & \ddots & \vdots \\
283     {C_{N1} } & \cdots & {C_{NN} } \\
284     \end{array}} \right)
285     \]
286     , which can be partitioned into $N \times N$ $3 \times 3$ block
287     $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
288     \[
289     U_i = \left( {\begin{array}{*{20}c}
290     0 & { - z_i } & {y_i } \\
291     {z_i } & 0 & { - x_i } \\
292     { - y_i } & {x_i } & 0 \\
293     \end{array}} \right)
294     \]
295     where $x_i$, $y_i$, $z_i$ are the components of the vector joining
296     bead $i$ and origin $O$. Hence, the elements of resistance tensor at
297     arbitrary origin $O$ can be written as
298     \begin{equation}
299     \begin{array}{l}
300     \Xi _{}^{tt} = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
301     \Xi _{}^{tr} = \Xi _{}^{rt} = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
302     \Xi _{}^{rr} = - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j \\
303     \end{array}
304     \label{introEquation:ResistanceTensorArbitraryOrigin}
305     \end{equation}
306    
307     The resistance tensor depends on the origin to which they refer. The
308     proper location for applying friction force is the center of
309 tim 2873 resistance (or center of reaction), at which the trace of rotational
310     resistance tensor, $ \Xi ^{rr}$ reaches a minimum value.
311     Mathematically, the center of resistance is defined as an unique
312     point of the rigid body at which the translation-rotation coupling
313     tensor are symmetric,
314 tim 2851 \begin{equation}
315     \Xi^{tr} = \left( {\Xi^{tr} } \right)^T
316     \label{introEquation:definitionCR}
317     \end{equation}
318 tim 2873 From Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
319 tim 2851 we can easily find out that the translational resistance tensor is
320     origin independent, while the rotational resistance tensor and
321     translation-rotation coupling resistance tensor depend on the
322 tim 2873 origin. Given the resistance tensor at an arbitrary origin $O$, and
323     a vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
324 tim 2851 obtain the resistance tensor at $P$ by
325     \begin{equation}
326     \begin{array}{l}
327     \Xi _P^{tt} = \Xi _O^{tt} \\
328     \Xi _P^{tr} = \Xi _P^{rt} = \Xi _O^{tr} - U_{OP} \Xi _O^{tt} \\
329     \Xi _P^{rr} = \Xi _O^{rr} - U_{OP} \Xi _O^{tt} U_{OP} + \Xi _O^{tr} U_{OP} - U_{OP} \Xi _O^{{tr} ^{^T }} \\
330     \end{array}
331     \label{introEquation:resistanceTensorTransformation}
332     \end{equation}
333     where
334     \[
335     U_{OP} = \left( {\begin{array}{*{20}c}
336     0 & { - z_{OP} } & {y_{OP} } \\
337     {z_i } & 0 & { - x_{OP} } \\
338     { - y_{OP} } & {x_{OP} } & 0 \\
339     \end{array}} \right)
340     \]
341     Using Equations \ref{introEquation:definitionCR} and
342     \ref{introEquation:resistanceTensorTransformation}, one can locate
343     the position of center of resistance,
344     \begin{eqnarray*}
345     \left( \begin{array}{l}
346     x_{OR} \\
347     y_{OR} \\
348     z_{OR} \\
349     \end{array} \right) & = &\left( {\begin{array}{*{20}c}
350     {(\Xi _O^{rr} )_{yy} + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} } \\
351     { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz} + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} } \\
352     { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx} + (\Xi _O^{rr} )_{yy} } \\
353     \end{array}} \right)^{ - 1} \\
354     & & \left( \begin{array}{l}
355     (\Xi _O^{tr} )_{yz} - (\Xi _O^{tr} )_{zy} \\
356     (\Xi _O^{tr} )_{zx} - (\Xi _O^{tr} )_{xz} \\
357     (\Xi _O^{tr} )_{xy} - (\Xi _O^{tr} )_{yx} \\
358     \end{array} \right) \\
359     \end{eqnarray*}
360    
361     where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
362     joining center of resistance $R$ and origin $O$.
