ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Langevin.tex
(Generate patch)

Comparing trunk/tengDissertation/Langevin.tex (file contents):
Revision 2892 by tim, Tue Jun 27 01:33:33 2006 UTC vs.
Revision 2905 by tim, Wed Jun 28 19:09:25 2006 UTC

# Line 180 | Line 180 | S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt
180   and oblate :
181   \[
182   S = \frac{2}{{\sqrt {b^2  - a^2 } }}arctg\frac{{\sqrt {b^2  - a^2 }
183 < }}{a}
184 < \],
183 > }}{a}.
184 > \]
185   one can write down the translational and rotational resistance
186   tensors
187   \[
# Line 231 | Line 231 | This equation is the basis for deriving the hydrodynam
231   \label{introEquation:tensorExpression}
232   \end{equation}
233   This equation is the basis for deriving the hydrodynamic tensor. In
234 < 1930, Oseen and Burgers gave a simple solution to Equation
235 < \ref{introEquation:tensorExpression}
234 > 1930, Oseen and Burgers gave a simple solution to
235 > Eq.~\ref{introEquation:tensorExpression}
236   \begin{equation}
237   T_{ij}  = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
238   R_{ij}^T }}{{R_{ij}^2 }}} \right). \label{introEquation:oseenTensor}
# Line 248 | Line 248 | Both of the Equation \ref{introEquation:oseenTensor} a
248   \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
249   \label{introEquation:RPTensorNonOverlapped}
250   \end{equation}
251 < Both of the Equation \ref{introEquation:oseenTensor} and Equation
252 < \ref{introEquation:RPTensorNonOverlapped} have an assumption $R_{ij}
253 < \ge \sigma _i  + \sigma _j$. An alternative expression for
251 > Both of the Eq.~\ref{introEquation:oseenTensor} and
252 > Eq.~\ref{introEquation:RPTensorNonOverlapped} have an assumption
253 > $R_{ij} \ge \sigma _i  + \sigma _j$. An alternative expression for
254   overlapping beads with the same radius, $\sigma$, is given by
255   \begin{equation}
256   T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
# Line 258 | Line 258 | T_{ij}  = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left(
258   \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
259   \label{introEquation:RPTensorOverlapped}
260   \end{equation}
261
261   To calculate the resistance tensor at an arbitrary origin $O$, we
262   construct a $3N \times 3N$ matrix consisting of $N \times N$
263   $B_{ij}$ blocks
# Line 276 | Line 275 | matrix, we obtain
275   \]
276   where $\delta _{ij}$ is Kronecker delta function. Inverting the $B$
277   matrix, we obtain
279
278   \[
279   C = B^{ - 1}  = \left( {\begin{array}{*{20}c}
280     {C_{11} } &  \ldots  & {C_{1N} }  \\
281      \vdots  &  \ddots  &  \vdots   \\
282     {C_{N1} } &  \cdots  & {C_{NN} }  \\
283 < \end{array}} \right)
283 > \end{array}} \right),
284   \]
285 < , which can be partitioned into $N \times N$ $3 \times 3$ block
285 > which can be partitioned into $N \times N$ $3 \times 3$ block
286   $C_{ij}$. With the help of $C_{ij}$ and skew matrix $U_i$
287   \[
288   U_i  = \left( {\begin{array}{*{20}c}
# Line 296 | Line 294 | arbitrary origin $O$ can be written as
294   where $x_i$, $y_i$, $z_i$ are the components of the vector joining
295   bead $i$ and origin $O$. Hence, the elements of resistance tensor at
296   arbitrary origin $O$ can be written as
297 < \begin{equation}
298 < \begin{array}{l}
301 < \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } , \\
297 > \begin{eqnarray}
298 > \Xi _{}^{tt}  = \sum\limits_i {\sum\limits_j {C_{ij} } } \notag , \\
299   \Xi _{}^{tr}  = \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
300 < \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j  \\
304 < \end{array}
300 > \Xi _{}^{rr}  =  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j. \notag \\
301   \label{introEquation:ResistanceTensorArbitraryOrigin}
302 < \end{equation}
302 > \end{eqnarray}
303  
304   The resistance tensor depends on the origin to which they refer. The
305   proper location for applying friction force is the center of
# Line 339 | Line 335 | Using Equations \ref{introEquation:definitionCR} and
335     { - y_{OP} } & {x_{OP} } & 0  \\
336   \end{array}} \right)
337   \]
338 < Using Equations \ref{introEquation:definitionCR} and
339 < \ref{introEquation:resistanceTensorTransformation}, one can locate
340 < the position of center of resistance,
338 > Using Eq.~\ref{introEquation:definitionCR} and
339 > Eq.~\ref{introEquation:resistanceTensorTransformation}, one can
340 > locate the position of center of resistance,
341   \begin{eqnarray*}
342   \left( \begin{array}{l}
343   x_{OR}  \\
# Line 358 | Line 354 | the position of center of resistance,
354   (\Xi _O^{tr} )_{xy}  - (\Xi _O^{tr} )_{yx}  \\
355   \end{array} \right) \\
356   \end{eqnarray*}
361
357   where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
358   joining center of resistance $R$ and origin $O$.
359  
# Line 371 | Line 366 | $V_i = V_i(v_i,\omega _i)$. The right side of Eq.~
366   \end{equation}
367   where $M_i$ is a $6\times6$ generalized diagonal mass (include mass
368   and moment of inertial) matrix and $V_i$ is a generalized velocity,
369 < $V_i = V_i(v_i,\omega _i)$. The right side of Eq.~
370 < (\ref{LDGeneralizedForm}) consists of three generalized forces in
369 > $V_i = V_i(v_i,\omega _i)$. The right side of
370 > Eq.~\ref{LDGeneralizedForm} consists of three generalized forces in
371   lab-fixed frame, systematic force $F_{s,i}$, dissipative force
372   $F_{f,i}$ and stochastic force $F_{r,i}$. While the evolution of the
373   system in Newtownian mechanics typically refers to lab-fixed frame,
# Line 382 | Line 377 | in body-fixed frame and converted back to lab-fixed fr
377   \[
378   \begin{array}{l}
379   F_{f,i}^l (t) = A^T F_{f,i}^b (t), \\
380 < F_{r,i}^l (t) = A^T F_{r,i}^b (t) \\
381 < \end{array}.
380 > F_{r,i}^l (t) = A^T F_{r,i}^b (t). \\
381 > \end{array}
382   \]
383   Here, the body-fixed friction force $F_{r,i}^b$ is proportional to
384   the body-fixed velocity at center of resistance $v_{R,i}^b$ and
385 < angular velocity $\omega _i$,
385 > angular velocity $\omega _i$
386   \begin{equation}
387   F_{r,i}^b (t) = \left( \begin{array}{l}
388   f_{r,i}^b (t) \\
# Line 407 | Line 402 | with zero mean and variance
402   \left\langle {F_{r,i}^b (t)(F_{r,i}^b (t'))^T } \right\rangle  =
403   2k_B T\Xi _R \delta (t - t'). \label{randomForce}
404   \end{equation}
410
405   The equation of motion for $v_i$ can be written as
406   \begin{equation}
407   m\dot v_i (t) = f_{t,i} (t) = f_{s,i} (t) + f_{f,i}^l (t) +
# Line 429 | Line 423 | + \tau _{r,i}^b(t)
423   \dot j_i (t) = \tau _{t,i} (t) = \tau _{s,i} (t) + \tau _{f,i}^b (t)
424   + \tau _{r,i}^b(t)
425   \end{equation}
432
426   Embedding the friction terms into force and torque, one can
427   integrate the langevin equations of motion for rigid body of
428   arbitrary shape in a velocity-Verlet style 2-part algorithm, where
# Line 449 | Line 442 | $h= \delta t$:
442   \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
443      (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right).
444   \end{align*}
452
445   In this context, the $\mathrm{rotate}$ function is the reversible
446   product of the three body-fixed rotations,
447   \begin{equation}
# Line 484 | Line 476 | All other rotations follow in a straightforward manner
476   \end{array}
477   \right).
478   \end{equation}
479 < All other rotations follow in a straightforward manner.
479 > All other rotations follow in a straightforward manner. After the
480 > first part of the propagation, the forces and body-fixed torques are
481 > calculated at the new positions and orientations
482  
489 After the first part of the propagation, the forces and body-fixed
490 torques are calculated at the new positions and orientations
491
483   {\tt doForces:}
484   \begin{align*}
485   {\bf f}(t + h) &\leftarrow
# Line 500 | Line 491 | torques are calculated at the new positions and orient
491   {\bf \tau}^{b}(t + h) &\leftarrow \mathsf{A}(t + h)
492      \cdot {\bf \tau}^s(t + h).
493   \end{align*}
494 + Once the forces and torques have been obtained at the new time step,
495 + the velocities can be advanced to the same time value.
496  
504 {\sc oopse} automatically updates ${\bf u}$ when the rotation matrix
505 $\mathsf{A}$ is calculated in {\tt moveA}.  Once the forces and
506 torques have been obtained at the new time step, the velocities can
507 be advanced to the same time value.
508
497   {\tt moveB:}
498   \begin{align*}
499   {\bf v}\left(t + h \right)  &\leftarrow  {\bf v}\left(t + h / 2

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines