ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Lipid.tex
Revision: 2776
Committed: Thu May 25 21:32:14 2006 UTC (18 years, 1 month ago) by tim
Content type: application/x-tex
File size: 17118 byte(s)
Log Message:
Adding Lipid Chapter

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:lipid}LIPID MODELING}
2    
3     \section{\label{lipidSection:introduction}Introduction}
4    
5 tim 2731 Under biologically relevant conditions, phospholipids are solvated
6     in aqueous solutions at a roughly 25:1 ratio. Solvation can have a
7     tremendous impact on transport phenomena in biological membranes
8     since it can affect the dynamics of ions and molecules that are
9     transferred across membranes. Studies suggest that because of the
10     directional hydrogen bonding ability of the lipid headgroups, a
11     small number of water molecules are strongly held around the
12     different parts of the headgroup and are oriented by them with
13     residence times for the first hydration shell being around 0.5 - 1
14 tim 2776 ns. In the second solvation shell, some water molecules are weakly
15     bound, but are still essential for determining the properties of the
16     system. Transport of various molecular species into living cells is
17     one of the major functions of membranes. A thorough understanding of
18     the underlying molecular mechanism for solute diffusion is crucial
19     to the further studies of other related biological processes. All
20     transport across cell membranes takes place by one of two
21     fundamental processes: Passive transport is driven by bulk or
22     inter-diffusion of the molecules being transported or by membrane
23     pores which facilitate crossing. Active transport depends upon the
24     expenditure of cellular energy in the form of ATP hydrolysis. As the
25     central processes of membrane assembly, translocation of
26     phospholipids across membrane bilayers requires the hydrophilic head
27     of the phospholipid to pass through the highly hydrophobic interior
28     of the membrane, and for the hydrophobic tails to be exposed to the
29     aqueous environment. A number of studies indicate that the flipping
30     of phospholipids occurs rapidly in the eukaryotic ER and the
31     bacterial cytoplasmic membrane via a bi-directional, facilitated
32     diffusion process requiring no metabolic energy input. Another
33     system of interest would be the distribution of sites occupied by
34     inhaled anesthetics in membrane. Although the physiological effects
35     of anesthetics have been extensively studied, the controversy over
36     their effects on lipid bilayers still continues. Recent deuterium
37     NMR measurements on halothane in POPC lipid bilayers suggest the
38     anesthetics are primarily located at the hydrocarbon chain region.
39     Infrared spectroscopy experiments suggest that halothane in DMPC
40     lipid bilayers lives near the membrane/water interface.
41 tim 2731
42 tim 2776 Molecular dynamics simulations have proven to be a powerful tool for
43     studying the functions of biological systems, providing structural,
44     thermodynamic and dynamical information. Unfortunately, much of
45     biological interest happens on time and length scales well beyond
46     the range of current simulation technologies. Several schemes are
47     proposed in this chapter to overcome these difficulties.
48 tim 2731
49 tim 2685 \section{\label{lipidSection:model}Model}
50    
51 tim 2776 \subsection{\label{lipidSection:SSD}The Soft Sticky Dipole Water Model}
52 tim 2685
53 tim 2776 In a typical bilayer simulation, the dominant portion of the
54     computation time will be spent calculating water-water interactions.
55     As an efficient solvent model, the Soft Sticky Dipole (SSD) water
56     model is used as the explicit solvent in this project. Unlike other
57     water models which have partial charges distributed throughout the
58     whole molecule, the SSD water model consists of a single site which
59     is a Lennard-Jones interaction site, as well as a point dipole. A
60     tetrahedral potential is added to correct for hydrogen bonding. The
61     following equation describes the interaction between two water
62     molecules:
63     \[
64     V_{SSD} = V_{LJ} (r_{ij} ) + V_{dp} (r_{ij} ,\Omega _i ,\Omega _j )
65     + V_{sticky} (r_{ij} ,\Omega _i ,\Omega _j )
66     \]
67     where $r_{ij}$ is the vector between molecule $i$ and molecule $j$,
68     $\Omega _i$ and $\Omega _j$ are the orientational degrees of freedom
69     for molecule $i$ and molecule $j$ respectively.
70     \[
71     V_{LJ} (r_{ij} ) = 4\varepsilon _{ij} \left[ {\left( {\frac{{\sigma
72     _{ij} }}{{r_{ij} }}} \right)^{12} - \left( {\frac{{\sigma _{ij}
73     }}{{r_{ij} }}} \right)^6 } \right]
74     \]
75     \[
76     V_{dp} (r_{ij} ,\Omega _i ,\Omega _j ) = \frac{1}{{4\pi \varepsilon
77     _0 }}\left[ {\frac{{\mu _i \cdot \mu _j }}{{r_{ij}^3 }} -
78     \frac{{3\left( {\mu _i \cdot r_{ij} } \right)\left( {\mu _i \cdot
79     r_{ij} } \right)}}{{r_{ij}^5 }}} \right]
80     \]
81     \[
82     V_{sticky} (r_{ij} ,\Omega _i ,\Omega _j ) = v_0 [s(r_{ij} )w(r_{ij}
83     ,\Omega _i ,\Omega _j ) + s'(r_{ij} )w'(r_{ij} ,\Omega _i ,\Omega _j
84     )]
85     \]
86     where $v_0$ is a strength parameter, $s$ and $s'$ are cubic
87     switching functions, while $w$ and $w'$ are responsible for the
88     tetrahedral potential and the short-range correction to the dipolar
89     interaction respectively.
90     \[
91     \begin{array}{l}
92     w(r_{ij} ,\Omega _i ,\Omega _j ) = \sin \theta _{ij} \sin 2\theta _{ij} \cos 2\phi _{ij} \\
93     w'(r_{ij} ,\Omega _i ,\Omega _j ) = (\cos \theta _{ij} - 0.6)^2 (\cos \theta _{ij} + 0.8)^2 - w_0 \\
94     \end{array}
95     \]
96     Although dipole-dipole and sticky interactions are more
97     mathematically complicated than Coulomb interactions, the number of
98     pair interactions is reduced dramatically both because the model
99     only contains a single-point as well as "short range" nature of the
100     higher order interaction.
101    
102     \subsection{\label{lipidSection:coarseGrained}The Coarse-Grained Phospholipid Model}
103    
104     Figure 1 shows a schematic for our coarse-grained phospholipid
105     model. The lipid head group is modeled by a linear rigid body which
106     consists of three Lennard-Jones spheres and a centrally located
107     point-dipole. The backbone atoms in the glycerol motif are modeled
108     by Lennard-Jones spheres with dipoles. Alkyl groups in hydrocarbon
109     chains are replaced with unified CH2 or CH3 atoms.
110    
111     Accurate and efficient computation of electrostatics is one of the
112     most difficult tasks in molecular modeling. Traditionally, the
113     electrostatic interaction between two molecular species is
114     calculated as a sum of interactions between pairs of point charges,
115     using Coulomb's law:
116     \[
117     V = \sum\limits_{i = 1}^{N_A } {\sum\limits_{j = 1}^{N_B }
118     {\frac{{q_i q_j }}{{4\pi \varepsilon _0 r_{ij} }}} }
119     \]
120     where $N_A$ and $N_B$ are the number of point charges in the two
121     molecular species. Originally developed to study ionic crystals, the
122     Ewald summation method mathematically transforms this
123     straightforward but conditionally convergent summation into two more
124     complicated but rapidly convergent sums. One summation is carried
125     out in reciprocal space while the other is carried out in real
126     space. An alternative approach is a multipole expansion, which is
127     based on electrostatic moments, such as charge (monopole), dipole,
128     quadruple etc.
129    
130     Here we consider a linear molecule which consists of two point
131     charges $\pm q$ located at $ ( \pm \frac{d}{2},0)$. The
132     electrostatic potential at point $P$ is given by:
133     \[
134     \frac{1}{{4\pi \varepsilon _0 }}\left( {\frac{{ - q}}{{r_ - }} +
135     \frac{{ + q}}{{r_ + }}} \right) = \frac{1}{{4\pi \varepsilon _0
136     }}\left( {\frac{{ - q}}{{\sqrt {r^2 + \frac{{d^2 }}{4} + rd\cos
137     \theta } }} + \frac{q}{{\sqrt {r^2 + \frac{{d^2 }}{4} - rd\cos
138     \theta } }}} \right)
139     \]
140    
141     The basic assumption of the multipole expansion is $r \gg d$ , thus,
142     $\frac{{d^2 }}{4}$ inside the square root of the denominator is
143     neglected. This is a reasonable approximation in most cases.
144     Unfortunately, in our headgroup model, the distance of charge
145     separation $d$ (4.63 $\AA$ in PC headgroup) may be comparable to
146     $r$. Nevertheless, we could still assume $ \cos \theta \approx 0$
147     in the central region of the headgroup. Using Taylor expansion and
148     associating appropriate terms with electric moments will result in a
149     "split-dipole" approximation:
150     \[
151     V(r) = \frac{1}{{4\pi \varepsilon _0 }}\frac{{r\mu \cos \theta
152     }}{{R^3 }}
153     \]
154     where$R = \sqrt {r^2 + \frac{{d^2 }}{4}}$ Placing a dipole at point
155     $P$ and applying the same strategy, the interaction between two
156     split-dipoles is then given by:
157     \[
158     V_{sd} (r_{ij} ,\Omega _i ,\Omega _j ) = \frac{1}{{4\pi \varepsilon
159     _0 }}\left[ {\frac{{\mu _i \cdot \mu _j }}{{R_{ij}^3 }} -
160     \frac{{3\left( {\mu _i \cdot r_{ij} } \right)\left( {\mu _i \cdot
161     r_{ij} } \right)}}{{R_{ij}^5 }}} \right]
162     \]
163     where $\mu _i$ and $\mu _j$ are the dipole moment of molecule $i$
164     and molecule $j$ respectively, $r_{ij}$ is vector between molecule
165     $i$ and molecule $j$, and $R_{ij{$ is given by,
166     \[
167     R_{ij} = \sqrt {r_{ij}^2 + \frac{{d_i^2 }}{4} + \frac{{d_j^2
168     }}{4}}
169     \]
170     where $d_i$ and $d_j$ are the charge separation distance of dipole
171     and respectively. This approximation to the multipole expansion
172     maintains the fast fall-off of the multipole potentials but lacks
173     the normal divergences when two polar groups get close to one
174     another.
175    
176     \begin{figure}
177     \centering
178     \includegraphics[width=\linewidth]{split_dipole.eps}
179     \caption[Comparison between electrostatic approximation]{Electron
180     density profile along the bilayer normal.}
181     \label{lipidFigure:splitDipole}
182     \end{figure}
183    
184     %\section{\label{lipidSection:methods}Methods}
185    
186 tim 2685 \section{\label{lipidSection:resultDiscussion}Results and Discussion}
187 tim 2776
188     \subsection{One Lipid in Sea of Water Molecules}
189    
190     To exclude the inter-headgroup interaction, atomistic models of one
191     lipid (DMPC or DLPE) in sea of water molecules (TIP3P) were built
192     and studied using atomistic molecular dynamics. The simulation was
193     analyzed using a set of radial distribution functions, which give
194     the probability of finding a pair of molecular species a distance
195     apart, relative to the probability expected for a completely random
196     distribution function at the same density.
197    
198     \begin{equation}
199     g_{AB} (r) = \frac{1}{{\rho _B }}\frac{1}{{N_A }} < \sum\limits_{i
200     \in A} {\sum\limits_{j \in B} {\delta (r - r_{ij} )} } >
201     \end{equation}
202     \begin{equation}
203     g_{AB} (r,\cos \theta ) = \frac{1}{{\rho _B }}\frac{1}{{N_A }} <
204     \sum\limits_{i \in A} {\sum\limits_{j \in B} {\delta (r - r_{ij} )}
205     } \delta (\cos \theta _{ij} - \cos \theta ) >
206     \end{equation}
207    
208     From figure 4(a), we can identify the first solvation shell (3.5
209     $\AA$) and the second solvation shell (5.0 $\AA$) from both plots.
210     However, the corresponding orientations are different. In DLPE,
211     water molecules prefer to sit around -NH3 group due to the hydrogen
212     bonding. In contrast, because of the hydrophobic effect of the
213     -N(CH3)3 group, the preferred position of water molecules in DMPC is
214     around the -PO4 Group. When the water molecules are far from the
215     headgroup, the distribution of the two angles should be uniform. The
216     correlation close to center of the headgroup dipole (< 5 $\AA$) in
217     both plots tell us that in the closely-bound region, the dipoles of
218     the water molecules are preferentially anti-aligned with the dipole
219     of headgroup.
220    
221     \begin{figure}
222     \centering
223     \includegraphics[width=\linewidth]{g_atom.eps}
224     \caption[The pair correlation functions for atomistic models]{}
225     \label{lipidFigure:PCFAtom}
226     \end{figure}
227    
228     The initial configurations of coarse-grained systems are constructed
229     from the previous atomistic ones. The parameters for the
230     coarse-grained model in Table~\ref{lipidTable:parameter} are
231     estimated and tuned using isothermal-isobaric molecular dynamics.
232     Pair distribution functions calculated from coarse-grained models
233     preserve the basic characteristics of the atomistic simulations. The
234     water density, measured in a head-group-fixed reference frame,
235     surrounding two phospholipid headgroups is shown in
236     Fig.~\ref{lipidFigure:PCFCoarse}. It is clear that the phosphate end
237     in DMPC and the amine end in DMPE are the two most heavily solvated
238     atoms.
239    
240     \begin{figure}
241     \centering
242     \includegraphics[width=\linewidth]{g_coarse.eps}
243     \caption[The pair correlation functions for coarse-grained models]{}
244     \label{lipidFigure:PCFCoarse}
245     \end{figure}
246    
247     \begin{figure}
248     \centering
249     \includegraphics[width=\linewidth]{EWD_coarse.eps}
250     \caption[Excess water density of coarse-grained phospholipids]{ }
251     \label{lipidFigure:EWDCoarse}
252     \end{figure}
253    
254     \begin{table}
255     \caption{The Parameters For Coarse-grained Phospholipids}
256     \label{lipidTable:parameter}
257     \begin{center}
258     \begin{tabular}{|l|c|c|c|c|c|}
259     \hline
260     % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
261     Atom type & Mass & $\sigma$ & $\epsilon$ & charge & Dipole \\
262    
263     $\text{{\sc CH}}_2$ & 14.03 & 3.95 & 0.0914 & 0 & 0 \\
264     $\text{{\sc CH}}_3$ & 15.04 & 3.75 & 0.195 & 0 & 0 \\
265     $\text{{\sc CE}}$ & 28.01 & 3.427& 0.294 & 0 & 1.693
266     $\text{{\sc CK}}$ & 28.01 & 3.592& 0.311 & 0 & 2.478 \\
267     $\text{{\sc PO}}_4$ & 108.995& 3.9 & 1.88 & -1& 0 \\
268     $\text{{\sc HDP}}$ & 14.03 & 4.0 & 0.13 & 0 & 0 \\
269     $\text{{\sc NC}}_4$ & 73.137 & 4.9 & 0.88 & +1& 0 \\
270     $\text{{\sc NH}}_3$ & 17.03 & 3.25 & 0.17 & +1& 0\\
271     \hline
272     \end{tabular}
273     \end{center}
274     \end{table}
275    
276     \subsection{Bilayer Simulations Using Coarse-grained Model}
277    
278     A bilayer system consisting of 128 DMPC lipids and 3655 water
279     molecules has been constructed from an atomistic coordinate
280     file.[15] The MD simulation is performed at constant temperature, T
281     = 300K, and constant pressure, p = 1 atm, and consisted of an
282     equilibration period of 2 ns. During the equilibration period, the
283     system was initially simulated at constant volume for 1ns. Once the
284     system was equilibrated at constant volume, the cell dimensions of
285     the system was relaxed by performing under NPT conditions using
286     Nos¨¦-Hoover extended system isothermal-isobaric dynamics. After
287     equilibration, different properties were evaluated over a production
288     run of 5 ns.
289    
290     \begin{figure}
291     \centering
292     \includegraphics[width=\linewidth]{bilayer.eps}
293     \caption[Image of a coarse-grained bilayer system]{A coarse-grained
294     bilayer system consisting of 128 DMPC lipids and 3655 SSD water
295     molecules.}
296     \label{lipidFigure:bilayer}
297     \end{figure}
298    
299     \subsubsection{Electron Density Profile (EDP)}
300    
301     Assuming a gaussian distribution of electrons on each atomic center
302     with a variance estimated from the size of the van der Waals radius,
303     the EDPs which are proportional to the density profiles measured
304     along the bilayer normal obtained by x-ray scattering experiment,
305     can be expressed by
306     \begin{equation}
307     \rho _{x - ray} (z)dz \propto \sum\limits_{i = 1}^N {\frac{{n_i
308     }}{V}\frac{1}{{\sqrt {2\pi \sigma ^2 } }}e^{ - (z - z_i )^2 /2\sigma
309     ^2 } dz},
310     \end{equation}
311     where $\sigma$ is the variance equal to the van der Waals radius,
312     $n_i$ is the atomic number of site $i$ and $V$ is the volume of the
313     slab between $z$ and $z+dz$ . The highest density of total EDP
314     appears at the position of lipid-water interface corresponding to
315     headgroup, glycerol, and carbonyl groups of the lipids and the
316     distribution of water locked near the head groups, while the lowest
317     electron density is in the hydrocarbon region. As a good
318     approximation to the thickness of the bilayer, the headgroup spacing
319     , is defined as the distance between two peaks in the electron
320     density profile, calculated from our simulations to be 34.1 $\AA$.
321     This value is close to the x-ray diffraction experimental value 34.4
322     $\AA$
323    
324     \begin{figure}
325     \centering
326     \includegraphics[width=\linewidth]{electron_density.eps}
327     \caption[The density profile of the lipid bilayers]{Electron density
328     profile along the bilayer normal. The water density is shown in red,
329     the density due to the headgroups in green, the glycerol backbone in
330     brown, $\text{{\sc CH}}_2$ in yellow, $\text{{\sc CH}}_3$ in cyan,
331     and total density due to DMPC in blue.}
332     \label{lipidFigure:electronDensity}
333     \end{figure}
334    
335     \subsubsection{$\text{S}_{\text{{\sc cd}}}$ Order Parameter}
336    
337     Measuring deuterium order parameters by NMR is a useful technique to
338     study the orientation of hydrocarbon chains in phospholipids. The
339     order parameter tensor $S$ is defined by:
340     \begin{equation}
341     S_{ij} = \frac{1}{2} < 3\cos \theta _i \cos \theta _j - \delta
342     _{ij} >
343     \end{equation}
344     where $\theta$ is the angle between the $i$th molecular axis and
345     the bilayer normal ($z$ axis). The brackets denote an average over
346     time and molecules. The molecular axes are defined:
347     \begin{itemize}
348     \item $\mathbf{\hat{z}}$ is the vector from $C_{n-1}$ to $C_{n+1}$.
349     \item $\mathbf{\hat{y}}$ is the vector that is perpendicular to $z$ and
350     in the plane through $C_{n-1}$, $C_{n}$, and $C_{n+1}$.
351     \item $\mathbf{\hat{x}}$ is the vector perpendicular to
352     $\mathbf{\hat{y}}$ and $\mathbf{\hat{z}}$.
353     \end{itemize}
354     In coarse-grained model, although there are no explicit hydrogens,
355     the order parameter can still be written in terms of carbon ordering
356     at each point of the chain
357     \begin{equation}
358     S_{ij} = \frac{1}{2} < 3\cos \theta _i \cos \theta _j - \delta
359     _{ij} >.
360     \end{equation}
361    
362     Fig.~\ref{lipidFigure:Scd} shows the order parameter profile
363     calculated for our coarse-grained DMPC bilayer system at 300K. Also
364     shown are the experimental data of Tiburu. The fact that
365     $\text{S}_{\text{{\sc cd}}}$ order parameters calculated from
366     simulation are higher than the experimental ones is ascribed to the
367     assumption of the locations of implicit hydrogen atoms which are
368     fixed in coarse-grained models at positions relative to the CC
369     vector.
370    
371     \begin{figure}
372     \centering
373     \includegraphics[width=\linewidth]{scd.eps}
374     \caption[$\text{S}_{\text{{\sc cd}}}$ order parameter]{A comparison
375     of $|\text{S}_{\text{{\sc cd}}}|$ between coarse-grained model
376     (blue) and DMPC\cite{petrache00} (black) near 300~K.}
377     \label{lipidFigure:Scd}
378     \end{figure}