363    
364 tim 2867 \subsection{Langevin Dynamics for Rigid Particles of Arbitrary Shape\label{LDRB}}
365 tim 2851
366     Consider a Langevin equation of motions in generalized coordinates
367     \begin{equation}
368     M_i \dot V_i (t) = F_{s,i} (t) + F_{f,i(t)} + F_{r,i} (t)
369     \label{LDGeneralizedForm}
370     \end{equation}
371     where $M_i$ is a $6\times6$ generalized diagonal mass (include mass
372     and moment of inertial) matrix and $V_i$ is a generalized velocity,
373 tim 2857 $V_i = V_i(v_i,\omega _i)$. The right side of Eq.~
374 tim 2851 (\ref{LDGeneralizedForm}) consists of three generalized forces in
375     lab-fixed frame, systematic force $F_{s,i}$, dissipative force
376     $F_{f,i}$ and stochastic force $F_{r,i}$. While the evolution of the
377     system in Newtownian mechanics typically refers to lab-fixed frame,
378     it is also convenient to handle the rotation of rigid body in
379     body-fixed frame. Thus the friction and random forces are calculated
380     in body-fixed frame and converted back to lab-fixed frame by:
381     \[
382     \begin{array}{l}
383     F_{f,i}^l (t) = A^T F_{f,i}^b (t), \\
384     F_{r,i}^l (t) = A^T F_{r,i}^b (t) \\
385     \end{array}.
386     \]
387     Here, the body-fixed friction force $F_{r,i}^b$ is proportional to
388     the body-fixed velocity at center of resistance $v_{R,i}^b$ and
389     angular velocity $\omega _i$,
390     \begin{equation}
391     F_{r,i}^b (t) = \left( \begin{array}{l}
392     f_{r,i}^b (t) \\
393     \tau _{r,i}^b (t) \\
394     \end{array} \right) = - \left( {\begin{array}{*{20}c}
395     {\Xi _{R,t} } & {\Xi _{R,c}^T } \\
396     {\Xi _{R,c} } & {\Xi _{R,r} } \\
397     \end{array}} \right)\left( \begin{array}{l}
398     v_{R,i}^b (t) \\
399     \omega _i (t) \\
400     \end{array} \right),
401     \end{equation}
402     while the random force $F_{r,i}^l$ is a Gaussian stochastic variable
403     with zero mean and variance
404     \begin{equation}
405     \left\langle {F_{r,i}^l (t)(F_{r,i}^l (t'))^T } \right\rangle =
406     \left\langle {F_{r,i}^b (t)(F_{r,i}^b (t'))^T } \right\rangle =
407 tim 2863 2k_B T\Xi _R \delta (t - t'). \label{randomForce}
408 tim 2851 \end{equation}
409    
410     The equation of motion for $v_i$ can be written as
411     \begin{equation}
412     m\dot v_i (t) = f_{t,i} (t) = f_{s,i} (t) + f_{f,i}^l (t) +
413     f_{r,i}^l (t)
414     \end{equation}
415     Since the frictional force is applied at the center of resistance
416     which generally does not coincide with the center of mass, an extra
417     torque is exerted at the center of mass. Thus, the net body-fixed
418     frictional torque at the center of mass, $\tau _{n,i}^b (t)$, is
419     given by
420     \begin{equation}
421     \tau _{r,i}^b = \tau _{r,i}^b +r_{MR} \times f_{r,i}^b
422     \end{equation}
423     where $r_{MR}$ is the vector from the center of mass to the center
424     of the resistance. Instead of integrating angular velocity in
425     lab-fixed frame, we consider the equation of motion of angular
426     momentum in body-fixed frame
427     \begin{equation}
428     \dot j_i (t) = \tau _{t,i} (t) = \tau _{s,i} (t) + \tau _{f,i}^b (t)
429     + \tau _{r,i}^b(t)
430     \end{equation}
431    
432     Embedding the friction terms into force and torque, one can
433     integrate the langevin equations of motion for rigid body of
434     arbitrary shape in a velocity-Verlet style 2-part algorithm, where
435     $h= \delta t$:
436    
437     {\tt moveA:}
438     \begin{align*}
439     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
440     + \frac{h}{2} \left( {\bf f}(t) / m \right), \\
441     %
442     {\bf r}(t + h) &\leftarrow {\bf r}(t)
443     + h {\bf v}\left(t + h / 2 \right), \\
444     %
445     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
446     + \frac{h}{2} {\bf \tau}^b(t), \\
447     %
448     \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
449     (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right).
450     \end{align*}
451    
452     In this context, the $\mathrm{rotate}$ function is the reversible
453     product of the three body-fixed rotations,
454     \begin{equation}
455     \mathrm{rotate}({\bf a}) = \mathsf{G}_x(a_x / 2) \cdot
456     \mathsf{G}_y(a_y / 2) \cdot \mathsf{G}_z(a_z) \cdot \mathsf{G}_y(a_y
457     / 2) \cdot \mathsf{G}_x(a_x /2),
458     \end{equation}
459     where each rotational propagator, $\mathsf{G}_\alpha(\theta)$,
460     rotates both the rotation matrix ($\mathsf{A}$) and the body-fixed
461     angular momentum (${\bf j}$) by an angle $\theta$ around body-fixed
462     axis $\alpha$,
463     \begin{equation}
464     \mathsf{G}_\alpha( \theta ) = \left\{
465     \begin{array}{lcl}
466     \mathsf{A}(t) & \leftarrow & \mathsf{A}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
467     {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf
468     j}(0).
469     \end{array}
470     \right.
471     \end{equation}
472     $\mathsf{R}_\alpha$ is a quadratic approximation to the single-axis
473     rotation matrix. For example, in the small-angle limit, the
474     rotation matrix around the body-fixed x-axis can be approximated as
475     \begin{equation}
476     \mathsf{R}_x(\theta) \approx \left(
477     \begin{array}{ccc}
478     1 & 0 & 0 \\
479     0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4} & -\frac{\theta}{1+
480     \theta^2 / 4} \\
481     0 & \frac{\theta}{1+ \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 +
482     \theta^2 / 4}
483     \end{array}
484     \right).
485     \end{equation}
486     All other rotations follow in a straightforward manner.
487    
488     After the first part of the propagation, the forces and body-fixed
489     torques are calculated at the new positions and orientations
490    
491     {\tt doForces:}
492     \begin{align*}
493     {\bf f}(t + h) &\leftarrow
494     - \left(\frac{\partial V}{\partial {\bf r}}\right)_{{\bf r}(t + h)}, \\
495     %
496     {\bf \tau}^{s}(t + h) &\leftarrow {\bf u}(t + h)
497     \times \frac{\partial V}{\partial {\bf u}}, \\
498     %
499     {\bf \tau}^{b}(t + h) &\leftarrow \mathsf{A}(t + h)
500     \cdot {\bf \tau}^s(t + h).
501     \end{align*}
502    
503     {\sc oopse} automatically updates ${\bf u}$ when the rotation matrix
504     $\mathsf{A}$ is calculated in {\tt moveA}. Once the forces and
505     torques have been obtained at the new time step, the velocities can
506     be advanced to the same time value.
507    
508     {\tt moveB:}
509     \begin{align*}
510     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t + h / 2
511     \right)
512     + \frac{h}{2} \left( {\bf f}(t + h) / m \right), \\
513     %
514     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t + h / 2
515     \right)
516     + \frac{h}{2} {\bf \tau}^b(t + h) .
517     \end{align*}
518    
519 tim 2867 \section{Results and Discussion}
520 tim 2851
521 tim 2863 The Langevin algorithm described in previous section has been
522     implemented in {\sc oopse}\cite{Meineke2005} and applied to the
523     studies of kinetics and thermodynamic properties in several systems.
524 tim 2858
525 tim 2867 \subsection{Temperature Control}
526 tim 2858
527 tim 2863 As shown in Eq.~\ref{randomForce}, random collisions associated with
528     the solvent's thermal motions is controlled by the external
529     temperature. The capability to maintain the temperature of the whole
530     system was usually used to measure the stability and efficiency of
531     the algorithm. In order to verify the stability of this new
532     algorithm, a series of simulations are performed on system
533     consisiting of 256 SSD water molecules with different viscosities.
534     Initial configuration for the simulations is taken from a 1ns NVT
535     simulation with a cubic box of 19.7166~\AA. All simulation are
536     carried out with cutoff radius of 9~\AA and 2 fs time step for 1 ns
537     with reference temperature at 300~K. Average temperature as a
538     function of $\eta$ is shown in Table \ref{langevin:viscosity} where
539     the temperatures range from 303.04~K to 300.47~K for $\eta = 0.01 -
540     1$ poise. The better temperature control at higher viscosity can be
541     explained by the finite size effect and relative slow relaxation
542     rate at lower viscosity regime.
543     \begin{table}
544     \caption{Average temperatures from Langevin dynamics simulations of
545     SSD water molecules with reference temperature at 300~K.}
546     \label{langevin:viscosity}
547     \begin{center}
548     \begin{tabular}{|l|l|l|}
549     \hline
550 tim 2865 $\eta$ & $\text{T}_{\text{avg}}$ & $\text{T}_{\text{rms}}$ \\
551 tim 2863 1 & 300.47 & 10.99 \\
552     0.1 & 301.19 & 11.136 \\
553     0.01 & 303.04 & 11.796 \\
554     \hline
555     \end{tabular}
556     \end{center}
557     \end{table}
558    
559     Another set of calculation were performed to study the efficiency of
560     temperature control using different temperature coupling schemes.
