ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Langevin.tex
(Generate patch)

Comparing trunk/tengDissertation/Langevin.tex (file contents):
Revision 2914 by tim, Fri Jun 30 14:35:34 2006 UTC vs.
Revision 2939 by tim, Mon Jul 17 15:48:57 2006 UTC

# Line 43 | Line 43 | happens on the time scale of millisecond, which is imp
43   torques\cite{Mielke2004}. Membrane fusion is another key biological
44   process which controls a variety of physiological functions, such as
45   release of neurotransmitters \textit{etc}. A typical fusion event
46 < happens on the time scale of millisecond, which is impractical to
46 > happens on the time scale of a millisecond, which is impractical to
47   study using atomistic models with newtonian mechanics. With the help
48   of coarse-grained rigid body model and stochastic dynamics, the
49   fusion pathways were explored by many
# Line 172 | Line 172 | tensors
172   one can write down the translational and rotational resistance
173   tensors
174   \begin{eqnarray*}
175 < \Xi _a^{tt}  = 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}}. \\
176 < \Xi _b^{tt}  = \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S +
175 > \Xi _a^{tt}  & = & 16\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - b^2 )S - 2a}}. \\
176 > \Xi _b^{tt}  & = & \Xi _c^{tt}  = 32\pi \eta \frac{{a^2  - b^2 }}{{(2a^2  - 3b^2 )S +
177   2a}},
178   \end{eqnarray*}
179   and
180   \begin{eqnarray*}
181 < \Xi _a^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}}, \\
182 < \Xi _b^{rr}  = \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}}.
181 > \Xi _a^{rr} & = & \frac{{32\pi }}{3}\eta \frac{{(a^2  - b^2 )b^2 }}{{2a - b^2 S}}, \\
182 > \Xi _b^{rr} & = & \Xi _c^{rr}  = \frac{{32\pi }}{3}\eta \frac{{(a^4  - b^4 )}}{{(2a^2  - b^2 )S - 2a}}.
183   \end{eqnarray*}
184  
185   \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}\textbf{The Resistance Tensor for Arbitrary Shapes}}
# Line 278 | Line 278 | arbitrary origin $O$ can be written as
278   bead $i$ and origin $O$, the elements of resistance tensor at
279   arbitrary origin $O$ can be written as
280   \begin{eqnarray}
281 < \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } \notag , \\
282 < \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
283 < \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j. \notag \\
281 > \Xi _{}^{tt}  & = & \sum\limits_i {\sum\limits_j {C_{ij} } } \notag , \\
282 > \Xi _{}^{tr}  & = & \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
283 > \Xi _{}^{rr}  & = &  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j. \notag \\
284   \label{introEquation:ResistanceTensorArbitraryOrigin}
285   \end{eqnarray}
286   The resistance tensor depends on the origin to which they refer. The
# Line 528 | Line 528 | Another set of calculation were performed to study the
528   \end{center}
529   \end{table}
530  
531 < Another set of calculation were performed to study the efficiency of
531 > Another set of calculations were performed to study the efficiency of
532   temperature control using different temperature coupling schemes.
533   The starting configuration is cooled to 173~K and evolved using NVE,
534   NVT, and Langevin dynamic with time step of 2 fs.
# Line 538 | Line 538 | scaling to the desire temperature. In extremely lower
538   Nos\'e-Hoover temperature scaling scheme with thermostat of 5 ps
539   which gives reasonable tight coupling, while the blue one from
540   Langevin dynamics with viscosity of 0.1 poise demonstrates a faster
541 < scaling to the desire temperature. In extremely lower friction
542 < regime (when $ \eta  \approx 0$), Langevin dynamics becomes normal
541 > scaling to the desire temperature. When $ \eta = 0$, Langevin dynamics becomes normal
542   NVE (see orange curve in Fig.~\ref{langevin:temperature}) which
543   loses the temperature control ability.
544  
# Line 565 | Line 564 | identified the center of resistance at $(0 \AA, 0.7482
564   made of 2266 small identical beads with size of 0.3 \AA on the
565   surface. Applying the procedure described in
566   Sec.~\ref{introEquation:ResistanceTensorArbitraryOrigin}, we
567 < identified the center of resistance at $(0 \AA, 0.7482 \AA,
568 < -0.1988 \AA)$, as well as the resistance tensor,
567 > identified the center of resistance at (0 $\rm{\AA}$, 0.7482 $\rm{\AA}$,
568 > -0.1988 $\rm{\AA}$), as well as the resistance tensor,
569   \[
570   \left( {\begin{array}{*{20}c}
571   0.9261 & 0 & 0&0&0.08585&0.2057\\
572   0& 0.9270&-0.007063& 0.08585&0&0\\
573 < 0&0.007063&0.7494&0.2057&0&0\\
574 < 0&0.0858&0.2057& 58.64& 0&-8.5736\\
573 > 0&-0.007063&0.7494&0.2057&0&0\\
574 > 0&0.0858&0.2057& 58.64& 0&0\\
575   0.08585&0&0&0&48.30&3.219&\\
576   0.2057&0&0&0&3.219&10.7373\\
577   \end{array}} \right).

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines