--- trunk/tengDissertation/Langevin.tex 2006/06/29 23:15:00 2910 +++ trunk/tengDissertation/Langevin.tex 2006/07/03 20:22:28 2922 @@ -172,14 +172,14 @@ tensors one can write down the translational and rotational resistance tensors \begin{eqnarray*} - \Xi _a^{tt} = 16\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - b^2 )S - 2a}}. \\ - \Xi _b^{tt} = \Xi _c^{tt} = 32\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - 3b^2 )S + + \Xi _a^{tt} & = & 16\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - b^2 )S - 2a}}. \\ + \Xi _b^{tt} & = & \Xi _c^{tt} = 32\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - 3b^2 )S + 2a}}, \end{eqnarray*} and \begin{eqnarray*} - \Xi _a^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^2 - b^2 )b^2 }}{{2a - b^2 S}}, \\ - \Xi _b^{rr} = \Xi _c^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^4 - b^4 )}}{{(2a^2 - b^2 )S - 2a}}. + \Xi _a^{rr} & = & \frac{{32\pi }}{3}\eta \frac{{(a^2 - b^2 )b^2 }}{{2a - b^2 S}}, \\ + \Xi _b^{rr} & = & \Xi _c^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^4 - b^4 )}}{{(2a^2 - b^2 )S - 2a}}. \end{eqnarray*} \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}\textbf{The Resistance Tensor for Arbitrary Shapes}} @@ -565,14 +565,14 @@ identified the center of resistance at $(0\AA, 0.7482\ made of 2266 small identical beads with size of 0.3 \AA on the surface. Applying the procedure described in Sec.~\ref{introEquation:ResistanceTensorArbitraryOrigin}, we -identified the center of resistance at $(0\AA, 0.7482\AA, --0.1988\AA)$, as well as the resistance tensor, +identified the center of resistance at $(0 \AA, 0.7482 \AA, +-0.1988 \AA)$, as well as the resistance tensor, \[ \left( {\begin{array}{*{20}c} 0.9261 & 0 & 0&0&0.08585&0.2057\\ 0& 0.9270&-0.007063& 0.08585&0&0\\ -0&0.007063&0.7494&0.2057&0&0\\ -0&0.0858&0.2057& 58.64& 0&-8.5736\\ +0&-0.007063&0.7494&0.2057&0&0\\ +0&0.0858&0.2057& 58.64& 0&0\\ 0.08585&0&0&0&48.30&3.219&\\ 0.2057&0&0&0&3.219&10.7373\\ \end{array}} \right). @@ -593,7 +593,7 @@ auto- correlation function of the principle axis of th However, because of the stochastic nature, simulation using Langevin dynamics was shown to decay slightly faster than MD. In order to study the rotational motion of the molecules, we also calculated the -auto- correlation function of the principle axis of the second GB +auto-correlation function of the principle axis of the second GB particle, $u$. The discrepancy shown in Fig.~\ref{langevin:uacf} was probably due to the reason that the viscosity using in the simulations only partially preserved the dynamics of the system. @@ -617,7 +617,7 @@ auto-correlation functions of NVE (explicit solvent) i \centering \includegraphics[width=\linewidth]{vacf.eps} \caption[Plots of Velocity Auto-correlation Functions]{Velocity -auto-correlation functions of NVE (explicit solvent) in blue) and +auto-correlation functions of NVE (explicit solvent) in blue and Langevin dynamics (implicit solvent) in red.} \label{langevin:vacf} \end{figure}