561     The starting configuration is cooled to 173~K and evolved using NVE,
562     NVT, and Langevin dynamic with time step of 2 fs.
563     Fig.~\ref{langevin:temperature} shows the heating curve obtained as
564     the systems reach equilibrium. The orange curve in
565     Fig.~\ref{langevin:temperature} represents the simulation using
566     Nos\'e-Hoover temperature scaling scheme with thermostat of 5 ps
567     which gives reasonable tight coupling, while the blue one from
568     Langevin dynamics with viscosity of 0.1 poise demonstrates a faster
569     scaling to the desire temperature. In extremely lower friction
570     regime (when $ \eta \approx 0$), Langevin dynamics becomes normal
571     NVE (see green curve in Fig.~\ref{langevin:temperature}) which loses
572     the temperature control ability.
573    
574 tim 2857 \begin{figure}
575     \centering
576 tim 2858 \includegraphics[width=\linewidth]{temperature.eps}
577 tim 2863 \caption[Plot of Temperature Fluctuation Versus Time]{Plot of
578     temperature fluctuation versus time.} \label{langevin:temperature}
579 tim 2857 \end{figure}
580    
581 tim 2867 \subsection{Langevin Dynamics of Banana Shaped Molecule}
582 tim 2858
583 tim 2876 In order to verify that Langevin dynamics can mimic the dynamics of
584     the systems absent of explicit solvents, we carried out two sets of
585     simulations and compare their dynamic properties.
586 tim 2867
587 tim 2876 \subsubsection{Simulations Contain One Banana Shaped Molecule}
588 tim 2857
589 tim 2876 Fig.~\ref{langevin:oneBanana} shows a snapshot of the simulation
590     made of 256 pentane molecules and one banana shaped molecule at
591 tim 2880 273~K. It has an equivalent implicit solvent system containing only
592 tim 2876 one banana shaped molecule with viscosity of 0.289 center poise. To
593     calculate the hydrodynamic properties of the banana shaped molecule,
594     we create a rough shell model (see Fig.~\ref{langevin:roughShell}),
595     in which the banana shaped molecule is represented as a ``shell''
596     made of 2266 small identical beads with size of 0.3 $\AA$ on the
597     surface. Applying the procedure described in
598     Sec.~\ref{introEquation:ResistanceTensorArbitraryOrigin}, we
599     identified the center of resistance at $(0, 0.7482, -0.1988)$, as
600     well as the resistance tensor,
601     \[
602     \left( {\begin{array}{*{20}c}
603     0.9261 & 1.310e-14 & -7.292e-15&5.067e-14&0.08585&0.2057\\
604     3.968e-14& 0.9270&-0.007063& 0.08585&6.764e-14&4.846e-14\\
605     -6.561e-16&-0.007063&0.7494&0.2057&4.846e-14&1.5036e-14\\
606     5.067e-14&0.0858&0.2057& 58.64& 8.563e-13&-8.5736\\
607     0.08585&6.764e-14&4.846e-14&1.555e-12&48.30&3.219&\\
608     0.2057&4.846e-14&1.5036e-14&-3.904e-13&3.219&10.7373\\
609     \end{array}} \right).
610     \]
611    
612 tim 2860 \begin{figure}
613     \centering
614 tim 2861 \includegraphics[width=\linewidth]{roughShell.eps}
615 tim 2867 \caption[Rough shell model for banana shaped molecule]{Rough shell
616     model for banana shaped molecule.} \label{langevin:roughShell}
617 tim 2861 \end{figure}
618    
619 tim 2882 %\begin{figure}
620     %\centering
621     %\includegraphics[width=\linewidth]{oneBanana.eps}
622     %\caption[Snapshot from Simulation of One Banana Shaped Molecules and
623     %256 Pentane Molecules]{Snapshot from simulation of one Banana shaped
624     %molecules and 256 pentane molecules.} \label{langevin:oneBanana}
625     %\end{figure}
626 tim 2876
627     \subsubsection{Simulations Contain Two Banana Shaped Molecules}
628    
629     \begin{figure}
630     \centering
631 tim 2860 \includegraphics[width=\linewidth]{twoBanana.eps}
632 tim 2867 \caption[Snapshot from Simulation of Two Banana Shaped Molecules and
633     256 Pentane Molecules]{Snapshot from simulation of two Banana shaped
634     molecules and 256 pentane molecules.} \label{langevin:twoBanana}
635 tim 2860 \end{figure}
636    
637 tim 2851 \section{Conclusions}