ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Langevin.tex
(Generate patch)

Comparing trunk/tengDissertation/Langevin.tex (file contents):
Revision 2861 by tim, Thu Jun 15 15:06:05 2006 UTC vs.
Revision 2867 by tim, Sat Jun 17 18:43:58 2006 UTC

# Line 98 | Line 98 | sophisticated rigid body dynamics.
98   estimation of friction tensor from hydrodynamics theory into the
99   sophisticated rigid body dynamics.
100  
101 < \section{Computational methods{\label{methodSec}}}
101 > \section{Computational Methods{\label{methodSec}}}
102  
103   \subsection{\label{introSection:frictionTensor}Friction Tensor}
104   Theoretically, the friction kernel can be determined using velocity
# Line 360 | Line 360 | joining center of resistance $R$ and origin $O$.
360   where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
361   joining center of resistance $R$ and origin $O$.
362  
363 < \subsection{Langevin dynamics for rigid particles of arbitrary shape\label{LDRB}}
363 > \subsection{Langevin Dynamics for Rigid Particles of Arbitrary Shape\label{LDRB}}
364  
365   Consider a Langevin equation of motions in generalized coordinates
366   \begin{equation}
# Line 403 | Line 403 | with zero mean and variance
403   \begin{equation}
404   \left\langle {F_{r,i}^l (t)(F_{r,i}^l (t'))^T } \right\rangle  =
405   \left\langle {F_{r,i}^b (t)(F_{r,i}^b (t'))^T } \right\rangle  =
406 < 2k_B T\Xi _R \delta (t - t').
406 > 2k_B T\Xi _R \delta (t - t'). \label{randomForce}
407   \end{equation}
408  
409   The equation of motion for $v_i$ can be written as
# Line 515 | Line 515 | be advanced to the same time value.
515      + \frac{h}{2} {\bf \tau}^b(t + h) .
516   \end{align*}
517  
518 < \section{Results and discussion}
519 <
520 < The Langevin algorithm described in Sec.~\ref{LDRB} has been
521 < implemented in {\sc oopse}\cite{Meineke2005} and applied to several
522 < test systems.
518 > \section{Results and Discussion}
519  
520 < \subsection{Langevin dynamics of}
520 > The Langevin algorithm described in previous section has been
521 > implemented in {\sc oopse}\cite{Meineke2005} and applied to the
522 > studies of kinetics and thermodynamic properties in several systems.
523 >
524 > \subsection{Temperature Control}
525 >
526 > As shown in Eq.~\ref{randomForce}, random collisions associated with
527 > the solvent's thermal motions is controlled by the external
528 > temperature. The capability to maintain the temperature of the whole
529 > system was usually used to measure the stability and efficiency of
530 > the algorithm. In order to verify the stability of this new
531 > algorithm, a series of simulations are performed on system
532 > consisiting of 256 SSD water molecules with different viscosities.
533 > Initial configuration for the simulations is taken from a 1ns NVT
534 > simulation with a cubic box of 19.7166~\AA. All simulation are
535 > carried out with cutoff radius of 9~\AA and 2 fs time step for 1 ns
536 > with reference temperature at 300~K. Average temperature as a
537 > function of $\eta$ is shown in Table \ref{langevin:viscosity} where
538 > the temperatures range from 303.04~K to 300.47~K for $\eta = 0.01 -
539 > 1$ poise. The better temperature control at higher viscosity can be
540 > explained by the finite size effect and relative slow relaxation
541 > rate at lower viscosity regime.
542 > \begin{table}
543 > \caption{Average temperatures from Langevin dynamics simulations of
544 > SSD water molecules with reference temperature at 300~K.}
545 > \label{langevin:viscosity}
546 > \begin{center}
547 > \begin{tabular}{|l|l|l|}
548 >  \hline
549 >  $\eta$ & $\text{T}_{\text{avg}}$ & $\text{T}_{\text{rms}}$ \\
550 >  1    & 300.47 & 10.99 \\
551 >  0.1  & 301.19 & 11.136 \\
552 >  0.01 & 303.04 & 11.796 \\
553 >  \hline
554 > \end{tabular}
555 > \end{center}
556 > \end{table}
557  
558 + Another set of calculation were performed to study the efficiency of
559 + temperature control using different temperature coupling schemes.
560 + The starting configuration is cooled to 173~K and evolved using NVE,
561 + NVT, and Langevin dynamic with time step of 2 fs.
562 + Fig.~\ref{langevin:temperature} shows the heating curve obtained as
563 + the systems reach equilibrium. The orange curve in
564 + Fig.~\ref{langevin:temperature} represents the simulation using
565 + Nos\'e-Hoover temperature scaling scheme with thermostat of 5 ps
566 + which gives reasonable tight coupling, while the blue one from
567 + Langevin dynamics with viscosity of 0.1 poise demonstrates a faster
568 + scaling to the desire temperature. In extremely lower friction
569 + regime (when $ \eta  \approx 0$), Langevin dynamics becomes normal
570 + NVE (see green curve in Fig.~\ref{langevin:temperature}) which loses
571 + the temperature control ability.
572 +
573   \begin{figure}
574   \centering
575   \includegraphics[width=\linewidth]{temperature.eps}
576 < \caption[]{.} \label{langevin:temperature}
576 > \caption[Plot of Temperature Fluctuation Versus Time]{Plot of
577 > temperature fluctuation versus time.} \label{langevin:temperature}
578   \end{figure}
579  
580 < \subsection{LD of banana-shaped molecule}
580 > \subsection{Langevin Dynamics of Banana Shaped Molecule}
581  
582  
583 +
584   \begin{figure}
585   \centering
586   \includegraphics[width=\linewidth]{one_banana.eps}
# Line 541 | Line 590 | test systems.
590   \begin{figure}
591   \centering
592   \includegraphics[width=\linewidth]{roughShell.eps}
593 < \caption[Rough Shell]{Rough Shell.} \label{langevin:roughShell}
593 > \caption[Rough shell model for banana shaped molecule]{Rough shell
594 > model for banana shaped molecule.} \label{langevin:roughShell}
595   \end{figure}
596  
547
597   \begin{figure}
598   \centering
599   \includegraphics[width=\linewidth]{twoBanana.eps}
600 < \caption[Two Banana Shaped Molecules]{Two Banana Shaped Molecules.}
601 < \label{langevin:twoBanana}
600 > \caption[Snapshot from Simulation of Two Banana Shaped Molecules and
601 > 256 Pentane Molecules]{Snapshot from simulation of two Banana shaped
602 > molecules and 256 pentane molecules.} \label{langevin:twoBanana}
603   \end{figure}
604  
605   \section{Conclusions}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines