ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Lipid.tex
Revision: 2781
Committed: Wed May 31 04:29:44 2006 UTC (18 years, 1 month ago) by tim
Content type: application/x-tex
File size: 17737 byte(s)
Log Message:
begin Liquid Crystal Chapter

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:lipid}LIPID MODELING}
2    
3     \section{\label{lipidSection:introduction}Introduction}
4    
5 tim 2731 Under biologically relevant conditions, phospholipids are solvated
6     in aqueous solutions at a roughly 25:1 ratio. Solvation can have a
7     tremendous impact on transport phenomena in biological membranes
8     since it can affect the dynamics of ions and molecules that are
9     transferred across membranes. Studies suggest that because of the
10     directional hydrogen bonding ability of the lipid headgroups, a
11     small number of water molecules are strongly held around the
12     different parts of the headgroup and are oriented by them with
13     residence times for the first hydration shell being around 0.5 - 1
14 tim 2776 ns. In the second solvation shell, some water molecules are weakly
15     bound, but are still essential for determining the properties of the
16     system. Transport of various molecular species into living cells is
17     one of the major functions of membranes. A thorough understanding of
18     the underlying molecular mechanism for solute diffusion is crucial
19     to the further studies of other related biological processes. All
20     transport across cell membranes takes place by one of two
21     fundamental processes: Passive transport is driven by bulk or
22     inter-diffusion of the molecules being transported or by membrane
23     pores which facilitate crossing. Active transport depends upon the
24     expenditure of cellular energy in the form of ATP hydrolysis. As the
25     central processes of membrane assembly, translocation of
26     phospholipids across membrane bilayers requires the hydrophilic head
27     of the phospholipid to pass through the highly hydrophobic interior
28     of the membrane, and for the hydrophobic tails to be exposed to the
29     aqueous environment. A number of studies indicate that the flipping
30     of phospholipids occurs rapidly in the eukaryotic ER and the
31     bacterial cytoplasmic membrane via a bi-directional, facilitated
32     diffusion process requiring no metabolic energy input. Another
33     system of interest would be the distribution of sites occupied by
34     inhaled anesthetics in membrane. Although the physiological effects
35     of anesthetics have been extensively studied, the controversy over
36     their effects on lipid bilayers still continues. Recent deuterium
37     NMR measurements on halothane in POPC lipid bilayers suggest the
38     anesthetics are primarily located at the hydrocarbon chain region.
39     Infrared spectroscopy experiments suggest that halothane in DMPC
40     lipid bilayers lives near the membrane/water interface.
41 tim 2731
42 tim 2776 Molecular dynamics simulations have proven to be a powerful tool for
43     studying the functions of biological systems, providing structural,
44     thermodynamic and dynamical information. Unfortunately, much of
45     biological interest happens on time and length scales well beyond
46     the range of current simulation technologies. Several schemes are
47     proposed in this chapter to overcome these difficulties.
48 tim 2731
49 tim 2685 \section{\label{lipidSection:model}Model}
50    
51 tim 2776 \subsection{\label{lipidSection:SSD}The Soft Sticky Dipole Water Model}
52 tim 2685
53 tim 2776 In a typical bilayer simulation, the dominant portion of the
54     computation time will be spent calculating water-water interactions.
55     As an efficient solvent model, the Soft Sticky Dipole (SSD) water
56     model is used as the explicit solvent in this project. Unlike other
57     water models which have partial charges distributed throughout the
58     whole molecule, the SSD water model consists of a single site which
59     is a Lennard-Jones interaction site, as well as a point dipole. A
60     tetrahedral potential is added to correct for hydrogen bonding. The
61     following equation describes the interaction between two water
62     molecules:
63     \[
64     V_{SSD} = V_{LJ} (r_{ij} ) + V_{dp} (r_{ij} ,\Omega _i ,\Omega _j )
65     + V_{sticky} (r_{ij} ,\Omega _i ,\Omega _j )
66     \]
67     where $r_{ij}$ is the vector between molecule $i$ and molecule $j$,
68     $\Omega _i$ and $\Omega _j$ are the orientational degrees of freedom
69     for molecule $i$ and molecule $j$ respectively.
70     \[
71     V_{LJ} (r_{ij} ) = 4\varepsilon _{ij} \left[ {\left( {\frac{{\sigma
72     _{ij} }}{{r_{ij} }}} \right)^{12} - \left( {\frac{{\sigma _{ij}
73     }}{{r_{ij} }}} \right)^6 } \right]
74     \]
75     \[
76     V_{dp} (r_{ij} ,\Omega _i ,\Omega _j ) = \frac{1}{{4\pi \varepsilon
77     _0 }}\left[ {\frac{{\mu _i \cdot \mu _j }}{{r_{ij}^3 }} -
78     \frac{{3\left( {\mu _i \cdot r_{ij} } \right)\left( {\mu _i \cdot
79     r_{ij} } \right)}}{{r_{ij}^5 }}} \right]
80     \]
81     \[
82     V_{sticky} (r_{ij} ,\Omega _i ,\Omega _j ) = v_0 [s(r_{ij} )w(r_{ij}
83     ,\Omega _i ,\Omega _j ) + s'(r_{ij} )w'(r_{ij} ,\Omega _i ,\Omega _j
84     )]
85     \]
86     where $v_0$ is a strength parameter, $s$ and $s'$ are cubic
87     switching functions, while $w$ and $w'$ are responsible for the
88     tetrahedral potential and the short-range correction to the dipolar
89     interaction respectively.
90     \[
91     \begin{array}{l}
92     w(r_{ij} ,\Omega _i ,\Omega _j ) = \sin \theta _{ij} \sin 2\theta _{ij} \cos 2\phi _{ij} \\
93     w'(r_{ij} ,\Omega _i ,\Omega _j ) = (\cos \theta _{ij} - 0.6)^2 (\cos \theta _{ij} + 0.8)^2 - w_0 \\
94     \end{array}
95     \]
96     Although dipole-dipole and sticky interactions are more
97     mathematically complicated than Coulomb interactions, the number of
98     pair interactions is reduced dramatically both because the model
99     only contains a single-point as well as "short range" nature of the
100     higher order interaction.
101    
102     \subsection{\label{lipidSection:coarseGrained}The Coarse-Grained Phospholipid Model}
103    
104 tim 2781 Fig.~\ref{lipidFigure:coarseGrained} shows a schematic for our
105     coarse-grained phospholipid model. The lipid head group is modeled
106     by a linear rigid body which consists of three Lennard-Jones spheres
107     and a centrally located point-dipole. The backbone atoms in the
108     glycerol motif are modeled by Lennard-Jones spheres with dipoles.
109     Alkyl groups in hydrocarbon chains are replaced with unified
110     $\text{{\sc CH}}_2$ or $\text{{\sc CH}}_3$ atoms.
111 tim 2776
112 tim 2781 \begin{figure}
113     \centering
114     \includegraphics[width=\linewidth]{coarse_grained.eps}
115     \caption[A representation of coarse-grained phospholipid model]{}
116     \label{lipidFigure:coarseGrained}
117     \end{figure}
118    
119 tim 2776 Accurate and efficient computation of electrostatics is one of the
120     most difficult tasks in molecular modeling. Traditionally, the
121     electrostatic interaction between two molecular species is
122     calculated as a sum of interactions between pairs of point charges,
123     using Coulomb's law:
124     \[
125     V = \sum\limits_{i = 1}^{N_A } {\sum\limits_{j = 1}^{N_B }
126     {\frac{{q_i q_j }}{{4\pi \varepsilon _0 r_{ij} }}} }
127     \]
128     where $N_A$ and $N_B$ are the number of point charges in the two
129     molecular species. Originally developed to study ionic crystals, the
130     Ewald summation method mathematically transforms this
131     straightforward but conditionally convergent summation into two more
132     complicated but rapidly convergent sums. One summation is carried
133     out in reciprocal space while the other is carried out in real
134     space. An alternative approach is a multipole expansion, which is
135     based on electrostatic moments, such as charge (monopole), dipole,
136     quadruple etc.
137    
138     Here we consider a linear molecule which consists of two point
139     charges $\pm q$ located at $ ( \pm \frac{d}{2},0)$. The
140     electrostatic potential at point $P$ is given by:
141     \[
142     \frac{1}{{4\pi \varepsilon _0 }}\left( {\frac{{ - q}}{{r_ - }} +
143     \frac{{ + q}}{{r_ + }}} \right) = \frac{1}{{4\pi \varepsilon _0
144     }}\left( {\frac{{ - q}}{{\sqrt {r^2 + \frac{{d^2 }}{4} + rd\cos
145     \theta } }} + \frac{q}{{\sqrt {r^2 + \frac{{d^2 }}{4} - rd\cos
146     \theta } }}} \right)
147     \]
148    
149 tim 2781 \begin{figure}
150     \centering
151     \includegraphics[width=\linewidth]{charge_dipole.eps}
152     \caption[Electrostatic potential due to a linear molecule comprising
153     two point charges]{Electrostatic potential due to a linear molecule
154     comprising two point charges} \label{lipidFigure:chargeDipole}
155     \end{figure}
156    
157 tim 2776 The basic assumption of the multipole expansion is $r \gg d$ , thus,
158     $\frac{{d^2 }}{4}$ inside the square root of the denominator is
159     neglected. This is a reasonable approximation in most cases.
160     Unfortunately, in our headgroup model, the distance of charge
161     separation $d$ (4.63 $\AA$ in PC headgroup) may be comparable to
162     $r$. Nevertheless, we could still assume $ \cos \theta \approx 0$
163     in the central region of the headgroup. Using Taylor expansion and
164     associating appropriate terms with electric moments will result in a
165     "split-dipole" approximation:
166     \[
167     V(r) = \frac{1}{{4\pi \varepsilon _0 }}\frac{{r\mu \cos \theta
168     }}{{R^3 }}
169     \]
170     where$R = \sqrt {r^2 + \frac{{d^2 }}{4}}$ Placing a dipole at point
171     $P$ and applying the same strategy, the interaction between two
172     split-dipoles is then given by:
173     \[
174     V_{sd} (r_{ij} ,\Omega _i ,\Omega _j ) = \frac{1}{{4\pi \varepsilon
175     _0 }}\left[ {\frac{{\mu _i \cdot \mu _j }}{{R_{ij}^3 }} -
176     \frac{{3\left( {\mu _i \cdot r_{ij} } \right)\left( {\mu _i \cdot
177     r_{ij} } \right)}}{{R_{ij}^5 }}} \right]
178     \]
179     where $\mu _i$ and $\mu _j$ are the dipole moment of molecule $i$
180     and molecule $j$ respectively, $r_{ij}$ is vector between molecule
181     $i$ and molecule $j$, and $R_{ij{$ is given by,
182     \[
183     R_{ij} = \sqrt {r_{ij}^2 + \frac{{d_i^2 }}{4} + \frac{{d_j^2
184     }}{4}}
185     \]
186     where $d_i$ and $d_j$ are the charge separation distance of dipole
187     and respectively. This approximation to the multipole expansion
188     maintains the fast fall-off of the multipole potentials but lacks
189     the normal divergences when two polar groups get close to one
190     another.
191    
192     \begin{figure}
193     \centering
194     \includegraphics[width=\linewidth]{split_dipole.eps}
195     \caption[Comparison between electrostatic approximation]{Electron
196     density profile along the bilayer normal.}
197     \label{lipidFigure:splitDipole}
198     \end{figure}
199    
200     %\section{\label{lipidSection:methods}Methods}
201    
202 tim 2685 \section{\label{lipidSection:resultDiscussion}Results and Discussion}
203 tim 2776
204     \subsection{One Lipid in Sea of Water Molecules}
205    
206     To exclude the inter-headgroup interaction, atomistic models of one
207     lipid (DMPC or DLPE) in sea of water molecules (TIP3P) were built
208     and studied using atomistic molecular dynamics. The simulation was
209     analyzed using a set of radial distribution functions, which give
210     the probability of finding a pair of molecular species a distance
211     apart, relative to the probability expected for a completely random
212     distribution function at the same density.
213    
214     \begin{equation}
215     g_{AB} (r) = \frac{1}{{\rho _B }}\frac{1}{{N_A }} < \sum\limits_{i
216     \in A} {\sum\limits_{j \in B} {\delta (r - r_{ij} )} } >
217     \end{equation}
218     \begin{equation}
219     g_{AB} (r,\cos \theta ) = \frac{1}{{\rho _B }}\frac{1}{{N_A }} <
220     \sum\limits_{i \in A} {\sum\limits_{j \in B} {\delta (r - r_{ij} )}
221     } \delta (\cos \theta _{ij} - \cos \theta ) >
222     \end{equation}
223    
224     From figure 4(a), we can identify the first solvation shell (3.5
225     $\AA$) and the second solvation shell (5.0 $\AA$) from both plots.
226     However, the corresponding orientations are different. In DLPE,
227     water molecules prefer to sit around -NH3 group due to the hydrogen
228     bonding. In contrast, because of the hydrophobic effect of the
229     -N(CH3)3 group, the preferred position of water molecules in DMPC is
230     around the -PO4 Group. When the water molecules are far from the
231     headgroup, the distribution of the two angles should be uniform. The
232     correlation close to center of the headgroup dipole (< 5 $\AA$) in
233     both plots tell us that in the closely-bound region, the dipoles of
234     the water molecules are preferentially anti-aligned with the dipole
235     of headgroup.
236    
237     \begin{figure}
238     \centering
239     \includegraphics[width=\linewidth]{g_atom.eps}
240     \caption[The pair correlation functions for atomistic models]{}
241     \label{lipidFigure:PCFAtom}
242     \end{figure}
243    
244     The initial configurations of coarse-grained systems are constructed
245     from the previous atomistic ones. The parameters for the
246     coarse-grained model in Table~\ref{lipidTable:parameter} are
247     estimated and tuned using isothermal-isobaric molecular dynamics.
248     Pair distribution functions calculated from coarse-grained models
249     preserve the basic characteristics of the atomistic simulations. The
250     water density, measured in a head-group-fixed reference frame,
251     surrounding two phospholipid headgroups is shown in
252     Fig.~\ref{lipidFigure:PCFCoarse}. It is clear that the phosphate end
253     in DMPC and the amine end in DMPE are the two most heavily solvated
254     atoms.
255    
256     \begin{figure}
257     \centering
258     \includegraphics[width=\linewidth]{g_coarse.eps}
259     \caption[The pair correlation functions for coarse-grained models]{}
260     \label{lipidFigure:PCFCoarse}
261     \end{figure}
262    
263     \begin{figure}
264     \centering
265     \includegraphics[width=\linewidth]{EWD_coarse.eps}
266     \caption[Excess water density of coarse-grained phospholipids]{ }
267     \label{lipidFigure:EWDCoarse}
268     \end{figure}
269    
270     \begin{table}
271     \caption{The Parameters For Coarse-grained Phospholipids}
272     \label{lipidTable:parameter}
273     \begin{center}
274     \begin{tabular}{|l|c|c|c|c|c|}
275     \hline
276     % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
277     Atom type & Mass & $\sigma$ & $\epsilon$ & charge & Dipole \\
278     $\text{{\sc CH}}_2$ & 14.03 & 3.95 & 0.0914 & 0 & 0 \\
279     $\text{{\sc CH}}_3$ & 15.04 & 3.75 & 0.195 & 0 & 0 \\
280 tim 2781 $\text{{\sc CE}}$ & 28.01 & 3.427& 0.294 & 0 & 1.693 \\
281 tim 2776 $\text{{\sc CK}}$ & 28.01 & 3.592& 0.311 & 0 & 2.478 \\
282     $\text{{\sc PO}}_4$ & 108.995& 3.9 & 1.88 & -1& 0 \\
283     $\text{{\sc HDP}}$ & 14.03 & 4.0 & 0.13 & 0 & 0 \\
284     $\text{{\sc NC}}_4$ & 73.137 & 4.9 & 0.88 & +1& 0 \\
285     $\text{{\sc NH}}_3$ & 17.03 & 3.25 & 0.17 & +1& 0\\
286     \hline
287     \end{tabular}
288     \end{center}
289     \end{table}
290    
291     \subsection{Bilayer Simulations Using Coarse-grained Model}
292    
293     A bilayer system consisting of 128 DMPC lipids and 3655 water
294     molecules has been constructed from an atomistic coordinate
295     file.[15] The MD simulation is performed at constant temperature, T
296     = 300K, and constant pressure, p = 1 atm, and consisted of an
297     equilibration period of 2 ns. During the equilibration period, the
298     system was initially simulated at constant volume for 1ns. Once the
299     system was equilibrated at constant volume, the cell dimensions of
300     the system was relaxed by performing under NPT conditions using
301     Nos¨¦-Hoover extended system isothermal-isobaric dynamics. After
302     equilibration, different properties were evaluated over a production
303     run of 5 ns.
304    
305     \begin{figure}
306     \centering
307     \includegraphics[width=\linewidth]{bilayer.eps}
308     \caption[Image of a coarse-grained bilayer system]{A coarse-grained
309     bilayer system consisting of 128 DMPC lipids and 3655 SSD water
310     molecules.}
311     \label{lipidFigure:bilayer}
312     \end{figure}
313    
314     \subsubsection{Electron Density Profile (EDP)}
315    
316     Assuming a gaussian distribution of electrons on each atomic center
317     with a variance estimated from the size of the van der Waals radius,
318     the EDPs which are proportional to the density profiles measured
319     along the bilayer normal obtained by x-ray scattering experiment,
320     can be expressed by
321     \begin{equation}
322     \rho _{x - ray} (z)dz \propto \sum\limits_{i = 1}^N {\frac{{n_i
323     }}{V}\frac{1}{{\sqrt {2\pi \sigma ^2 } }}e^{ - (z - z_i )^2 /2\sigma
324     ^2 } dz},
325     \end{equation}
326     where $\sigma$ is the variance equal to the van der Waals radius,
327     $n_i$ is the atomic number of site $i$ and $V$ is the volume of the
328     slab between $z$ and $z+dz$ . The highest density of total EDP
329     appears at the position of lipid-water interface corresponding to
330     headgroup, glycerol, and carbonyl groups of the lipids and the
331     distribution of water locked near the head groups, while the lowest
332     electron density is in the hydrocarbon region. As a good
333     approximation to the thickness of the bilayer, the headgroup spacing
334     , is defined as the distance between two peaks in the electron
335     density profile, calculated from our simulations to be 34.1 $\AA$.
336     This value is close to the x-ray diffraction experimental value 34.4
337 tim 2778 $\AA$.
338 tim 2776
339     \begin{figure}
340     \centering
341     \includegraphics[width=\linewidth]{electron_density.eps}
342     \caption[The density profile of the lipid bilayers]{Electron density
343     profile along the bilayer normal. The water density is shown in red,
344     the density due to the headgroups in green, the glycerol backbone in
345     brown, $\text{{\sc CH}}_2$ in yellow, $\text{{\sc CH}}_3$ in cyan,
346     and total density due to DMPC in blue.}
347     \label{lipidFigure:electronDensity}
348     \end{figure}
349    
350     \subsubsection{$\text{S}_{\text{{\sc cd}}}$ Order Parameter}
351    
352     Measuring deuterium order parameters by NMR is a useful technique to
353     study the orientation of hydrocarbon chains in phospholipids. The
354     order parameter tensor $S$ is defined by:
355     \begin{equation}
356     S_{ij} = \frac{1}{2} < 3\cos \theta _i \cos \theta _j - \delta
357     _{ij} >
358     \end{equation}
359     where $\theta$ is the angle between the $i$th molecular axis and
360     the bilayer normal ($z$ axis). The brackets denote an average over
361     time and molecules. The molecular axes are defined:
362     \begin{itemize}
363     \item $\mathbf{\hat{z}}$ is the vector from $C_{n-1}$ to $C_{n+1}$.
364     \item $\mathbf{\hat{y}}$ is the vector that is perpendicular to $z$ and
365     in the plane through $C_{n-1}$, $C_{n}$, and $C_{n+1}$.
366     \item $\mathbf{\hat{x}}$ is the vector perpendicular to
367     $\mathbf{\hat{y}}$ and $\mathbf{\hat{z}}$.
368     \end{itemize}
369     In coarse-grained model, although there are no explicit hydrogens,
370     the order parameter can still be written in terms of carbon ordering
371     at each point of the chain
372     \begin{equation}
373     S_{ij} = \frac{1}{2} < 3\cos \theta _i \cos \theta _j - \delta
374     _{ij} >.
375     \end{equation}
376    
377     Fig.~\ref{lipidFigure:Scd} shows the order parameter profile
378     calculated for our coarse-grained DMPC bilayer system at 300K. Also
379     shown are the experimental data of Tiburu. The fact that
380     $\text{S}_{\text{{\sc cd}}}$ order parameters calculated from
381     simulation are higher than the experimental ones is ascribed to the
382     assumption of the locations of implicit hydrogen atoms which are
383     fixed in coarse-grained models at positions relative to the CC
384     vector.
385    
386     \begin{figure}
387     \centering
388     \includegraphics[width=\linewidth]{scd.eps}
389     \caption[$\text{S}_{\text{{\sc cd}}}$ order parameter]{A comparison
390     of $|\text{S}_{\text{{\sc cd}}}|$ between coarse-grained model
391     (blue) and DMPC\cite{petrache00} (black) near 300~K.}
392     \label{lipidFigure:Scd}
393     \end{figure}
394 tim 2781
395     %\subsection{Bilayer Simulations Using Gay-Berne Ellipsoid Model}