ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Langevin.tex
Revision: 2889
Committed: Mon Jun 26 13:42:53 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 27267 byte(s)
Log Message:
Change the case caption of tables

File Contents

# User Rev Content
1 tim 2851
2 tim 2880 \chapter{\label{chapt:langevin}LANGEVIN DYNAMICS FOR RIGID BODIES OF ARBITRARY SHAPE}
3 tim 2851
4     \section{Introduction}
5    
6     %applications of langevin dynamics
7     As an excellent alternative to newtonian dynamics, Langevin
8     dynamics, which mimics a simple heat bath with stochastic and
9     dissipative forces, has been applied in a variety of studies. The
10     stochastic treatment of the solvent enables us to carry out
11     substantially longer time simulation. Implicit solvent Langevin
12     dynamics simulation of met-enkephalin not only outperforms explicit
13     solvent simulation on computation efficiency, but also agrees very
14     well with explicit solvent simulation on dynamics
15     properties\cite{Shen2002}. Recently, applying Langevin dynamics with
16     UNRES model, Liow and his coworkers suggest that protein folding
17     pathways can be possibly exploited within a reasonable amount of
18     time\cite{Liwo2005}. The stochastic nature of the Langevin dynamics
19     also enhances the sampling of the system and increases the
20     probability of crossing energy barrier\cite{Banerjee2004, Cui2003}.
21     Combining Langevin dynamics with Kramers's theory, Klimov and
22     Thirumalai identified the free-energy barrier by studying the
23     viscosity dependence of the protein folding rates\cite{Klimov1997}.
24     In order to account for solvent induced interactions missing from
25     implicit solvent model, Kaya incorporated desolvation free energy
26     barrier into implicit coarse-grained solvent model in protein
27     folding/unfolding study and discovered a higher free energy barrier
28     between the native and denatured states. Because of its stability
29     against noise, Langevin dynamics is very suitable for studying
30     remagnetization processes in various
31 tim 2887 systems\cite{Palacios1998,Berkov2002,Denisov2003}. For instance, the
32     oscillation power spectrum of nanoparticles from Langevin dynamics
33     simulation has the same peak frequencies for different wave
34     vectors,which recovers the property of magnetic excitations in small
35     finite structures\cite{Berkov2005a}. In an attempt to reduce the
36     computational cost of simulation, multiple time stepping (MTS)
37     methods have been introduced and have been of great interest to
38     macromolecule and protein community\cite{Tuckerman1992}. Relying on
39     the observation that forces between distant atoms generally
40     demonstrate slower fluctuations than forces between close atoms, MTS
41     method are generally implemented by evaluating the slowly
42     fluctuating forces less frequently than the fast ones.
43     Unfortunately, nonlinear instability resulting from increasing
44     timestep in MTS simulation have became a critical obstruction
45     preventing the long time simulation. Due to the coupling to the heat
46     bath, Langevin dynamics has been shown to be able to damp out the
47     resonance artifact more efficiently\cite{Sandu1999}.
48 tim 2851
49     %review langevin/browninan dynamics for arbitrarily shaped rigid body
50     Combining Langevin or Brownian dynamics with rigid body dynamics,
51     one can study the slow processes in biomolecular systems. Modeling
52     the DNA as a chain of rigid spheres beads, which subject to harmonic
53     potentials as well as excluded volume potentials, Mielke and his
54     coworkers discover rapid superhelical stress generations from the
55     stochastic simulation of twin supercoiling DNA with response to
56     induced torques\cite{Mielke2004}. Membrane fusion is another key
57     biological process which controls a variety of physiological
58     functions, such as release of neurotransmitters \textit{etc}. A
59     typical fusion event happens on the time scale of millisecond, which
60     is impracticable to study using all atomistic model with newtonian
61     mechanics. With the help of coarse-grained rigid body model and
62     stochastic dynamics, the fusion pathways were exploited by many
63     researchers\cite{Noguchi2001,Noguchi2002,Shillcock2005}. Due to the
64     difficulty of numerical integration of anisotropy rotation, most of
65     the rigid body models are simply modeled by sphere, cylinder,
66     ellipsoid or other regular shapes in stochastic simulations. In an
67     effort to account for the diffusion anisotropy of the arbitrary
68     particles, Fernandes and de la Torre improved the original Brownian
69     dynamics simulation algorithm\cite{Ermak1978,Allison1991} by
70     incorporating a generalized $6\times6$ diffusion tensor and
71     introducing a simple rotation evolution scheme consisting of three
72     consecutive rotations\cite{Fernandes2002}. Unfortunately, unexpected
73     error and bias are introduced into the system due to the arbitrary
74     order of applying the noncommuting rotation
75     operators\cite{Beard2003}. Based on the observation the momentum
76     relaxation time is much less than the time step, one may ignore the
77     inertia in Brownian dynamics. However, assumption of the zero
78     average acceleration is not always true for cooperative motion which
79     is common in protein motion. An inertial Brownian dynamics (IBD) was
80     proposed to address this issue by adding an inertial correction
81 tim 2886 term\cite{Beard2000}. As a complement to IBD which has a lower bound
82 tim 2851 in time step because of the inertial relaxation time, long-time-step
83     inertial dynamics (LTID) can be used to investigate the inertial
84     behavior of the polymer segments in low friction
85 tim 2886 regime\cite{Beard2000}. LTID can also deal with the rotational
86 tim 2851 dynamics for nonskew bodies without translation-rotation coupling by
87     separating the translation and rotation motion and taking advantage
88     of the analytical solution of hydrodynamics properties. However,
89     typical nonskew bodies like cylinder and ellipsoid are inadequate to
90     represent most complex macromolecule assemblies. These intricate
91     molecules have been represented by a set of beads and their
92     hydrodynamics properties can be calculated using variant
93     hydrodynamic interaction tensors.
94    
95     The goal of the present work is to develop a Langevin dynamics
96     algorithm for arbitrary rigid particles by integrating the accurate
97     estimation of friction tensor from hydrodynamics theory into the
98     sophisticated rigid body dynamics.
99    
100 tim 2867 \section{Computational Methods{\label{methodSec}}}
101 tim 2851
102 tim 2853 \subsection{\label{introSection:frictionTensor}Friction Tensor}
103 tim 2873 Theoretically, the friction kernel can be determined using the
104     velocity autocorrelation function. However, this approach become
105     impractical when the system become more and more complicate.
106     Instead, various approaches based on hydrodynamics have been
107     developed to calculate the friction coefficients. In general,
108     friction tensor $\Xi$ is a $6\times 6$ matrix given by
109 tim 2851 \[
110     \Xi = \left( {\begin{array}{*{20}c}
111     {\Xi _{}^{tt} } & {\Xi _{}^{rt} } \\
112     {\Xi _{}^{tr} } & {\Xi _{}^{rr} } \\
113     \end{array}} \right).
114     \]
115     Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are translational friction
116     tensor and rotational resistance (friction) tensor respectively,
117     while ${\Xi^{tr} }$ is translation-rotation coupling tensor and $
118     {\Xi^{rt} }$ is rotation-translation coupling tensor. When a
119     particle moves in a fluid, it may experience friction force or
120     torque along the opposite direction of the velocity or angular
121     velocity,
122     \[
123     \left( \begin{array}{l}
124     F_R \\
125     \tau _R \\
126     \end{array} \right) = - \left( {\begin{array}{*{20}c}
127     {\Xi ^{tt} } & {\Xi ^{rt} } \\
128     {\Xi ^{tr} } & {\Xi ^{rr} } \\
129     \end{array}} \right)\left( \begin{array}{l}
130     v \\
131     w \\
132     \end{array} \right)
133     \]
134     where $F_r$ is the friction force and $\tau _R$ is the friction
135     toque.
136    
137     \subsubsection{\label{introSection:resistanceTensorRegular}\textbf{The Resistance Tensor for Regular Shape}}
138    
139 tim 2873 For a spherical particle with slip boundary conditions, the
140     translational and rotational friction constant can be calculated
141     from Stoke's law,
142 tim 2851 \[
143     \Xi ^{tt} = \left( {\begin{array}{*{20}c}
144     {6\pi \eta R} & 0 & 0 \\
145     0 & {6\pi \eta R} & 0 \\
146     0 & 0 & {6\pi \eta R} \\
147     \end{array}} \right)
148     \]
149     and
150     \[
151     \Xi ^{rr} = \left( {\begin{array}{*{20}c}
152     {8\pi \eta R^3 } & 0 & 0 \\
153     0 & {8\pi \eta R^3 } & 0 \\
154     0 & 0 & {8\pi \eta R^3 } \\
155     \end{array}} \right)
156     \]
157     where $\eta$ is the viscosity of the solvent and $R$ is the
158     hydrodynamics radius.
159    
160     Other non-spherical shape, such as cylinder and ellipsoid
161     \textit{etc}, are widely used as reference for developing new
162     hydrodynamics theory, because their properties can be calculated
163 tim 2873 exactly. In 1936, Perrin extended Stokes's law to general
164     ellipsoids, also called a triaxial ellipsoid, which is given in
165     Cartesian coordinates by\cite{Perrin1934, Perrin1936}
166 tim 2851 \[
167     \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
168     }} = 1
169     \]
170     where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
171     due to the complexity of the elliptic integral, only the ellipsoid
172     with the restriction of two axes having to be equal, \textit{i.e.}
173     prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
174 tim 2887 exactly. Introducing an elliptic integral parameter $S$ for prolate
175     :
176 tim 2851 \[
177     S = \frac{2}{{\sqrt {a^2 - b^2 } }}\ln \frac{{a + \sqrt {a^2 - b^2
178     } }}{b},
179     \]
180 tim 2887 and oblate :
181 tim 2851 \[
182     S = \frac{2}{{\sqrt {b^2 - a^2 } }}arctg\frac{{\sqrt {b^2 - a^2 }
183     }}{a}
184     \],
185     one can write down the translational and rotational resistance
186     tensors
187     \[
188     \begin{array}{l}
189 tim 2887 \Xi _a^{tt} = 16\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - b^2 )S - 2a}}. \\
190     \Xi _b^{tt} = \Xi _c^{tt} = 32\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - 3b^2 )S +
191     2a}},
192     \end{array}
193 tim 2851 \]
194     and
195     \[
196     \begin{array}{l}
197 tim 2887 \Xi _a^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^2 - b^2 )b^2 }}{{2a - b^2 S}}, \\
198 tim 2851 \Xi _b^{rr} = \Xi _c^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^4 - b^4 )}}{{(2a^2 - b^2 )S - 2a}} \\
199     \end{array}.
200     \]
201    
202 tim 2873 \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}\textbf{The Resistance Tensor for Arbitrary Shapes}}
203 tim 2851
204 tim 2873 Unlike spherical and other simply shaped molecules, there is no
205     analytical solution for the friction tensor for arbitrarily shaped
206 tim 2851 rigid molecules. The ellipsoid of revolution model and general
207     triaxial ellipsoid model have been used to approximate the
208     hydrodynamic properties of rigid bodies. However, since the mapping
209 tim 2873 from all possible ellipsoidal spaces, $r$-space, to all possible
210     combination of rotational diffusion coefficients, $D$-space, is not
211 tim 2851 unique\cite{Wegener1979} as well as the intrinsic coupling between
212 tim 2873 translational and rotational motion of rigid body, general
213     ellipsoids are not always suitable for modeling arbitrarily shaped
214     rigid molecule. A number of studies have been devoted to determine
215     the friction tensor for irregularly shaped rigid bodies using more
216 tim 2851 advanced method where the molecule of interest was modeled by
217     combinations of spheres(beads)\cite{Carrasco1999} and the
218     hydrodynamics properties of the molecule can be calculated using the
219     hydrodynamic interaction tensor. Let us consider a rigid assembly of
220     $N$ beads immersed in a continuous medium. Due to hydrodynamics
221     interaction, the ``net'' velocity of $i$th bead, $v'_i$ is different
222     than its unperturbed velocity $v_i$,
223     \[
224     v'_i = v_i - \sum\limits_{j \ne i} {T_{ij} F_j }
225     \]
226     where $F_i$ is the frictional force, and $T_{ij}$ is the
227     hydrodynamic interaction tensor. The friction force of $i$th bead is
228     proportional to its ``net'' velocity
229     \begin{equation}
230     F_i = \zeta _i v_i - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
231     \label{introEquation:tensorExpression}
232     \end{equation}
233     This equation is the basis for deriving the hydrodynamic tensor. In
234     1930, Oseen and Burgers gave a simple solution to Equation
235     \ref{introEquation:tensorExpression}
236     \begin{equation}
237     T_{ij} = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
238     R_{ij}^T }}{{R_{ij}^2 }}} \right). \label{introEquation:oseenTensor}
239     \end{equation}
240     Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
241     A second order expression for element of different size was
242     introduced by Rotne and Prager\cite{Rotne1969} and improved by
243     Garc\'{i}a de la Torre and Bloomfield\cite{Torre1977},
244     \begin{equation}
245     T_{ij} = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
246     \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
247     _i^2 + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
248     \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
249     \label{introEquation:RPTensorNonOverlapped}
250     \end{equation}
251     Both of the Equation \ref{introEquation:oseenTensor} and Equation
252     \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
253     \ge \sigma _i + \sigma _j$. An alternative expression for
254     overlapping beads with the same radius, $\sigma$, is given by
255     \begin{equation}
256     T_{ij} = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
257     \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
258     \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
259     \label{introEquation:RPTensorOverlapped}
260     \end{equation}
261    
262     To calculate the resistance tensor at an arbitrary origin $O$, we
263     construct a $3N \times 3N$ matrix consisting of $N \times N$
264     $B_{ij}$ blocks
265     \begin{equation}
266     B = \left( {\begin{array}{*{20}c}
267     {B_{11} } & \ldots & {B_{1N} } \\
268     \vdots & \ddots & \vdots \\
269     {B_{N1} } & \cdots & {B_{NN} } \\
270     \end{array}} \right),
271     \end{equation}
272     where $B_{ij}$ is given by
273     \[
274     B_{ij} = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
275     )T_{ij}
276     \]
277 tim 2873 where $\delta _{ij}$ is Kronecker delta function. Inverting the $B$
278     matrix, we obtain
279 tim 2851
280     \[
281     C = B^{ - 1} = \left( {\begin{array}{*{20}c}
282     {C_{11} } & \ldots & {C_{1N} } \\
283     \vdots & \ddots & \vdots \\
284     {C_{N1} } & \cdots & {C_{NN} } \\
285     \end{array}} \right)
286     \]
287     , which can be partitioned into $N \times N$ $3 \times 3$ block
288     $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
289     \[
290     U_i = \left( {\begin{array}{*{20}c}
291     0 & { - z_i } & {y_i } \\
292     {z_i } & 0 & { - x_i } \\
293     { - y_i } & {x_i } & 0 \\
294     \end{array}} \right)
295     \]
296     where $x_i$, $y_i$, $z_i$ are the components of the vector joining
297     bead $i$ and origin $O$. Hence, the elements of resistance tensor at
298     arbitrary origin $O$ can be written as
299     \begin{equation}
300     \begin{array}{l}
301     \Xi _{}^{tt} = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
302     \Xi _{}^{tr} = \Xi _{}^{rt} = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
303     \Xi _{}^{rr} = - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j \\
304     \end{array}
305     \label{introEquation:ResistanceTensorArbitraryOrigin}
306     \end{equation}
307    
308     The resistance tensor depends on the origin to which they refer. The
309     proper location for applying friction force is the center of
310 tim 2873 resistance (or center of reaction), at which the trace of rotational
311     resistance tensor, $ \Xi ^{rr}$ reaches a minimum value.
312     Mathematically, the center of resistance is defined as an unique
313     point of the rigid body at which the translation-rotation coupling
314     tensor are symmetric,
315 tim 2851 \begin{equation}
316     \Xi^{tr} = \left( {\Xi^{tr} } \right)^T
317     \label{introEquation:definitionCR}
318     \end{equation}
319 tim 2873 From Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
320 tim 2851 we can easily find out that the translational resistance tensor is
321     origin independent, while the rotational resistance tensor and
322     translation-rotation coupling resistance tensor depend on the
323 tim 2873 origin. Given the resistance tensor at an arbitrary origin $O$, and
324     a vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
325 tim 2851 obtain the resistance tensor at $P$ by
326     \begin{equation}
327     \begin{array}{l}
328     \Xi _P^{tt} = \Xi _O^{tt} \\
329     \Xi _P^{tr} = \Xi _P^{rt} = \Xi _O^{tr} - U_{OP} \Xi _O^{tt} \\
330     \Xi _P^{rr} = \Xi _O^{rr} - U_{OP} \Xi _O^{tt} U_{OP} + \Xi _O^{tr} U_{OP} - U_{OP} \Xi _O^{{tr} ^{^T }} \\
331     \end{array}
332     \label{introEquation:resistanceTensorTransformation}
333     \end{equation}
334     where
335     \[
336     U_{OP} = \left( {\begin{array}{*{20}c}
337     0 & { - z_{OP} } & {y_{OP} } \\
338     {z_i } & 0 & { - x_{OP} } \\
339     { - y_{OP} } & {x_{OP} } & 0 \\
340     \end{array}} \right)
341     \]
342     Using Equations \ref{introEquation:definitionCR} and
343     \ref{introEquation:resistanceTensorTransformation}, one can locate
344     the position of center of resistance,
345     \begin{eqnarray*}
346     \left( \begin{array}{l}
347     x_{OR} \\
348     y_{OR} \\
349     z_{OR} \\
350     \end{array} \right) & = &\left( {\begin{array}{*{20}c}
351     {(\Xi _O^{rr} )_{yy} + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} } \\
352     { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz} + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} } \\
353     { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx} + (\Xi _O^{rr} )_{yy} } \\
354     \end{array}} \right)^{ - 1} \\
355     & & \left( \begin{array}{l}
356     (\Xi _O^{tr} )_{yz} - (\Xi _O^{tr} )_{zy} \\
357     (\Xi _O^{tr} )_{zx} - (\Xi _O^{tr} )_{xz} \\
358     (\Xi _O^{tr} )_{xy} - (\Xi _O^{tr} )_{yx} \\
359     \end{array} \right) \\
360     \end{eqnarray*}
361    
362     where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
363     joining center of resistance $R$ and origin $O$.
364    
365 tim 2867 \subsection{Langevin Dynamics for Rigid Particles of Arbitrary Shape\label{LDRB}}
366 tim 2851
367     Consider a Langevin equation of motions in generalized coordinates
368     \begin{equation}
369     M_i \dot V_i (t) = F_{s,i} (t) + F_{f,i(t)} + F_{r,i} (t)
370     \label{LDGeneralizedForm}
371     \end{equation}
372     where $M_i$ is a $6\times6$ generalized diagonal mass (include mass
373     and moment of inertial) matrix and $V_i$ is a generalized velocity,
374 tim 2857 $V_i = V_i(v_i,\omega _i)$. The right side of Eq.~
375 tim 2851 (\ref{LDGeneralizedForm}) consists of three generalized forces in
376     lab-fixed frame, systematic force $F_{s,i}$, dissipative force
377     $F_{f,i}$ and stochastic force $F_{r,i}$. While the evolution of the
378     system in Newtownian mechanics typically refers to lab-fixed frame,
379     it is also convenient to handle the rotation of rigid body in
380     body-fixed frame. Thus the friction and random forces are calculated
381     in body-fixed frame and converted back to lab-fixed frame by:
382     \[
383     \begin{array}{l}
384     F_{f,i}^l (t) = A^T F_{f,i}^b (t), \\
385     F_{r,i}^l (t) = A^T F_{r,i}^b (t) \\
386     \end{array}.
387     \]
388     Here, the body-fixed friction force $F_{r,i}^b$ is proportional to
389     the body-fixed velocity at center of resistance $v_{R,i}^b$ and
390     angular velocity $\omega _i$,
391     \begin{equation}
392     F_{r,i}^b (t) = \left( \begin{array}{l}
393     f_{r,i}^b (t) \\
394     \tau _{r,i}^b (t) \\
395     \end{array} \right) = - \left( {\begin{array}{*{20}c}
396     {\Xi _{R,t} } & {\Xi _{R,c}^T } \\
397     {\Xi _{R,c} } & {\Xi _{R,r} } \\
398     \end{array}} \right)\left( \begin{array}{l}
399     v_{R,i}^b (t) \\
400     \omega _i (t) \\
401     \end{array} \right),
402     \end{equation}
403     while the random force $F_{r,i}^l$ is a Gaussian stochastic variable
404     with zero mean and variance
405     \begin{equation}
406     \left\langle {F_{r,i}^l (t)(F_{r,i}^l (t'))^T } \right\rangle =
407     \left\langle {F_{r,i}^b (t)(F_{r,i}^b (t'))^T } \right\rangle =
408 tim 2863 2k_B T\Xi _R \delta (t - t'). \label{randomForce}
409 tim 2851 \end{equation}
410    
411     The equation of motion for $v_i$ can be written as
412     \begin{equation}
413     m\dot v_i (t) = f_{t,i} (t) = f_{s,i} (t) + f_{f,i}^l (t) +
414     f_{r,i}^l (t)
415     \end{equation}
416     Since the frictional force is applied at the center of resistance
417     which generally does not coincide with the center of mass, an extra
418     torque is exerted at the center of mass. Thus, the net body-fixed
419     frictional torque at the center of mass, $\tau _{n,i}^b (t)$, is
420     given by
421     \begin{equation}
422     \tau _{r,i}^b = \tau _{r,i}^b +r_{MR} \times f_{r,i}^b
423     \end{equation}
424     where $r_{MR}$ is the vector from the center of mass to the center
425     of the resistance. Instead of integrating angular velocity in
426     lab-fixed frame, we consider the equation of motion of angular
427     momentum in body-fixed frame
428     \begin{equation}
429     \dot j_i (t) = \tau _{t,i} (t) = \tau _{s,i} (t) + \tau _{f,i}^b (t)
430     + \tau _{r,i}^b(t)
431     \end{equation}
432    
433     Embedding the friction terms into force and torque, one can
434     integrate the langevin equations of motion for rigid body of
435     arbitrary shape in a velocity-Verlet style 2-part algorithm, where
436     $h= \delta t$:
437    
438     {\tt moveA:}
439     \begin{align*}
440     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
441     + \frac{h}{2} \left( {\bf f}(t) / m \right), \\
442     %
443     {\bf r}(t + h) &\leftarrow {\bf r}(t)
444     + h {\bf v}\left(t + h / 2 \right), \\
445     %
446     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
447     + \frac{h}{2} {\bf \tau}^b(t), \\
448     %
449     \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
450     (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right).
451     \end{align*}
452    
453     In this context, the $\mathrm{rotate}$ function is the reversible
454     product of the three body-fixed rotations,
455     \begin{equation}
456     \mathrm{rotate}({\bf a}) = \mathsf{G}_x(a_x / 2) \cdot
457     \mathsf{G}_y(a_y / 2) \cdot \mathsf{G}_z(a_z) \cdot \mathsf{G}_y(a_y
458     / 2) \cdot \mathsf{G}_x(a_x /2),
459     \end{equation}
460     where each rotational propagator, $\mathsf{G}_\alpha(\theta)$,
461     rotates both the rotation matrix ($\mathsf{A}$) and the body-fixed
462     angular momentum (${\bf j}$) by an angle $\theta$ around body-fixed
463     axis $\alpha$,
464     \begin{equation}
465     \mathsf{G}_\alpha( \theta ) = \left\{
466     \begin{array}{lcl}
467     \mathsf{A}(t) & \leftarrow & \mathsf{A}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
468     {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf
469     j}(0).
470     \end{array}
471     \right.
472     \end{equation}
473     $\mathsf{R}_\alpha$ is a quadratic approximation to the single-axis
474     rotation matrix. For example, in the small-angle limit, the
475     rotation matrix around the body-fixed x-axis can be approximated as
476     \begin{equation}
477     \mathsf{R}_x(\theta) \approx \left(
478     \begin{array}{ccc}
479     1 & 0 & 0 \\
480     0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4} & -\frac{\theta}{1+
481     \theta^2 / 4} \\
482     0 & \frac{\theta}{1+ \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 +
483     \theta^2 / 4}
484     \end{array}
485     \right).
486     \end{equation}
487     All other rotations follow in a straightforward manner.
488    
489     After the first part of the propagation, the forces and body-fixed
490     torques are calculated at the new positions and orientations
491    
492     {\tt doForces:}
493     \begin{align*}
494     {\bf f}(t + h) &\leftarrow
495     - \left(\frac{\partial V}{\partial {\bf r}}\right)_{{\bf r}(t + h)}, \\
496     %
497     {\bf \tau}^{s}(t + h) &\leftarrow {\bf u}(t + h)
498     \times \frac{\partial V}{\partial {\bf u}}, \\
499     %
500     {\bf \tau}^{b}(t + h) &\leftarrow \mathsf{A}(t + h)
501     \cdot {\bf \tau}^s(t + h).
502     \end{align*}
503    
504     {\sc oopse} automatically updates ${\bf u}$ when the rotation matrix
505     $\mathsf{A}$ is calculated in {\tt moveA}. Once the forces and
506     torques have been obtained at the new time step, the velocities can
507     be advanced to the same time value.
508    
509     {\tt moveB:}
510     \begin{align*}
511     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t + h / 2
512     \right)
513     + \frac{h}{2} \left( {\bf f}(t + h) / m \right), \\
514     %
515     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t + h / 2
516     \right)
517     + \frac{h}{2} {\bf \tau}^b(t + h) .
518     \end{align*}
519    
520 tim 2867 \section{Results and Discussion}
521 tim 2851
522 tim 2863 The Langevin algorithm described in previous section has been
523     implemented in {\sc oopse}\cite{Meineke2005} and applied to the
524     studies of kinetics and thermodynamic properties in several systems.
525 tim 2858
526 tim 2867 \subsection{Temperature Control}
527 tim 2858
528 tim 2863 As shown in Eq.~\ref{randomForce}, random collisions associated with
529     the solvent's thermal motions is controlled by the external
530     temperature. The capability to maintain the temperature of the whole
531     system was usually used to measure the stability and efficiency of
532     the algorithm. In order to verify the stability of this new
533     algorithm, a series of simulations are performed on system
534     consisiting of 256 SSD water molecules with different viscosities.
535     Initial configuration for the simulations is taken from a 1ns NVT
536     simulation with a cubic box of 19.7166~\AA. All simulation are
537     carried out with cutoff radius of 9~\AA and 2 fs time step for 1 ns
538     with reference temperature at 300~K. Average temperature as a
539     function of $\eta$ is shown in Table \ref{langevin:viscosity} where
540     the temperatures range from 303.04~K to 300.47~K for $\eta = 0.01 -
541     1$ poise. The better temperature control at higher viscosity can be
542     explained by the finite size effect and relative slow relaxation
543     rate at lower viscosity regime.
544     \begin{table}
545 tim 2889 \caption{AVERAGE TEMPERATURES FROM LANGEVIN DYNAMICS SIMULATIONS OF
546     SSD WATER MOLECULES WITH REFERENCE TEMPERATURE AT 300~K.}
547 tim 2863 \label{langevin:viscosity}
548     \begin{center}
549     \begin{tabular}{|l|l|l|}
550     \hline
551 tim 2865 $\eta$ & $\text{T}_{\text{avg}}$ & $\text{T}_{\text{rms}}$ \\
552 tim 2863 1 & 300.47 & 10.99 \\
553     0.1 & 301.19 & 11.136 \\
554     0.01 & 303.04 & 11.796 \\
555     \hline
556     \end{tabular}
557     \end{center}
558     \end{table}
559    
560     Another set of calculation were performed to study the efficiency of
561     temperature control using different temperature coupling schemes.
562     The starting configuration is cooled to 173~K and evolved using NVE,
563     NVT, and Langevin dynamic with time step of 2 fs.
564     Fig.~\ref{langevin:temperature} shows the heating curve obtained as
565     the systems reach equilibrium. The orange curve in
566     Fig.~\ref{langevin:temperature} represents the simulation using
567     Nos\'e-Hoover temperature scaling scheme with thermostat of 5 ps
568     which gives reasonable tight coupling, while the blue one from
569     Langevin dynamics with viscosity of 0.1 poise demonstrates a faster
570     scaling to the desire temperature. In extremely lower friction
571     regime (when $ \eta \approx 0$), Langevin dynamics becomes normal
572     NVE (see green curve in Fig.~\ref{langevin:temperature}) which loses
573     the temperature control ability.
574    
575 tim 2857 \begin{figure}
576     \centering
577 tim 2858 \includegraphics[width=\linewidth]{temperature.eps}
578 tim 2863 \caption[Plot of Temperature Fluctuation Versus Time]{Plot of
579     temperature fluctuation versus time.} \label{langevin:temperature}
580 tim 2857 \end{figure}
581    
582 tim 2867 \subsection{Langevin Dynamics of Banana Shaped Molecule}
583 tim 2858
584 tim 2876 In order to verify that Langevin dynamics can mimic the dynamics of
585     the systems absent of explicit solvents, we carried out two sets of
586     simulations and compare their dynamic properties.
587 tim 2867
588 tim 2887 Fig.~\ref{langevin:twoBanana} shows a snapshot of the simulation
589     made of 256 pentane molecules and two banana shaped molecules at
590 tim 2880 273~K. It has an equivalent implicit solvent system containing only
591 tim 2887 two banana shaped molecules with viscosity of 0.289 center poise. To
592 tim 2876 calculate the hydrodynamic properties of the banana shaped molecule,
593     we create a rough shell model (see Fig.~\ref{langevin:roughShell}),
594     in which the banana shaped molecule is represented as a ``shell''
595     made of 2266 small identical beads with size of 0.3 $\AA$ on the
596     surface. Applying the procedure described in
597     Sec.~\ref{introEquation:ResistanceTensorArbitraryOrigin}, we
598     identified the center of resistance at $(0, 0.7482, -0.1988)$, as
599     well as the resistance tensor,
600     \[
601     \left( {\begin{array}{*{20}c}
602     0.9261 & 1.310e-14 & -7.292e-15&5.067e-14&0.08585&0.2057\\
603     3.968e-14& 0.9270&-0.007063& 0.08585&6.764e-14&4.846e-14\\
604     -6.561e-16&-0.007063&0.7494&0.2057&4.846e-14&1.5036e-14\\
605     5.067e-14&0.0858&0.2057& 58.64& 8.563e-13&-8.5736\\
606     0.08585&6.764e-14&4.846e-14&1.555e-12&48.30&3.219&\\
607     0.2057&4.846e-14&1.5036e-14&-3.904e-13&3.219&10.7373\\
608     \end{array}} \right).
609     \]
610    
611 tim 2887
612    
613 tim 2860 \begin{figure}
614     \centering
615 tim 2861 \includegraphics[width=\linewidth]{roughShell.eps}
616 tim 2867 \caption[Rough shell model for banana shaped molecule]{Rough shell
617     model for banana shaped molecule.} \label{langevin:roughShell}
618 tim 2861 \end{figure}
619    
620 tim 2887 \begin{figure}
621     \centering
622     \includegraphics[width=\linewidth]{twoBanana.eps}
623     \caption[Snapshot from Simulation of Two Banana Shaped Molecules and
624     256 Pentane Molecules]{Snapshot from simulation of two Banana shaped
625     molecules and 256 pentane molecules.} \label{langevin:twoBanana}
626     \end{figure}
627 tim 2876
628 tim 2887 \begin{figure}
629     \centering
630     \includegraphics[width=\linewidth]{vacf.eps}
631     \caption[Plots of Velocity Auto-correlation functions]{Velocity
632     Auto-correlation function of NVE (blue) and Langevin dynamics
633     (red).} \label{langevin:twoBanana}
634     \end{figure}
635 tim 2876
636     \begin{figure}
637     \centering
638 tim 2887 \includegraphics[width=\linewidth]{uacf.eps}
639 tim 2867 \caption[Snapshot from Simulation of Two Banana Shaped Molecules and
640     256 Pentane Molecules]{Snapshot from simulation of two Banana shaped
641     molecules and 256 pentane molecules.} \label{langevin:twoBanana}
642 tim 2860 \end{figure}
643    
644 tim 2851 \section{Conclusions}