ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Lipid.tex
Revision: 2884
Committed: Sun Jun 25 17:54:42 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 20924 byte(s)
Log Message:
finish abstract

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:lipid}LIPID MODELING}
2    
3     \section{\label{lipidSection:introduction}Introduction}
4    
5 tim 2731 Under biologically relevant conditions, phospholipids are solvated
6     in aqueous solutions at a roughly 25:1 ratio. Solvation can have a
7     tremendous impact on transport phenomena in biological membranes
8     since it can affect the dynamics of ions and molecules that are
9     transferred across membranes. Studies suggest that because of the
10     directional hydrogen bonding ability of the lipid headgroups, a
11     small number of water molecules are strongly held around the
12     different parts of the headgroup and are oriented by them with
13     residence times for the first hydration shell being around 0.5 - 1
14 tim 2786 ns\cite{Ho1992}. In the second solvation shell, some water molecules
15     are weakly bound, but are still essential for determining the
16     properties of the system. Transport of various molecular species
17     into living cells is one of the major functions of membranes. A
18     thorough understanding of the underlying molecular mechanism for
19     solute diffusion is crucial to the further studies of other related
20     biological processes. All transport across cell membranes takes
21     place by one of two fundamental processes: Passive transport is
22     driven by bulk or inter-diffusion of the molecules being transported
23     or by membrane pores which facilitate crossing. Active transport
24     depends upon the expenditure of cellular energy in the form of ATP
25     hydrolysis. As the central processes of membrane assembly,
26     translocation of phospholipids across membrane bilayers requires the
27     hydrophilic head of the phospholipid to pass through the highly
28     hydrophobic interior of the membrane, and for the hydrophobic tails
29     to be exposed to the aqueous environment\cite{Sasaki2004}. A number
30     of studies indicate that the flipping of phospholipids occurs
31 tim 2881 rapidly in the eukaryotic endoplasmic reticulum and the bacterial
32     cytoplasmic membrane via a bi-directional, facilitated diffusion
33     process requiring no metabolic energy input. Another system of
34     interest is the distribution of sites occupied by inhaled
35     anesthetics in membrane. Although the physiological effects of
36     anesthetics have been extensively studied, the controversy over
37     their effects on lipid bilayers still continues. Recent deuterium
38     NMR measurements on halothane on POPC lipid bilayers suggest the
39     anesthetics are primarily located at the hydrocarbon chain
40     region\cite{Baber1995}. However, infrared spectroscopy experiments
41     suggest that halothane in DMPC lipid bilayers lives near the
42     membrane/water interface\cite{Lieb1982}.
43 tim 2731
44 tim 2776 Molecular dynamics simulations have proven to be a powerful tool for
45     studying the functions of biological systems, providing structural,
46     thermodynamic and dynamical information. Unfortunately, much of
47     biological interest happens on time and length scales well beyond
48 tim 2844 the range of current simulation technologies. Several schemes are
49     proposed in this chapter to overcome these difficulties.
50 tim 2731
51 tim 2844 \section{\label{lipidSection:model}Model and Methodology}
52 tim 2685
53 tim 2776 \subsection{\label{lipidSection:SSD}The Soft Sticky Dipole Water Model}
54 tim 2685
55 tim 2776 In a typical bilayer simulation, the dominant portion of the
56     computation time will be spent calculating water-water interactions.
57     As an efficient solvent model, the Soft Sticky Dipole (SSD) water
58 tim 2807 model\cite{Chandra1999,Fennell2004} is used as the explicit solvent
59 tim 2786 in this project. Unlike other water models which have partial
60     charges distributed throughout the whole molecule, the SSD water
61     model consists of a single site which is a Lennard-Jones interaction
62     site, as well as a point dipole. A tetrahedral potential is added to
63     correct for hydrogen bonding. The following equation describes the
64     interaction between two water molecules:
65 tim 2776 \[
66     V_{SSD} = V_{LJ} (r_{ij} ) + V_{dp} (r_{ij} ,\Omega _i ,\Omega _j )
67     + V_{sticky} (r_{ij} ,\Omega _i ,\Omega _j )
68     \]
69     where $r_{ij}$ is the vector between molecule $i$ and molecule $j$,
70     $\Omega _i$ and $\Omega _j$ are the orientational degrees of freedom
71     for molecule $i$ and molecule $j$ respectively.
72 tim 2884 \begin{eqnarray*}
73     V_{LJ} (r_{ij} ) &= &4\varepsilon _{ij} \left[ {\left(
74     {\frac{{\sigma _{ij} }}{{r_{ij} }}} \right)^{12} - \left(
75     {\frac{{\sigma _{ij}
76     }}{{r_{ij} }}} \right)^6 } \right], \\
77     V_{dp} (r_{ij} ,\Omega _i ,\Omega _j ) &= &
78     \frac{|\mu_i||\mu_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
79     \hat{u}_{i} \cdot \hat{u}_{j} - 3(\hat{u}_i \cdot \hat{\mathbf{r}}_{ij}) %
80     (\hat{u}_j \cdot \hat{\mathbf{r}}_{ij}) \biggr],\\
81     V_{sticky} (r_{ij} ,\Omega _i ,\Omega _j ) &=& v_0 [s(r_{ij}
82     )w(r_{ij} ,\Omega _i ,\Omega _j ) + s'(r_{ij} )w'(r_{ij} ,\Omega _i
83     ,\Omega _j )].\\
84     \end{eqnarray*}
85 tim 2776 where $v_0$ is a strength parameter, $s$ and $s'$ are cubic
86 tim 2884 switching functions, while $w$ and $w'$ are responsible for the
87 tim 2776 tetrahedral potential and the short-range correction to the dipolar
88     interaction respectively.
89     \[
90     \begin{array}{l}
91     w(r_{ij} ,\Omega _i ,\Omega _j ) = \sin \theta _{ij} \sin 2\theta _{ij} \cos 2\phi _{ij} \\
92     w'(r_{ij} ,\Omega _i ,\Omega _j ) = (\cos \theta _{ij} - 0.6)^2 (\cos \theta _{ij} + 0.8)^2 - w_0 \\
93     \end{array}
94     \]
95 tim 2881 Although the dipole-dipole and sticky interactions are more
96 tim 2776 mathematically complicated than Coulomb interactions, the number of
97     pair interactions is reduced dramatically both because the model
98     only contains a single-point as well as "short range" nature of the
99 tim 2881 more expensive interaction.
100 tim 2776
101     \subsection{\label{lipidSection:coarseGrained}The Coarse-Grained Phospholipid Model}
102    
103 tim 2781 Fig.~\ref{lipidFigure:coarseGrained} shows a schematic for our
104     coarse-grained phospholipid model. The lipid head group is modeled
105     by a linear rigid body which consists of three Lennard-Jones spheres
106     and a centrally located point-dipole. The backbone atoms in the
107     glycerol motif are modeled by Lennard-Jones spheres with dipoles.
108     Alkyl groups in hydrocarbon chains are replaced with unified
109     $\text{{\sc CH}}_2$ or $\text{{\sc CH}}_3$ atoms.
110 tim 2776
111 tim 2781 \begin{figure}
112     \centering
113 tim 2806 \includegraphics[width=3in]{coarse_grained.eps}
114 tim 2844 \caption[A representation of coarse-grained phospholipid model]{A
115     representation of coarse-grained phospholipid model. The lipid
116     headgroup consists of $\text{{\sc PO}}_4$ group (yellow),
117 tim 2882 $\text{{\sc NC}}_4$ group (blue) and a united C atom (gray) with a
118     dipole, while the glycerol backbone includes dipolar $\text{{\sc
119     CE}}$ (red) and $\text{{\sc CK}}$ (pink) groups. Alkyl groups in
120     hydrocarbon chains are simply represented by gray united atoms.}
121     \label{lipidFigure:coarseGrained}
122 tim 2781 \end{figure}
123    
124 tim 2776 Accurate and efficient computation of electrostatics is one of the
125     most difficult tasks in molecular modeling. Traditionally, the
126     electrostatic interaction between two molecular species is
127     calculated as a sum of interactions between pairs of point charges,
128     using Coulomb's law:
129     \[
130     V = \sum\limits_{i = 1}^{N_A } {\sum\limits_{j = 1}^{N_B }
131     {\frac{{q_i q_j }}{{4\pi \varepsilon _0 r_{ij} }}} }
132     \]
133     where $N_A$ and $N_B$ are the number of point charges in the two
134     molecular species. Originally developed to study ionic crystals, the
135 tim 2881 Ewald sum method mathematically transforms this straightforward but
136     conditionally convergent summation into two more complicated but
137     rapidly convergent sums. One summation is carried out in reciprocal
138     space while the other is carried out in real space. An alternative
139     approach is the multipole expansion, which is based on electrostatic
140     moments, such as charge (monopole), dipole, quadrupole etc.
141 tim 2776
142     Here we consider a linear molecule which consists of two point
143     charges $\pm q$ located at $ ( \pm \frac{d}{2},0)$. The
144     electrostatic potential at point $P$ is given by:
145     \[
146     \frac{1}{{4\pi \varepsilon _0 }}\left( {\frac{{ - q}}{{r_ - }} +
147     \frac{{ + q}}{{r_ + }}} \right) = \frac{1}{{4\pi \varepsilon _0
148     }}\left( {\frac{{ - q}}{{\sqrt {r^2 + \frac{{d^2 }}{4} + rd\cos
149     \theta } }} + \frac{q}{{\sqrt {r^2 + \frac{{d^2 }}{4} - rd\cos
150     \theta } }}} \right)
151     \]
152    
153 tim 2781 \begin{figure}
154     \centering
155 tim 2806 \includegraphics[width=3in]{charge_dipole.eps}
156 tim 2844 \caption[An illustration of split-dipole
157     approximation]{Electrostatic potential due to a linear molecule
158     comprising two point charges with opposite charges. }
159     \label{lipidFigure:chargeDipole}
160 tim 2781 \end{figure}
161    
162 tim 2776 The basic assumption of the multipole expansion is $r \gg d$ , thus,
163     $\frac{{d^2 }}{4}$ inside the square root of the denominator is
164     neglected. This is a reasonable approximation in most cases.
165     Unfortunately, in our headgroup model, the distance of charge
166 tim 2883 separation $d$ (4.63 \AA in PC headgroup) may be comparable to $r$.
167     Nevertheless, we could still assume $ \cos \theta \approx 0$ in
168     the central region of the headgroup. Using Taylor expansion and
169 tim 2776 associating appropriate terms with electric moments will result in a
170     "split-dipole" approximation:
171     \[
172     V(r) = \frac{1}{{4\pi \varepsilon _0 }}\frac{{r\mu \cos \theta
173     }}{{R^3 }}
174     \]
175     where$R = \sqrt {r^2 + \frac{{d^2 }}{4}}$ Placing a dipole at point
176     $P$ and applying the same strategy, the interaction between two
177     split-dipoles is then given by:
178     \[
179     V_{sd} (r_{ij} ,\Omega _i ,\Omega _j ) = \frac{1}{{4\pi \varepsilon
180     _0 }}\left[ {\frac{{\mu _i \cdot \mu _j }}{{R_{ij}^3 }} -
181     \frac{{3\left( {\mu _i \cdot r_{ij} } \right)\left( {\mu _i \cdot
182     r_{ij} } \right)}}{{R_{ij}^5 }}} \right]
183     \]
184     where $\mu _i$ and $\mu _j$ are the dipole moment of molecule $i$
185     and molecule $j$ respectively, $r_{ij}$ is vector between molecule
186 tim 2800 $i$ and molecule $j$, and $R_{ij}$ is given by,
187 tim 2776 \[
188     R_{ij} = \sqrt {r_{ij}^2 + \frac{{d_i^2 }}{4} + \frac{{d_j^2
189     }}{4}}
190     \]
191     where $d_i$ and $d_j$ are the charge separation distance of dipole
192     and respectively. This approximation to the multipole expansion
193     maintains the fast fall-off of the multipole potentials but lacks
194     the normal divergences when two polar groups get close to one
195 tim 2844 another. The comparision between different electrostatic
196     approximation is shown in \ref{lipidFigure:splitDipole}. Due to the
197     divergence at the central region of the headgroup introduced by
198     dipole-dipole approximation, we discover that water molecules are
199     locked into the central region in the simulation. This artifact can
200     be corrected using split-dipole approximation or other accurate
201     methods.
202 tim 2776 \begin{figure}
203     \centering
204 tim 2859 \includegraphics[width=\linewidth]{split_dipole.eps}
205 tim 2844 \caption[Comparison between electrostatic
206     approximation]{Electrostatic potential map for two pairs of charges
207     with different alignments: (a) illustration of different alignments;
208     (b) charge-charge interaction; (c) dipole-dipole approximation; (d)
209     split-dipole approximation.} \label{lipidFigure:splitDipole}
210 tim 2776 \end{figure}
211    
212     %\section{\label{lipidSection:methods}Methods}
213    
214 tim 2685 \section{\label{lipidSection:resultDiscussion}Results and Discussion}
215 tim 2776
216     \subsection{One Lipid in Sea of Water Molecules}
217    
218 tim 2881 To tune our parameters without the inter-headgroup interactions,
219     atomistic models of one lipid (DMPC or DLPE) in sea of water
220     molecules (TIP3P) were built and studied using atomistic molecular
221     dynamics. The simulation was analyzed using a set of radial
222     distribution functions, which give the probability of finding a pair
223     of molecular species a distance apart, relative to the probability
224     expected for a completely random distribution function at the same
225     density.
226 tim 2776
227     \begin{equation}
228     g_{AB} (r) = \frac{1}{{\rho _B }}\frac{1}{{N_A }} < \sum\limits_{i
229     \in A} {\sum\limits_{j \in B} {\delta (r - r_{ij} )} } >
230     \end{equation}
231     \begin{equation}
232     g_{AB} (r,\cos \theta ) = \frac{1}{{\rho _B }}\frac{1}{{N_A }} <
233     \sum\limits_{i \in A} {\sum\limits_{j \in B} {\delta (r - r_{ij} )}
234     } \delta (\cos \theta _{ij} - \cos \theta ) >
235     \end{equation}
236    
237 tim 2844 From Fig.~\ref{lipidFigure:PCFAtom}, we can identify the first
238 tim 2883 solvation shell (3.5 \AA) and the second solvation shell (5.0 \AA)
239     from both plots. However, the corresponding orientations are
240 tim 2844 different. In DLPE, water molecules prefer to sit around $\text{{\sc
241     NH}}_3$ group due to the hydrogen bonding. In contrast, because of
242     the hydrophobic effect of the $ {\rm{N(CH}}_{\rm{3}}
243     {\rm{)}}_{\rm{3}} $ group, the preferred position of water molecules
244     in DMPC is around the $\text{{\sc PO}}_4$ Group. When the water
245     molecules are far from the headgroup, the distribution of the two
246     angles should be uniform. The correlation close to center of the
247 tim 2881 headgroup dipole in both plots tells us that in the closely-bound
248 tim 2844 region, the dipoles of the water molecules are preferentially
249     anti-aligned with the dipole of headgroup. When the water molecules
250     are far from the headgroup, the distribution of the two angles
251     should be uniform. The correlation close to center of the headgroup
252     dipole in both plots tell us that in the closely-bound region, the
253     dipoles of the water molecules are preferentially aligned with the
254     dipole of headgroup.
255 tim 2776
256     \begin{figure}
257     \centering
258     \includegraphics[width=\linewidth]{g_atom.eps}
259 tim 2844 \caption[The pair correlation functions for atomistic models]{The
260     pair correlation functions for atomistic models: (a)$g(r,\cos \theta
261     )$ for DMPC; (b) $g(r,\cos \theta )$ for DLPE; (c)$g(r,\cos \omega
262     )$ for DMPC; (d)$g(r,\cos \omega )$ for DLPE; (e)$g(\cos \theta,\cos
263     \omega)$ for DMPC; (f)$g(\cos \theta,\cos \omega)$ for DMLPE.}
264 tim 2776 \label{lipidFigure:PCFAtom}
265     \end{figure}
266    
267     The initial configurations of coarse-grained systems are constructed
268     from the previous atomistic ones. The parameters for the
269     coarse-grained model in Table~\ref{lipidTable:parameter} are
270     estimated and tuned using isothermal-isobaric molecular dynamics.
271     Pair distribution functions calculated from coarse-grained models
272     preserve the basic characteristics of the atomistic simulations. The
273     water density, measured in a head-group-fixed reference frame,
274     surrounding two phospholipid headgroups is shown in
275     Fig.~\ref{lipidFigure:PCFCoarse}. It is clear that the phosphate end
276     in DMPC and the amine end in DMPE are the two most heavily solvated
277     atoms.
278    
279     \begin{figure}
280     \centering
281     \includegraphics[width=\linewidth]{g_coarse.eps}
282 tim 2844 \caption[The pair correlation functions for coarse-grained
283     models]{The pair correlation functions for coarse-grained models:
284     (a)$g(r,\cos \theta )$ for DMPC; (b) $g(r,\cos \theta )$ for DLPE.}
285 tim 2776 \label{lipidFigure:PCFCoarse}
286     \end{figure}
287    
288     \begin{figure}
289     \centering
290     \includegraphics[width=\linewidth]{EWD_coarse.eps}
291 tim 2847 \caption[Excess water density of coarse-grained
292     phospholipids]{Excess water density of coarse-grained
293     phospholipids.} \label{lipidFigure:EWDCoarse}
294 tim 2776 \end{figure}
295    
296     \begin{table}
297     \caption{The Parameters For Coarse-grained Phospholipids}
298     \label{lipidTable:parameter}
299     \begin{center}
300     \begin{tabular}{|l|c|c|c|c|c|}
301     \hline
302     % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
303     Atom type & Mass & $\sigma$ & $\epsilon$ & charge & Dipole \\
304     $\text{{\sc CH}}_2$ & 14.03 & 3.95 & 0.0914 & 0 & 0 \\
305     $\text{{\sc CH}}_3$ & 15.04 & 3.75 & 0.195 & 0 & 0 \\
306 tim 2781 $\text{{\sc CE}}$ & 28.01 & 3.427& 0.294 & 0 & 1.693 \\
307 tim 2776 $\text{{\sc CK}}$ & 28.01 & 3.592& 0.311 & 0 & 2.478 \\
308     $\text{{\sc PO}}_4$ & 108.995& 3.9 & 1.88 & -1& 0 \\
309     $\text{{\sc HDP}}$ & 14.03 & 4.0 & 0.13 & 0 & 0 \\
310     $\text{{\sc NC}}_4$ & 73.137 & 4.9 & 0.88 & +1& 0 \\
311     $\text{{\sc NH}}_3$ & 17.03 & 3.25 & 0.17 & +1& 0\\
312     \hline
313     \end{tabular}
314     \end{center}
315     \end{table}
316    
317     \subsection{Bilayer Simulations Using Coarse-grained Model}
318    
319     A bilayer system consisting of 128 DMPC lipids and 3655 water
320 tim 2844 molecules has been constructed from an atomistic coordinate file.
321     The MD simulation is performed at constant temperature, T = 300K,
322     and constant pressure, p = 1 atm, and consisted of an equilibration
323     period of 2 ns. During the equilibration period, the system was
324     initially simulated at constant volume for 1 ns. Once the system was
325     equilibrated at constant volume, the cell dimensions of the system
326 tim 2881 was relaxed by performing under NPT conditions using Nos\'{e}-Hoover
327 tim 2844 extended system isothermal-isobaric dynamics. After equilibration,
328     different properties were evaluated over a production run of 5 ns.
329 tim 2776
330     \begin{figure}
331     \centering
332     \includegraphics[width=\linewidth]{bilayer.eps}
333     \caption[Image of a coarse-grained bilayer system]{A coarse-grained
334     bilayer system consisting of 128 DMPC lipids and 3655 SSD water
335     molecules.}
336     \label{lipidFigure:bilayer}
337     \end{figure}
338    
339 tim 2819 \subsubsection{\textbf{Electron Density Profile (EDP)}}
340 tim 2776
341     Assuming a gaussian distribution of electrons on each atomic center
342     with a variance estimated from the size of the van der Waals radius,
343     the EDPs which are proportional to the density profiles measured
344     along the bilayer normal obtained by x-ray scattering experiment,
345 tim 2786 can be expressed by\cite{Tu1995}
346 tim 2776 \begin{equation}
347     \rho _{x - ray} (z)dz \propto \sum\limits_{i = 1}^N {\frac{{n_i
348     }}{V}\frac{1}{{\sqrt {2\pi \sigma ^2 } }}e^{ - (z - z_i )^2 /2\sigma
349     ^2 } dz},
350     \end{equation}
351     where $\sigma$ is the variance equal to the van der Waals radius,
352     $n_i$ is the atomic number of site $i$ and $V$ is the volume of the
353     slab between $z$ and $z+dz$ . The highest density of total EDP
354     appears at the position of lipid-water interface corresponding to
355     headgroup, glycerol, and carbonyl groups of the lipids and the
356     distribution of water locked near the head groups, while the lowest
357     electron density is in the hydrocarbon region. As a good
358     approximation to the thickness of the bilayer, the headgroup spacing
359     , is defined as the distance between two peaks in the electron
360 tim 2883 density profile, calculated from our simulations to be 34.1 \AA.
361 tim 2776 This value is close to the x-ray diffraction experimental value 34.4
362 tim 2883 \AA\cite{Petrache1998}.
363 tim 2776
364     \begin{figure}
365     \centering
366     \includegraphics[width=\linewidth]{electron_density.eps}
367     \caption[The density profile of the lipid bilayers]{Electron density
368     profile along the bilayer normal. The water density is shown in red,
369     the density due to the headgroups in green, the glycerol backbone in
370     brown, $\text{{\sc CH}}_2$ in yellow, $\text{{\sc CH}}_3$ in cyan,
371     and total density due to DMPC in blue.}
372     \label{lipidFigure:electronDensity}
373     \end{figure}
374    
375 tim 2819 \subsubsection{\textbf{$\text{S}_{\text{{\sc cd}}}$ Order Parameter}}
376 tim 2776
377     Measuring deuterium order parameters by NMR is a useful technique to
378     study the orientation of hydrocarbon chains in phospholipids. The
379     order parameter tensor $S$ is defined by:
380     \begin{equation}
381     S_{ij} = \frac{1}{2} < 3\cos \theta _i \cos \theta _j - \delta
382     _{ij} >
383     \end{equation}
384     where $\theta$ is the angle between the $i$th molecular axis and
385     the bilayer normal ($z$ axis). The brackets denote an average over
386     time and molecules. The molecular axes are defined:
387     \begin{itemize}
388     \item $\mathbf{\hat{z}}$ is the vector from $C_{n-1}$ to $C_{n+1}$.
389     \item $\mathbf{\hat{y}}$ is the vector that is perpendicular to $z$ and
390     in the plane through $C_{n-1}$, $C_{n}$, and $C_{n+1}$.
391     \item $\mathbf{\hat{x}}$ is the vector perpendicular to
392     $\mathbf{\hat{y}}$ and $\mathbf{\hat{z}}$.
393     \end{itemize}
394     In coarse-grained model, although there are no explicit hydrogens,
395     the order parameter can still be written in terms of carbon ordering
396 tim 2786 at each point of the chain\cite{Egberts1988}
397 tim 2776 \begin{equation}
398     S_{ij} = \frac{1}{2} < 3\cos \theta _i \cos \theta _j - \delta
399     _{ij} >.
400     \end{equation}
401    
402     Fig.~\ref{lipidFigure:Scd} shows the order parameter profile
403     calculated for our coarse-grained DMPC bilayer system at 300K. Also
404 tim 2786 shown are the experimental data of Tu\cite{Tu1995}. The fact that
405 tim 2776 $\text{S}_{\text{{\sc cd}}}$ order parameters calculated from
406     simulation are higher than the experimental ones is ascribed to the
407     assumption of the locations of implicit hydrogen atoms which are
408     fixed in coarse-grained models at positions relative to the CC
409     vector.
410    
411     \begin{figure}
412     \centering
413     \includegraphics[width=\linewidth]{scd.eps}
414     \caption[$\text{S}_{\text{{\sc cd}}}$ order parameter]{A comparison
415     of $|\text{S}_{\text{{\sc cd}}}|$ between coarse-grained model
416 tim 2845 (blue) and DMPC\cite{Petrache2000} (black) near 300~K.}
417 tim 2776 \label{lipidFigure:Scd}
418     \end{figure}
419 tim 2781
420     %\subsection{Bilayer Simulations Using Gay-Berne Ellipsoid Model}
421 tim 2844
422     \section{\label{lipidSection:Conclusion}Conclusion}
423    
424 tim 2881 Atomistic simulations have been used in this study to determine the
425 tim 2844 preferred orientation and location of water molecules relative to
426     the location and orientation of the PC and PE lipid headgroups.
427 tim 2881 Based on the results from our all-atom simulations, we developed a
428     simple coarse-grained model which captures the essential features of
429     the headgroup solvation which is crucial to transport process in
430     membrane system. In addition, the model has been explored in a
431     bilayer system was shown to have reasonable electron density
432     profiles, $\text{S}_{\text{{\sc cd}}}$ order parameter and other
433     structural properties. The accuracy of this model is achieved by
434     matching atomistic result. It is also easy to represent different
435     phospholipids by changing a few parameters of the model. Another
436 tim 2844 important characteristic of this model distinguishing itself from
437     other models\cite{Goetz1998,Marrink2004} is the computational speed
438 tim 2881 gained by introducing a short range electrostatic approximation.
439 tim 2844 Further studies of this system using z-constraint method could
440     extend the time length of the simulations to study transport
441     phenomena in large-scale membrane systems.