ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Langevin.tex
Revision: 2949
Committed: Tue Jul 18 15:23:09 2006 UTC (17 years, 11 months ago) by tim
Content type: application/x-tex
File size: 27724 byte(s)
Log Message:
format corrections

File Contents

# User Rev Content
1 tim 2851
2 tim 2880 \chapter{\label{chapt:langevin}LANGEVIN DYNAMICS FOR RIGID BODIES OF ARBITRARY SHAPE}
3 tim 2851
4     \section{Introduction}
5    
6     %applications of langevin dynamics
7 tim 2909 As alternative to Newtonian dynamics, Langevin dynamics, which
8     mimics a simple heat bath with stochastic and dissipative forces,
9     has been applied in a variety of studies. The stochastic treatment
10     of the solvent enables us to carry out substantially longer time
11     simulations. Implicit solvent Langevin dynamics simulations of
12     met-enkephalin not only outperform explicit solvent simulations for
13     computational efficiency, but also agrees very well with explicit
14 tim 2941 solvent simulations for dynamical properties.\cite{Shen2002}
15 tim 2909 Recently, applying Langevin dynamics with the UNRES model, Liow and
16     his coworkers suggest that protein folding pathways can be possibly
17 tim 2941 explored within a reasonable amount of time.\cite{Liwo2005} The
18 tim 2909 stochastic nature of the Langevin dynamics also enhances the
19     sampling of the system and increases the probability of crossing
20 tim 2941 energy barriers.\cite{Banerjee2004, Cui2003} Combining Langevin
21 tim 2909 dynamics with Kramers's theory, Klimov and Thirumalai identified
22     free-energy barriers by studying the viscosity dependence of the
23 tim 2941 protein folding rates.\cite{Klimov1997} In order to account for
24 tim 2909 solvent induced interactions missing from implicit solvent model,
25     Kaya incorporated desolvation free energy barrier into implicit
26     coarse-grained solvent model in protein folding/unfolding studies
27     and discovered a higher free energy barrier between the native and
28     denatured states. Because of its stability against noise, Langevin
29     dynamics is very suitable for studying remagnetization processes in
30 tim 2941 various systems.\cite{Palacios1998,Berkov2002,Denisov2003} For
31 tim 2909 instance, the oscillation power spectrum of nanoparticles from
32     Langevin dynamics simulation has the same peak frequencies for
33     different wave vectors, which recovers the property of magnetic
34 tim 2941 excitations in small finite structures.\cite{Berkov2005a}
35 tim 2851
36     %review langevin/browninan dynamics for arbitrarily shaped rigid body
37     Combining Langevin or Brownian dynamics with rigid body dynamics,
38 tim 2909 one can study slow processes in biomolecular systems. Modeling DNA
39     as a chain of rigid beads, which are subject to harmonic potentials
40     as well as excluded volume potentials, Mielke and his coworkers
41     discovered rapid superhelical stress generations from the stochastic
42     simulation of twin supercoiling DNA with response to induced
43 tim 2941 torques.\cite{Mielke2004} Membrane fusion is another key biological
44 tim 2909 process which controls a variety of physiological functions, such as
45     release of neurotransmitters \textit{etc}. A typical fusion event
46 tim 2938 happens on the time scale of a millisecond, which is impractical to
47 tim 2909 study using atomistic models with newtonian mechanics. With the help
48     of coarse-grained rigid body model and stochastic dynamics, the
49     fusion pathways were explored by many
50 tim 2941 researchers.\cite{Noguchi2001,Noguchi2002,Shillcock2005} Due to the
51 tim 2909 difficulty of numerical integration of anisotropic rotation, most of
52     the rigid body models are simply modeled using spheres, cylinders,
53     ellipsoids or other regular shapes in stochastic simulations. In an
54     effort to account for the diffusion anisotropy of arbitrary
55 tim 2851 particles, Fernandes and de la Torre improved the original Brownian
56     dynamics simulation algorithm\cite{Ermak1978,Allison1991} by
57     incorporating a generalized $6\times6$ diffusion tensor and
58     introducing a simple rotation evolution scheme consisting of three
59 tim 2941 consecutive rotations.\cite{Fernandes2002} Unfortunately, unexpected
60 tim 2909 errors and biases are introduced into the system due to the
61     arbitrary order of applying the noncommuting rotation
62 tim 2941 operators.\cite{Beard2003} Based on the observation the momentum
63 tim 2851 relaxation time is much less than the time step, one may ignore the
64 tim 2909 inertia in Brownian dynamics. However, the assumption of zero
65 tim 2851 average acceleration is not always true for cooperative motion which
66     is common in protein motion. An inertial Brownian dynamics (IBD) was
67     proposed to address this issue by adding an inertial correction
68 tim 2941 term.\cite{Beard2000} As a complement to IBD which has a lower bound
69 tim 2851 in time step because of the inertial relaxation time, long-time-step
70     inertial dynamics (LTID) can be used to investigate the inertial
71     behavior of the polymer segments in low friction
72 tim 2941 regime.\cite{Beard2000} LTID can also deal with the rotational
73 tim 2851 dynamics for nonskew bodies without translation-rotation coupling by
74     separating the translation and rotation motion and taking advantage
75     of the analytical solution of hydrodynamics properties. However,
76 tim 2909 typical nonskew bodies like cylinders and ellipsoids are inadequate
77     to represent most complex macromolecule assemblies. These intricate
78 tim 2851 molecules have been represented by a set of beads and their
79 tim 2909 hydrodynamic properties can be calculated using variants on the
80     standard hydrodynamic interaction tensors.
81 tim 2851
82     The goal of the present work is to develop a Langevin dynamics
83 tim 2909 algorithm for arbitrary-shaped rigid particles by integrating the
84     accurate estimation of friction tensor from hydrodynamics theory
85     into the sophisticated rigid body dynamics algorithms.
86 tim 2851
87 tim 2867 \section{Computational Methods{\label{methodSec}}}
88 tim 2851
89 tim 2853 \subsection{\label{introSection:frictionTensor}Friction Tensor}
90 tim 2873 Theoretically, the friction kernel can be determined using the
91 tim 2909 velocity autocorrelation function. However, this approach becomes
92     impractical when the system becomes more and more complicated.
93 tim 2873 Instead, various approaches based on hydrodynamics have been
94 tim 2909 developed to calculate the friction coefficients. In general, the
95 tim 2873 friction tensor $\Xi$ is a $6\times 6$ matrix given by
96 tim 2851 \[
97     \Xi = \left( {\begin{array}{*{20}c}
98     {\Xi _{}^{tt} } & {\Xi _{}^{rt} } \\
99     {\Xi _{}^{tr} } & {\Xi _{}^{rr} } \\
100     \end{array}} \right).
101     \]
102 tim 2909 Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are $3 \times 3$
103     translational friction tensor and rotational resistance (friction)
104     tensor respectively, while ${\Xi^{tr} }$ is translation-rotation
105     coupling tensor and $ {\Xi^{rt} }$ is rotation-translation coupling
106     tensor. When a particle moves in a fluid, it may experience friction
107     force or torque along the opposite direction of the velocity or
108     angular velocity,
109 tim 2851 \[
110     \left( \begin{array}{l}
111     F_R \\
112     \tau _R \\
113     \end{array} \right) = - \left( {\begin{array}{*{20}c}
114     {\Xi ^{tt} } & {\Xi ^{rt} } \\
115     {\Xi ^{tr} } & {\Xi ^{rr} } \\
116     \end{array}} \right)\left( \begin{array}{l}
117     v \\
118     w \\
119     \end{array} \right)
120     \]
121     where $F_r$ is the friction force and $\tau _R$ is the friction
122 tim 2909 torque.
123 tim 2851
124 tim 2909 \subsubsection{\label{introSection:resistanceTensorRegular}\textbf{The Resistance Tensor for Regular Shapes}}
125 tim 2851
126 tim 2873 For a spherical particle with slip boundary conditions, the
127     translational and rotational friction constant can be calculated
128     from Stoke's law,
129 tim 2851 \[
130     \Xi ^{tt} = \left( {\begin{array}{*{20}c}
131     {6\pi \eta R} & 0 & 0 \\
132     0 & {6\pi \eta R} & 0 \\
133     0 & 0 & {6\pi \eta R} \\
134     \end{array}} \right)
135     \]
136     and
137     \[
138     \Xi ^{rr} = \left( {\begin{array}{*{20}c}
139     {8\pi \eta R^3 } & 0 & 0 \\
140     0 & {8\pi \eta R^3 } & 0 \\
141     0 & 0 & {8\pi \eta R^3 } \\
142     \end{array}} \right)
143     \]
144     where $\eta$ is the viscosity of the solvent and $R$ is the
145 tim 2909 hydrodynamic radius.
146 tim 2851
147 tim 2909 Other non-spherical shapes, such as cylinders and ellipsoids, are
148     widely used as references for developing new hydrodynamics theory,
149     because their properties can be calculated exactly. In 1936, Perrin
150     extended Stokes's law to general ellipsoids, also called a triaxial
151     ellipsoid, which is given in Cartesian coordinates
152     by\cite{Perrin1934, Perrin1936}
153 tim 2851 \[
154     \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
155     }} = 1
156     \]
157     where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
158     due to the complexity of the elliptic integral, only the ellipsoid
159 tim 2909 with the restriction of two axes being equal, \textit{i.e.}
160 tim 2851 prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
161 tim 2887 exactly. Introducing an elliptic integral parameter $S$ for prolate
162 tim 2909 ellipsoids :
163 tim 2851 \[
164     S = \frac{2}{{\sqrt {a^2 - b^2 } }}\ln \frac{{a + \sqrt {a^2 - b^2
165     } }}{b},
166     \]
167 tim 2909 and oblate ellipsoids:
168 tim 2851 \[
169     S = \frac{2}{{\sqrt {b^2 - a^2 } }}arctg\frac{{\sqrt {b^2 - a^2 }
170 tim 2909 }}{a},
171 tim 2905 \]
172 tim 2851 one can write down the translational and rotational resistance
173     tensors
174 tim 2909 \begin{eqnarray*}
175 tim 2916 \Xi _a^{tt} & = & 16\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - b^2 )S - 2a}}. \\
176     \Xi _b^{tt} & = & \Xi _c^{tt} = 32\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - 3b^2 )S +
177 tim 2887 2a}},
178 tim 2909 \end{eqnarray*}
179 tim 2851 and
180 tim 2909 \begin{eqnarray*}
181 tim 2916 \Xi _a^{rr} & = & \frac{{32\pi }}{3}\eta \frac{{(a^2 - b^2 )b^2 }}{{2a - b^2 S}}, \\
182     \Xi _b^{rr} & = & \Xi _c^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^4 - b^4 )}}{{(2a^2 - b^2 )S - 2a}}.
183 tim 2910 \end{eqnarray*}
184 tim 2851
185 tim 2873 \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}\textbf{The Resistance Tensor for Arbitrary Shapes}}
186 tim 2851
187 tim 2873 Unlike spherical and other simply shaped molecules, there is no
188     analytical solution for the friction tensor for arbitrarily shaped
189 tim 2851 rigid molecules. The ellipsoid of revolution model and general
190     triaxial ellipsoid model have been used to approximate the
191     hydrodynamic properties of rigid bodies. However, since the mapping
192 tim 2873 from all possible ellipsoidal spaces, $r$-space, to all possible
193     combination of rotational diffusion coefficients, $D$-space, is not
194 tim 2851 unique\cite{Wegener1979} as well as the intrinsic coupling between
195 tim 2909 translational and rotational motion of rigid bodies, general
196 tim 2873 ellipsoids are not always suitable for modeling arbitrarily shaped
197 tim 2909 rigid molecules. A number of studies have been devoted to
198     determining the friction tensor for irregularly shaped rigid bodies
199     using more advanced methods where the molecule of interest was
200     modeled by a combinations of spheres\cite{Carrasco1999} and the
201 tim 2851 hydrodynamics properties of the molecule can be calculated using the
202     hydrodynamic interaction tensor. Let us consider a rigid assembly of
203 tim 2909 $N$ beads immersed in a continuous medium. Due to hydrodynamic
204 tim 2851 interaction, the ``net'' velocity of $i$th bead, $v'_i$ is different
205     than its unperturbed velocity $v_i$,
206     \[
207     v'_i = v_i - \sum\limits_{j \ne i} {T_{ij} F_j }
208     \]
209     where $F_i$ is the frictional force, and $T_{ij}$ is the
210     hydrodynamic interaction tensor. The friction force of $i$th bead is
211     proportional to its ``net'' velocity
212     \begin{equation}
213     F_i = \zeta _i v_i - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
214     \label{introEquation:tensorExpression}
215     \end{equation}
216     This equation is the basis for deriving the hydrodynamic tensor. In
217 tim 2905 1930, Oseen and Burgers gave a simple solution to
218     Eq.~\ref{introEquation:tensorExpression}
219 tim 2851 \begin{equation}
220     T_{ij} = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
221     R_{ij}^T }}{{R_{ij}^2 }}} \right). \label{introEquation:oseenTensor}
222     \end{equation}
223     Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
224     A second order expression for element of different size was
225     introduced by Rotne and Prager\cite{Rotne1969} and improved by
226 tim 2941 Garc\'{i}a de la Torre and Bloomfield,\cite{Torre1977}
227 tim 2851 \begin{equation}
228     T_{ij} = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
229     \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
230     _i^2 + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
231     \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
232     \label{introEquation:RPTensorNonOverlapped}
233     \end{equation}
234 tim 2905 Both of the Eq.~\ref{introEquation:oseenTensor} and
235     Eq.~\ref{introEquation:RPTensorNonOverlapped} have an assumption
236     $R_{ij} \ge \sigma _i + \sigma _j$. An alternative expression for
237 tim 2851 overlapping beads with the same radius, $\sigma$, is given by
238     \begin{equation}
239     T_{ij} = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
240     \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
241     \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
242     \label{introEquation:RPTensorOverlapped}
243     \end{equation}
244     To calculate the resistance tensor at an arbitrary origin $O$, we
245     construct a $3N \times 3N$ matrix consisting of $N \times N$
246     $B_{ij}$ blocks
247     \begin{equation}
248     B = \left( {\begin{array}{*{20}c}
249     {B_{11} } & \ldots & {B_{1N} } \\
250     \vdots & \ddots & \vdots \\
251     {B_{N1} } & \cdots & {B_{NN} } \\
252     \end{array}} \right),
253     \end{equation}
254     where $B_{ij}$ is given by
255     \[
256     B_{ij} = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
257     )T_{ij}
258     \]
259 tim 2909 where $\delta _{ij}$ is the Kronecker delta function. Inverting the
260     $B$ matrix, we obtain
261 tim 2851 \[
262     C = B^{ - 1} = \left( {\begin{array}{*{20}c}
263     {C_{11} } & \ldots & {C_{1N} } \\
264     \vdots & \ddots & \vdots \\
265     {C_{N1} } & \cdots & {C_{NN} } \\
266 tim 2905 \end{array}} \right),
267 tim 2851 \]
268 tim 2905 which can be partitioned into $N \times N$ $3 \times 3$ block
269 tim 2909 $C_{ij}$. With the help of $C_{ij}$ and the skew matrix $U_i$
270 tim 2851 \[
271     U_i = \left( {\begin{array}{*{20}c}
272     0 & { - z_i } & {y_i } \\
273     {z_i } & 0 & { - x_i } \\
274     { - y_i } & {x_i } & 0 \\
275     \end{array}} \right)
276     \]
277     where $x_i$, $y_i$, $z_i$ are the components of the vector joining
278 tim 2909 bead $i$ and origin $O$, the elements of resistance tensor at
279 tim 2851 arbitrary origin $O$ can be written as
280 tim 2905 \begin{eqnarray}
281 tim 2939 \Xi _{}^{tt} & = & \sum\limits_i {\sum\limits_j {C_{ij} } } \notag , \\
282     \Xi _{}^{tr} & = & \Xi _{}^{rt} = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
283     \Xi _{}^{rr} & = & - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j. \notag \\
284 tim 2851 \label{introEquation:ResistanceTensorArbitraryOrigin}
285 tim 2905 \end{eqnarray}
286 tim 2851 The resistance tensor depends on the origin to which they refer. The
287 tim 2909 proper location for applying the friction force is the center of
288 tim 2873 resistance (or center of reaction), at which the trace of rotational
289     resistance tensor, $ \Xi ^{rr}$ reaches a minimum value.
290     Mathematically, the center of resistance is defined as an unique
291     point of the rigid body at which the translation-rotation coupling
292 tim 2909 tensors are symmetric,
293 tim 2851 \begin{equation}
294     \Xi^{tr} = \left( {\Xi^{tr} } \right)^T
295     \label{introEquation:definitionCR}
296     \end{equation}
297 tim 2873 From Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
298 tim 2909 we can easily derive that the translational resistance tensor is
299 tim 2851 origin independent, while the rotational resistance tensor and
300     translation-rotation coupling resistance tensor depend on the
301 tim 2873 origin. Given the resistance tensor at an arbitrary origin $O$, and
302     a vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
303 tim 2851 obtain the resistance tensor at $P$ by
304     \begin{equation}
305     \begin{array}{l}
306     \Xi _P^{tt} = \Xi _O^{tt} \\
307     \Xi _P^{tr} = \Xi _P^{rt} = \Xi _O^{tr} - U_{OP} \Xi _O^{tt} \\
308     \Xi _P^{rr} = \Xi _O^{rr} - U_{OP} \Xi _O^{tt} U_{OP} + \Xi _O^{tr} U_{OP} - U_{OP} \Xi _O^{{tr} ^{^T }} \\
309     \end{array}
310     \label{introEquation:resistanceTensorTransformation}
311     \end{equation}
312     where
313     \[
314     U_{OP} = \left( {\begin{array}{*{20}c}
315     0 & { - z_{OP} } & {y_{OP} } \\
316     {z_i } & 0 & { - x_{OP} } \\
317     { - y_{OP} } & {x_{OP} } & 0 \\
318     \end{array}} \right)
319     \]
320 tim 2905 Using Eq.~\ref{introEquation:definitionCR} and
321     Eq.~\ref{introEquation:resistanceTensorTransformation}, one can
322     locate the position of center of resistance,
323 tim 2851 \begin{eqnarray*}
324     \left( \begin{array}{l}
325     x_{OR} \\
326     y_{OR} \\
327     z_{OR} \\
328     \end{array} \right) & = &\left( {\begin{array}{*{20}c}
329     {(\Xi _O^{rr} )_{yy} + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} } \\
330     { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz} + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} } \\
331     { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx} + (\Xi _O^{rr} )_{yy} } \\
332     \end{array}} \right)^{ - 1} \\
333     & & \left( \begin{array}{l}
334     (\Xi _O^{tr} )_{yz} - (\Xi _O^{tr} )_{zy} \\
335     (\Xi _O^{tr} )_{zx} - (\Xi _O^{tr} )_{xz} \\
336     (\Xi _O^{tr} )_{xy} - (\Xi _O^{tr} )_{yx} \\
337     \end{array} \right) \\
338     \end{eqnarray*}
339     where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
340     joining center of resistance $R$ and origin $O$.
341    
342 tim 2867 \subsection{Langevin Dynamics for Rigid Particles of Arbitrary Shape\label{LDRB}}
343 tim 2851
344 tim 2909 Consider the Langevin equations of motion in generalized coordinates
345 tim 2851 \begin{equation}
346     M_i \dot V_i (t) = F_{s,i} (t) + F_{f,i(t)} + F_{r,i} (t)
347     \label{LDGeneralizedForm}
348     \end{equation}
349     where $M_i$ is a $6\times6$ generalized diagonal mass (include mass
350     and moment of inertial) matrix and $V_i$ is a generalized velocity,
351 tim 2905 $V_i = V_i(v_i,\omega _i)$. The right side of
352     Eq.~\ref{LDGeneralizedForm} consists of three generalized forces in
353 tim 2851 lab-fixed frame, systematic force $F_{s,i}$, dissipative force
354     $F_{f,i}$ and stochastic force $F_{r,i}$. While the evolution of the
355     system in Newtownian mechanics typically refers to lab-fixed frame,
356     it is also convenient to handle the rotation of rigid body in
357     body-fixed frame. Thus the friction and random forces are calculated
358     in body-fixed frame and converted back to lab-fixed frame by:
359     \[
360     \begin{array}{l}
361 tim 2909 F_{f,i}^l (t) = Q^T F_{f,i}^b (t), \\
362     F_{r,i}^l (t) = Q^T F_{r,i}^b (t). \\
363 tim 2905 \end{array}
364 tim 2851 \]
365     Here, the body-fixed friction force $F_{r,i}^b$ is proportional to
366     the body-fixed velocity at center of resistance $v_{R,i}^b$ and
367 tim 2905 angular velocity $\omega _i$
368 tim 2851 \begin{equation}
369     F_{r,i}^b (t) = \left( \begin{array}{l}
370     f_{r,i}^b (t) \\
371     \tau _{r,i}^b (t) \\
372     \end{array} \right) = - \left( {\begin{array}{*{20}c}
373     {\Xi _{R,t} } & {\Xi _{R,c}^T } \\
374     {\Xi _{R,c} } & {\Xi _{R,r} } \\
375     \end{array}} \right)\left( \begin{array}{l}
376     v_{R,i}^b (t) \\
377     \omega _i (t) \\
378     \end{array} \right),
379     \end{equation}
380     while the random force $F_{r,i}^l$ is a Gaussian stochastic variable
381     with zero mean and variance
382     \begin{equation}
383     \left\langle {F_{r,i}^l (t)(F_{r,i}^l (t'))^T } \right\rangle =
384     \left\langle {F_{r,i}^b (t)(F_{r,i}^b (t'))^T } \right\rangle =
385 tim 2863 2k_B T\Xi _R \delta (t - t'). \label{randomForce}
386 tim 2851 \end{equation}
387     The equation of motion for $v_i$ can be written as
388     \begin{equation}
389     m\dot v_i (t) = f_{t,i} (t) = f_{s,i} (t) + f_{f,i}^l (t) +
390     f_{r,i}^l (t)
391     \end{equation}
392     Since the frictional force is applied at the center of resistance
393     which generally does not coincide with the center of mass, an extra
394     torque is exerted at the center of mass. Thus, the net body-fixed
395     frictional torque at the center of mass, $\tau _{n,i}^b (t)$, is
396     given by
397     \begin{equation}
398     \tau _{r,i}^b = \tau _{r,i}^b +r_{MR} \times f_{r,i}^b
399     \end{equation}
400     where $r_{MR}$ is the vector from the center of mass to the center
401 tim 2909 of the resistance. Instead of integrating the angular velocity in
402     lab-fixed frame, we consider the equation of angular momentum in
403     body-fixed frame
404 tim 2851 \begin{equation}
405     \dot j_i (t) = \tau _{t,i} (t) = \tau _{s,i} (t) + \tau _{f,i}^b (t)
406     + \tau _{r,i}^b(t)
407     \end{equation}
408     Embedding the friction terms into force and torque, one can
409     integrate the langevin equations of motion for rigid body of
410     arbitrary shape in a velocity-Verlet style 2-part algorithm, where
411     $h= \delta t$:
412    
413     {\tt moveA:}
414     \begin{align*}
415     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
416     + \frac{h}{2} \left( {\bf f}(t) / m \right), \\
417     %
418     {\bf r}(t + h) &\leftarrow {\bf r}(t)
419     + h {\bf v}\left(t + h / 2 \right), \\
420     %
421     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
422     + \frac{h}{2} {\bf \tau}^b(t), \\
423     %
424 tim 2909 \mathsf{Q}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
425 tim 2851 (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right).
426     \end{align*}
427     In this context, the $\mathrm{rotate}$ function is the reversible
428     product of the three body-fixed rotations,
429     \begin{equation}
430     \mathrm{rotate}({\bf a}) = \mathsf{G}_x(a_x / 2) \cdot
431     \mathsf{G}_y(a_y / 2) \cdot \mathsf{G}_z(a_z) \cdot \mathsf{G}_y(a_y
432     / 2) \cdot \mathsf{G}_x(a_x /2),
433     \end{equation}
434     where each rotational propagator, $\mathsf{G}_\alpha(\theta)$,
435 tim 2909 rotates both the rotation matrix ($\mathsf{Q}$) and the body-fixed
436 tim 2851 angular momentum (${\bf j}$) by an angle $\theta$ around body-fixed
437     axis $\alpha$,
438     \begin{equation}
439     \mathsf{G}_\alpha( \theta ) = \left\{
440     \begin{array}{lcl}
441 tim 2909 \mathsf{Q}(t) & \leftarrow & \mathsf{Q}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
442 tim 2851 {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf
443     j}(0).
444     \end{array}
445     \right.
446     \end{equation}
447     $\mathsf{R}_\alpha$ is a quadratic approximation to the single-axis
448     rotation matrix. For example, in the small-angle limit, the
449     rotation matrix around the body-fixed x-axis can be approximated as
450     \begin{equation}
451     \mathsf{R}_x(\theta) \approx \left(
452     \begin{array}{ccc}
453     1 & 0 & 0 \\
454     0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4} & -\frac{\theta}{1+
455     \theta^2 / 4} \\
456     0 & \frac{\theta}{1+ \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 +
457     \theta^2 / 4}
458     \end{array}
459     \right).
460     \end{equation}
461 tim 2905 All other rotations follow in a straightforward manner. After the
462     first part of the propagation, the forces and body-fixed torques are
463     calculated at the new positions and orientations
464 tim 2851
465     {\tt doForces:}
466     \begin{align*}
467     {\bf f}(t + h) &\leftarrow
468     - \left(\frac{\partial V}{\partial {\bf r}}\right)_{{\bf r}(t + h)}, \\
469     %
470     {\bf \tau}^{s}(t + h) &\leftarrow {\bf u}(t + h)
471     \times \frac{\partial V}{\partial {\bf u}}, \\
472     %
473 tim 2909 {\bf \tau}^{b}(t + h) &\leftarrow \mathsf{Q}(t + h)
474 tim 2851 \cdot {\bf \tau}^s(t + h).
475     \end{align*}
476 tim 2905 Once the forces and torques have been obtained at the new time step,
477     the velocities can be advanced to the same time value.
478 tim 2851
479     {\tt moveB:}
480     \begin{align*}
481     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t + h / 2
482     \right)
483     + \frac{h}{2} \left( {\bf f}(t + h) / m \right), \\
484     %
485     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t + h / 2
486     \right)
487     + \frac{h}{2} {\bf \tau}^b(t + h) .
488     \end{align*}
489    
490 tim 2867 \section{Results and Discussion}
491 tim 2851
492 tim 2863 The Langevin algorithm described in previous section has been
493 tim 2909 implemented in {\sc oopse}\cite{Meineke2005} and applied to studies
494     of the static and dynamic properties in several systems.
495 tim 2858
496 tim 2867 \subsection{Temperature Control}
497 tim 2858
498 tim 2863 As shown in Eq.~\ref{randomForce}, random collisions associated with
499     the solvent's thermal motions is controlled by the external
500     temperature. The capability to maintain the temperature of the whole
501     system was usually used to measure the stability and efficiency of
502     the algorithm. In order to verify the stability of this new
503     algorithm, a series of simulations are performed on system
504     consisiting of 256 SSD water molecules with different viscosities.
505 tim 2909 The initial configuration for the simulations is taken from a 1ns
506     NVT simulation with a cubic box of 19.7166~\AA. All simulation are
507 tim 2863 carried out with cutoff radius of 9~\AA and 2 fs time step for 1 ns
508 tim 2909 with reference temperature at 300~K. The average temperature as a
509 tim 2863 function of $\eta$ is shown in Table \ref{langevin:viscosity} where
510     the temperatures range from 303.04~K to 300.47~K for $\eta = 0.01 -
511     1$ poise. The better temperature control at higher viscosity can be
512     explained by the finite size effect and relative slow relaxation
513     rate at lower viscosity regime.
514     \begin{table}
515 tim 2889 \caption{AVERAGE TEMPERATURES FROM LANGEVIN DYNAMICS SIMULATIONS OF
516     SSD WATER MOLECULES WITH REFERENCE TEMPERATURE AT 300~K.}
517 tim 2863 \label{langevin:viscosity}
518     \begin{center}
519 tim 2892 \begin{tabular}{lll}
520 tim 2863 \hline
521 tim 2865 $\eta$ & $\text{T}_{\text{avg}}$ & $\text{T}_{\text{rms}}$ \\
522 tim 2892 \hline
523 tim 2863 1 & 300.47 & 10.99 \\
524     0.1 & 301.19 & 11.136 \\
525     0.01 & 303.04 & 11.796 \\
526     \hline
527     \end{tabular}
528     \end{center}
529     \end{table}
530    
531 tim 2938 Another set of calculations were performed to study the efficiency of
532 tim 2863 temperature control using different temperature coupling schemes.
533     The starting configuration is cooled to 173~K and evolved using NVE,
534     NVT, and Langevin dynamic with time step of 2 fs.
535     Fig.~\ref{langevin:temperature} shows the heating curve obtained as
536     the systems reach equilibrium. The orange curve in
537     Fig.~\ref{langevin:temperature} represents the simulation using
538     Nos\'e-Hoover temperature scaling scheme with thermostat of 5 ps
539     which gives reasonable tight coupling, while the blue one from
540     Langevin dynamics with viscosity of 0.1 poise demonstrates a faster
541 tim 2938 scaling to the desire temperature. When $ \eta = 0$, Langevin dynamics becomes normal
542 tim 2909 NVE (see orange curve in Fig.~\ref{langevin:temperature}) which
543     loses the temperature control ability.
544 tim 2863
545 tim 2857 \begin{figure}
546     \centering
547 tim 2858 \includegraphics[width=\linewidth]{temperature.eps}
548 tim 2863 \caption[Plot of Temperature Fluctuation Versus Time]{Plot of
549     temperature fluctuation versus time.} \label{langevin:temperature}
550 tim 2857 \end{figure}
551    
552 tim 2890 \subsection{Langevin Dynamics of Banana Shaped Molecules}
553 tim 2858
554 tim 2876 In order to verify that Langevin dynamics can mimic the dynamics of
555     the systems absent of explicit solvents, we carried out two sets of
556     simulations and compare their dynamic properties.
557 tim 2887 Fig.~\ref{langevin:twoBanana} shows a snapshot of the simulation
558     made of 256 pentane molecules and two banana shaped molecules at
559 tim 2880 273~K. It has an equivalent implicit solvent system containing only
560 tim 2887 two banana shaped molecules with viscosity of 0.289 center poise. To
561 tim 2876 calculate the hydrodynamic properties of the banana shaped molecule,
562 tim 2909 we created a rough shell model (see Fig.~\ref{langevin:roughShell}),
563 tim 2876 in which the banana shaped molecule is represented as a ``shell''
564 tim 2890 made of 2266 small identical beads with size of 0.3 \AA on the
565 tim 2876 surface. Applying the procedure described in
566     Sec.~\ref{introEquation:ResistanceTensorArbitraryOrigin}, we
567 tim 2938 identified the center of resistance at (0 $\rm{\AA}$, 0.7482 $\rm{\AA}$,
568     -0.1988 $\rm{\AA}$), as well as the resistance tensor,
569 tim 2876 \[
570     \left( {\begin{array}{*{20}c}
571 tim 2892 0.9261 & 0 & 0&0&0.08585&0.2057\\
572     0& 0.9270&-0.007063& 0.08585&0&0\\
573 tim 2922 0&-0.007063&0.7494&0.2057&0&0\\
574     0&0.0858&0.2057& 58.64& 0&0\\
575 tim 2892 0.08585&0&0&0&48.30&3.219&\\
576     0.2057&0&0&0&3.219&10.7373\\
577 tim 2876 \end{array}} \right).
578     \]
579 tim 2947 where the units for translational, translation-rotation coupling and rotational tensors are $\frac{kcal \cdot fs}{mol \cdot \rm{\AA}^2}$, $\frac{kcal \cdot fs}{mol \cdot \rm{\AA} \cdot rad}$ and $\frac{kcal \cdot fs}{mol \cdot rad^2}$ respectively.
580     Curves of the velocity auto-correlation functions in
581     Fig.~\ref{langevin:vacf} were shown to match each other very well.
582     However, because of the stochastic nature, simulation using Langevin
583     dynamics was shown to decay slightly faster than MD. In order to
584     study the rotational motion of the molecules, we also calculated the
585     auto-correlation function of the principle axis of the second GB
586     particle, $u$. The discrepancy shown in Fig.~\ref{langevin:uacf} was
587     probably due to the reason that we used the experimental viscosity directly instead of calculating bulk viscosity from simulation.
588    
589 tim 2860 \begin{figure}
590     \centering
591 tim 2861 \includegraphics[width=\linewidth]{roughShell.eps}
592 tim 2867 \caption[Rough shell model for banana shaped molecule]{Rough shell
593     model for banana shaped molecule.} \label{langevin:roughShell}
594 tim 2861 \end{figure}
595    
596 tim 2887 \begin{figure}
597     \centering
598     \includegraphics[width=\linewidth]{twoBanana.eps}
599     \caption[Snapshot from Simulation of Two Banana Shaped Molecules and
600     256 Pentane Molecules]{Snapshot from simulation of two Banana shaped
601     molecules and 256 pentane molecules.} \label{langevin:twoBanana}
602     \end{figure}
603 tim 2876
604 tim 2887 \begin{figure}
605     \centering
606     \includegraphics[width=\linewidth]{vacf.eps}
607 tim 2890 \caption[Plots of Velocity Auto-correlation Functions]{Velocity
608 tim 2914 auto-correlation functions of NVE (explicit solvent) in blue and
609 tim 2909 Langevin dynamics (implicit solvent) in red.} \label{langevin:vacf}
610 tim 2887 \end{figure}
611 tim 2876
612     \begin{figure}
613     \centering
614 tim 2887 \includegraphics[width=\linewidth]{uacf.eps}
615 tim 2890 \caption[Auto-correlation functions of the principle axis of the
616     middle GB particle]{Auto-correlation functions of the principle axis
617 tim 2909 of the middle GB particle of NVE (blue) and Langevin dynamics
618     (red).} \label{langevin:uacf}
619 tim 2860 \end{figure}
620    
621 tim 2851 \section{Conclusions}
622 tim 2890
623     We have presented a new Langevin algorithm by incorporating the
624     hydrodynamics properties of arbitrary shaped molecules into an
625     advanced symplectic integration scheme. The temperature control
626     ability of this algorithm was demonstrated by a set of simulations
627     with different viscosities. It was also shown to have significant
628     advantage of producing rapid thermal equilibration over
629     Nos\'{e}-Hoover method. Further studies in systems involving banana
630     shaped molecules illustrated that the dynamic properties could be
631     preserved by using this new algorithm as an implicit solvent model.