ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Lipid.tex
Revision: 2905
Committed: Wed Jun 28 19:09:25 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 21116 byte(s)
Log Message:
more corrections.

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:lipid}LIPID MODELING}
2    
3     \section{\label{lipidSection:introduction}Introduction}
4    
5 tim 2731 Under biologically relevant conditions, phospholipids are solvated
6     in aqueous solutions at a roughly 25:1 ratio. Solvation can have a
7     tremendous impact on transport phenomena in biological membranes
8     since it can affect the dynamics of ions and molecules that are
9     transferred across membranes. Studies suggest that because of the
10     directional hydrogen bonding ability of the lipid headgroups, a
11     small number of water molecules are strongly held around the
12     different parts of the headgroup and are oriented by them with
13     residence times for the first hydration shell being around 0.5 - 1
14 tim 2786 ns\cite{Ho1992}. In the second solvation shell, some water molecules
15     are weakly bound, but are still essential for determining the
16     properties of the system. Transport of various molecular species
17     into living cells is one of the major functions of membranes. A
18     thorough understanding of the underlying molecular mechanism for
19     solute diffusion is crucial to the further studies of other related
20     biological processes. All transport across cell membranes takes
21     place by one of two fundamental processes: Passive transport is
22     driven by bulk or inter-diffusion of the molecules being transported
23     or by membrane pores which facilitate crossing. Active transport
24     depends upon the expenditure of cellular energy in the form of ATP
25     hydrolysis. As the central processes of membrane assembly,
26     translocation of phospholipids across membrane bilayers requires the
27     hydrophilic head of the phospholipid to pass through the highly
28     hydrophobic interior of the membrane, and for the hydrophobic tails
29     to be exposed to the aqueous environment\cite{Sasaki2004}. A number
30     of studies indicate that the flipping of phospholipids occurs
31 tim 2881 rapidly in the eukaryotic endoplasmic reticulum and the bacterial
32     cytoplasmic membrane via a bi-directional, facilitated diffusion
33     process requiring no metabolic energy input. Another system of
34     interest is the distribution of sites occupied by inhaled
35     anesthetics in membrane. Although the physiological effects of
36     anesthetics have been extensively studied, the controversy over
37     their effects on lipid bilayers still continues. Recent deuterium
38     NMR measurements on halothane on POPC lipid bilayers suggest the
39     anesthetics are primarily located at the hydrocarbon chain
40     region\cite{Baber1995}. However, infrared spectroscopy experiments
41     suggest that halothane in DMPC lipid bilayers lives near the
42     membrane/water interface\cite{Lieb1982}.
43 tim 2731
44 tim 2776 Molecular dynamics simulations have proven to be a powerful tool for
45     studying the functions of biological systems, providing structural,
46     thermodynamic and dynamical information. Unfortunately, much of
47     biological interest happens on time and length scales well beyond
48 tim 2844 the range of current simulation technologies. Several schemes are
49     proposed in this chapter to overcome these difficulties.
50 tim 2731
51 tim 2844 \section{\label{lipidSection:model}Model and Methodology}
52 tim 2685
53 tim 2776 \subsection{\label{lipidSection:SSD}The Soft Sticky Dipole Water Model}
54 tim 2685
55 tim 2776 In a typical bilayer simulation, the dominant portion of the
56     computation time will be spent calculating water-water interactions.
57     As an efficient solvent model, the Soft Sticky Dipole (SSD) water
58 tim 2807 model\cite{Chandra1999,Fennell2004} is used as the explicit solvent
59 tim 2786 in this project. Unlike other water models which have partial
60     charges distributed throughout the whole molecule, the SSD water
61     model consists of a single site which is a Lennard-Jones interaction
62     site, as well as a point dipole. A tetrahedral potential is added to
63     correct for hydrogen bonding. The following equation describes the
64     interaction between two water molecules:
65 tim 2885 \begin{equation}
66 tim 2776 V_{SSD} = V_{LJ} (r_{ij} ) + V_{dp} (r_{ij} ,\Omega _i ,\Omega _j )
67     + V_{sticky} (r_{ij} ,\Omega _i ,\Omega _j )
68 tim 2885 \label{lipidSection:ssdEquation}
69     \end{equation}
70     where$r_{ij}$ is the vector between molecule $i$ and molecule $j$,
71 tim 2776 $\Omega _i$ and $\Omega _j$ are the orientational degrees of freedom
72 tim 2885 for molecule $i$ and molecule $j$ respectively. The potential terms
73     in Eq.~\ref{lipidSection:ssdEquation} are given by :
74     \begin{eqnarray}
75 tim 2884 V_{LJ} (r_{ij} ) &= &4\varepsilon _{ij} \left[ {\left(
76     {\frac{{\sigma _{ij} }}{{r_{ij} }}} \right)^{12} - \left(
77     {\frac{{\sigma _{ij}
78     }}{{r_{ij} }}} \right)^6 } \right], \\
79     V_{dp} (r_{ij} ,\Omega _i ,\Omega _j ) &= &
80     \frac{|\mu_i||\mu_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
81     \hat{u}_{i} \cdot \hat{u}_{j} - 3(\hat{u}_i \cdot \hat{\mathbf{r}}_{ij}) %
82     (\hat{u}_j \cdot \hat{\mathbf{r}}_{ij}) \biggr],\\
83     V_{sticky} (r_{ij} ,\Omega _i ,\Omega _j ) &=& v_0 [s(r_{ij}
84     )w(r_{ij} ,\Omega _i ,\Omega _j ) + s'(r_{ij} )w'(r_{ij} ,\Omega _i
85 tim 2885 ,\Omega _j )]
86     \end{eqnarray}
87 tim 2776 where $v_0$ is a strength parameter, $s$ and $s'$ are cubic
88 tim 2884 switching functions, while $w$ and $w'$ are responsible for the
89 tim 2776 tetrahedral potential and the short-range correction to the dipolar
90 tim 2885 interaction respectively:
91     \begin{eqnarray}
92     w(r_{ij} ,\Omega _i ,\Omega _j )& = &\sin \theta _{ij} \sin 2\theta _{ij} \cos 2\phi _{ij}, \\
93     w'(r_{ij} ,\Omega _i ,\Omega _j )& = &(\cos \theta _{ij} - 0.6)^2 (\cos \theta _{ij} + 0.8)^2 -
94     w_0.
95     \end{eqnarray}
96     Here $\theta _{ij}$ and $\phi _{ij}$ are the spherical polar angles
97     representing relative orientations between molecule $i$ and molecule
98     $j$. Although the dipole-dipole and sticky interactions are more
99 tim 2776 mathematically complicated than Coulomb interactions, the number of
100     pair interactions is reduced dramatically both because the model
101     only contains a single-point as well as "short range" nature of the
102 tim 2881 more expensive interaction.
103 tim 2776
104     \subsection{\label{lipidSection:coarseGrained}The Coarse-Grained Phospholipid Model}
105    
106 tim 2781 Fig.~\ref{lipidFigure:coarseGrained} shows a schematic for our
107     coarse-grained phospholipid model. The lipid head group is modeled
108     by a linear rigid body which consists of three Lennard-Jones spheres
109     and a centrally located point-dipole. The backbone atoms in the
110     glycerol motif are modeled by Lennard-Jones spheres with dipoles.
111     Alkyl groups in hydrocarbon chains are replaced with unified
112     $\text{{\sc CH}}_2$ or $\text{{\sc CH}}_3$ atoms.
113     \begin{figure}
114     \centering
115 tim 2806 \includegraphics[width=3in]{coarse_grained.eps}
116 tim 2844 \caption[A representation of coarse-grained phospholipid model]{A
117     representation of coarse-grained phospholipid model. The lipid
118     headgroup consists of $\text{{\sc PO}}_4$ group (yellow),
119 tim 2882 $\text{{\sc NC}}_4$ group (blue) and a united C atom (gray) with a
120     dipole, while the glycerol backbone includes dipolar $\text{{\sc
121     CE}}$ (red) and $\text{{\sc CK}}$ (pink) groups. Alkyl groups in
122     hydrocarbon chains are simply represented by gray united atoms.}
123     \label{lipidFigure:coarseGrained}
124 tim 2781 \end{figure}
125    
126 tim 2776 Accurate and efficient computation of electrostatics is one of the
127     most difficult tasks in molecular modeling. Traditionally, the
128     electrostatic interaction between two molecular species is
129     calculated as a sum of interactions between pairs of point charges,
130     using Coulomb's law:
131     \[
132     V = \sum\limits_{i = 1}^{N_A } {\sum\limits_{j = 1}^{N_B }
133     {\frac{{q_i q_j }}{{4\pi \varepsilon _0 r_{ij} }}} }
134     \]
135     where $N_A$ and $N_B$ are the number of point charges in the two
136     molecular species. Originally developed to study ionic crystals, the
137 tim 2881 Ewald sum method mathematically transforms this straightforward but
138     conditionally convergent summation into two more complicated but
139     rapidly convergent sums. One summation is carried out in reciprocal
140     space while the other is carried out in real space. An alternative
141     approach is the multipole expansion, which is based on electrostatic
142     moments, such as charge (monopole), dipole, quadrupole etc.
143 tim 2776
144     Here we consider a linear molecule which consists of two point
145     charges $\pm q$ located at $ ( \pm \frac{d}{2},0)$. The
146     electrostatic potential at point $P$ is given by:
147     \[
148     \frac{1}{{4\pi \varepsilon _0 }}\left( {\frac{{ - q}}{{r_ - }} +
149     \frac{{ + q}}{{r_ + }}} \right) = \frac{1}{{4\pi \varepsilon _0
150     }}\left( {\frac{{ - q}}{{\sqrt {r^2 + \frac{{d^2 }}{4} + rd\cos
151     \theta } }} + \frac{q}{{\sqrt {r^2 + \frac{{d^2 }}{4} - rd\cos
152     \theta } }}} \right)
153     \]
154 tim 2781 \begin{figure}
155     \centering
156 tim 2806 \includegraphics[width=3in]{charge_dipole.eps}
157 tim 2844 \caption[An illustration of split-dipole
158     approximation]{Electrostatic potential due to a linear molecule
159     comprising two point charges with opposite charges. }
160     \label{lipidFigure:chargeDipole}
161 tim 2781 \end{figure}
162 tim 2776 The basic assumption of the multipole expansion is $r \gg d$ , thus,
163     $\frac{{d^2 }}{4}$ inside the square root of the denominator is
164     neglected. This is a reasonable approximation in most cases.
165     Unfortunately, in our headgroup model, the distance of charge
166 tim 2883 separation $d$ (4.63 \AA in PC headgroup) may be comparable to $r$.
167     Nevertheless, we could still assume $ \cos \theta \approx 0$ in
168     the central region of the headgroup. Using Taylor expansion and
169 tim 2776 associating appropriate terms with electric moments will result in a
170     "split-dipole" approximation:
171     \[
172     V(r) = \frac{1}{{4\pi \varepsilon _0 }}\frac{{r\mu \cos \theta
173     }}{{R^3 }}
174     \]
175     where$R = \sqrt {r^2 + \frac{{d^2 }}{4}}$ Placing a dipole at point
176     $P$ and applying the same strategy, the interaction between two
177     split-dipoles is then given by:
178     \[
179     V_{sd} (r_{ij} ,\Omega _i ,\Omega _j ) = \frac{1}{{4\pi \varepsilon
180     _0 }}\left[ {\frac{{\mu _i \cdot \mu _j }}{{R_{ij}^3 }} -
181     \frac{{3\left( {\mu _i \cdot r_{ij} } \right)\left( {\mu _i \cdot
182     r_{ij} } \right)}}{{R_{ij}^5 }}} \right]
183     \]
184     where $\mu _i$ and $\mu _j$ are the dipole moment of molecule $i$
185     and molecule $j$ respectively, $r_{ij}$ is vector between molecule
186 tim 2800 $i$ and molecule $j$, and $R_{ij}$ is given by,
187 tim 2776 \[
188     R_{ij} = \sqrt {r_{ij}^2 + \frac{{d_i^2 }}{4} + \frac{{d_j^2
189     }}{4}}
190     \]
191     where $d_i$ and $d_j$ are the charge separation distance of dipole
192     and respectively. This approximation to the multipole expansion
193     maintains the fast fall-off of the multipole potentials but lacks
194     the normal divergences when two polar groups get close to one
195 tim 2844 another. The comparision between different electrostatic
196     approximation is shown in \ref{lipidFigure:splitDipole}. Due to the
197     divergence at the central region of the headgroup introduced by
198     dipole-dipole approximation, we discover that water molecules are
199     locked into the central region in the simulation. This artifact can
200     be corrected using split-dipole approximation or other accurate
201     methods.
202 tim 2776 \begin{figure}
203     \centering
204 tim 2859 \includegraphics[width=\linewidth]{split_dipole.eps}
205 tim 2844 \caption[Comparison between electrostatic
206     approximation]{Electrostatic potential map for two pairs of charges
207     with different alignments: (a) illustration of different alignments;
208     (b) charge-charge interaction; (c) dipole-dipole approximation; (d)
209     split-dipole approximation.} \label{lipidFigure:splitDipole}
210 tim 2776 \end{figure}
211    
212 tim 2685 \section{\label{lipidSection:resultDiscussion}Results and Discussion}
213 tim 2776
214     \subsection{One Lipid in Sea of Water Molecules}
215    
216 tim 2881 To tune our parameters without the inter-headgroup interactions,
217     atomistic models of one lipid (DMPC or DLPE) in sea of water
218     molecules (TIP3P) were built and studied using atomistic molecular
219     dynamics. The simulation was analyzed using a set of radial
220     distribution functions, which give the probability of finding a pair
221     of molecular species a distance apart, relative to the probability
222     expected for a completely random distribution function at the same
223 tim 2905 density
224     \begin{eqnarray}
225     g_{AB} (r) & = & \frac{1}{{\rho _B }}\frac{1}{{N_A }} <
226     \sum\limits_{i
227     \in A} {\sum\limits_{j \in B} {\delta (r - r_{ij} )} } >, \\
228     g_{AB} (r,\cos \theta ) & = & \frac{1}{{\rho _B }}\frac{1}{{N_A }} <
229 tim 2776 \sum\limits_{i \in A} {\sum\limits_{j \in B} {\delta (r - r_{ij} )}
230 tim 2905 } \delta (\cos \theta _{ij} - \cos \theta ) >.
231     \end{eqnarray}
232 tim 2844 From Fig.~\ref{lipidFigure:PCFAtom}, we can identify the first
233 tim 2883 solvation shell (3.5 \AA) and the second solvation shell (5.0 \AA)
234     from both plots. However, the corresponding orientations are
235 tim 2844 different. In DLPE, water molecules prefer to sit around $\text{{\sc
236     NH}}_3$ group due to the hydrogen bonding. In contrast, because of
237     the hydrophobic effect of the $ {\rm{N(CH}}_{\rm{3}}
238     {\rm{)}}_{\rm{3}} $ group, the preferred position of water molecules
239     in DMPC is around the $\text{{\sc PO}}_4$ Group. When the water
240     molecules are far from the headgroup, the distribution of the two
241     angles should be uniform. The correlation close to center of the
242 tim 2881 headgroup dipole in both plots tells us that in the closely-bound
243 tim 2844 region, the dipoles of the water molecules are preferentially
244     anti-aligned with the dipole of headgroup. When the water molecules
245     are far from the headgroup, the distribution of the two angles
246     should be uniform. The correlation close to center of the headgroup
247     dipole in both plots tell us that in the closely-bound region, the
248     dipoles of the water molecules are preferentially aligned with the
249     dipole of headgroup.
250 tim 2776 \begin{figure}
251     \centering
252     \includegraphics[width=\linewidth]{g_atom.eps}
253 tim 2844 \caption[The pair correlation functions for atomistic models]{The
254     pair correlation functions for atomistic models: (a)$g(r,\cos \theta
255     )$ for DMPC; (b) $g(r,\cos \theta )$ for DLPE; (c)$g(r,\cos \omega
256     )$ for DMPC; (d)$g(r,\cos \omega )$ for DLPE; (e)$g(\cos \theta,\cos
257     \omega)$ for DMPC; (f)$g(\cos \theta,\cos \omega)$ for DMLPE.}
258 tim 2776 \label{lipidFigure:PCFAtom}
259     \end{figure}
260    
261     The initial configurations of coarse-grained systems are constructed
262     from the previous atomistic ones. The parameters for the
263     coarse-grained model in Table~\ref{lipidTable:parameter} are
264     estimated and tuned using isothermal-isobaric molecular dynamics.
265     Pair distribution functions calculated from coarse-grained models
266     preserve the basic characteristics of the atomistic simulations. The
267     water density, measured in a head-group-fixed reference frame,
268     surrounding two phospholipid headgroups is shown in
269     Fig.~\ref{lipidFigure:PCFCoarse}. It is clear that the phosphate end
270     in DMPC and the amine end in DMPE are the two most heavily solvated
271     atoms.
272     \begin{figure}
273     \centering
274     \includegraphics[width=\linewidth]{g_coarse.eps}
275 tim 2844 \caption[The pair correlation functions for coarse-grained
276     models]{The pair correlation functions for coarse-grained models:
277     (a)$g(r,\cos \theta )$ for DMPC; (b) $g(r,\cos \theta )$ for DLPE.}
278 tim 2776 \label{lipidFigure:PCFCoarse}
279     \end{figure}
280     \begin{figure}
281     \centering
282     \includegraphics[width=\linewidth]{EWD_coarse.eps}
283 tim 2847 \caption[Excess water density of coarse-grained
284     phospholipids]{Excess water density of coarse-grained
285     phospholipids.} \label{lipidFigure:EWDCoarse}
286 tim 2776 \end{figure}
287    
288     \begin{table}
289 tim 2889 \caption{THE PARAMETERS FOR COARSE-GRAINED PHOSPHOLIPIDS}
290 tim 2776 \label{lipidTable:parameter}
291     \begin{center}
292 tim 2905 \begin{tabular}{lccccc}
293 tim 2776 \hline
294     % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
295     Atom type & Mass & $\sigma$ & $\epsilon$ & charge & Dipole \\
296 tim 2905 \hline
297 tim 2776 $\text{{\sc CH}}_2$ & 14.03 & 3.95 & 0.0914 & 0 & 0 \\
298     $\text{{\sc CH}}_3$ & 15.04 & 3.75 & 0.195 & 0 & 0 \\
299 tim 2781 $\text{{\sc CE}}$ & 28.01 & 3.427& 0.294 & 0 & 1.693 \\
300 tim 2776 $\text{{\sc CK}}$ & 28.01 & 3.592& 0.311 & 0 & 2.478 \\
301     $\text{{\sc PO}}_4$ & 108.995& 3.9 & 1.88 & -1& 0 \\
302     $\text{{\sc HDP}}$ & 14.03 & 4.0 & 0.13 & 0 & 0 \\
303     $\text{{\sc NC}}_4$ & 73.137 & 4.9 & 0.88 & +1& 0 \\
304     $\text{{\sc NH}}_3$ & 17.03 & 3.25 & 0.17 & +1& 0\\
305     \hline
306     \end{tabular}
307     \end{center}
308     \end{table}
309    
310     \subsection{Bilayer Simulations Using Coarse-grained Model}
311    
312     A bilayer system consisting of 128 DMPC lipids and 3655 water
313 tim 2844 molecules has been constructed from an atomistic coordinate file.
314     The MD simulation is performed at constant temperature, T = 300K,
315     and constant pressure, p = 1 atm, and consisted of an equilibration
316     period of 2 ns. During the equilibration period, the system was
317     initially simulated at constant volume for 1 ns. Once the system was
318     equilibrated at constant volume, the cell dimensions of the system
319 tim 2881 was relaxed by performing under NPT conditions using Nos\'{e}-Hoover
320 tim 2844 extended system isothermal-isobaric dynamics. After equilibration,
321     different properties were evaluated over a production run of 5 ns.
322 tim 2776 \begin{figure}
323     \centering
324     \includegraphics[width=\linewidth]{bilayer.eps}
325     \caption[Image of a coarse-grained bilayer system]{A coarse-grained
326     bilayer system consisting of 128 DMPC lipids and 3655 SSD water
327     molecules.}
328     \label{lipidFigure:bilayer}
329     \end{figure}
330    
331 tim 2819 \subsubsection{\textbf{Electron Density Profile (EDP)}}
332 tim 2776
333     Assuming a gaussian distribution of electrons on each atomic center
334     with a variance estimated from the size of the van der Waals radius,
335     the EDPs which are proportional to the density profiles measured
336     along the bilayer normal obtained by x-ray scattering experiment,
337 tim 2786 can be expressed by\cite{Tu1995}
338 tim 2776 \begin{equation}
339     \rho _{x - ray} (z)dz \propto \sum\limits_{i = 1}^N {\frac{{n_i
340     }}{V}\frac{1}{{\sqrt {2\pi \sigma ^2 } }}e^{ - (z - z_i )^2 /2\sigma
341     ^2 } dz},
342     \end{equation}
343     where $\sigma$ is the variance equal to the van der Waals radius,
344     $n_i$ is the atomic number of site $i$ and $V$ is the volume of the
345     slab between $z$ and $z+dz$ . The highest density of total EDP
346     appears at the position of lipid-water interface corresponding to
347     headgroup, glycerol, and carbonyl groups of the lipids and the
348     distribution of water locked near the head groups, while the lowest
349     electron density is in the hydrocarbon region. As a good
350     approximation to the thickness of the bilayer, the headgroup spacing
351     , is defined as the distance between two peaks in the electron
352 tim 2883 density profile, calculated from our simulations to be 34.1 \AA.
353 tim 2776 This value is close to the x-ray diffraction experimental value 34.4
354 tim 2883 \AA\cite{Petrache1998}.
355 tim 2776
356     \begin{figure}
357     \centering
358     \includegraphics[width=\linewidth]{electron_density.eps}
359     \caption[The density profile of the lipid bilayers]{Electron density
360     profile along the bilayer normal. The water density is shown in red,
361     the density due to the headgroups in green, the glycerol backbone in
362     brown, $\text{{\sc CH}}_2$ in yellow, $\text{{\sc CH}}_3$ in cyan,
363     and total density due to DMPC in blue.}
364     \label{lipidFigure:electronDensity}
365     \end{figure}
366    
367 tim 2819 \subsubsection{\textbf{$\text{S}_{\text{{\sc cd}}}$ Order Parameter}}
368 tim 2776
369     Measuring deuterium order parameters by NMR is a useful technique to
370     study the orientation of hydrocarbon chains in phospholipids. The
371     order parameter tensor $S$ is defined by:
372     \begin{equation}
373     S_{ij} = \frac{1}{2} < 3\cos \theta _i \cos \theta _j - \delta
374     _{ij} >
375     \end{equation}
376     where $\theta$ is the angle between the $i$th molecular axis and
377     the bilayer normal ($z$ axis). The brackets denote an average over
378     time and molecules. The molecular axes are defined:
379     \begin{itemize}
380     \item $\mathbf{\hat{z}}$ is the vector from $C_{n-1}$ to $C_{n+1}$.
381     \item $\mathbf{\hat{y}}$ is the vector that is perpendicular to $z$ and
382     in the plane through $C_{n-1}$, $C_{n}$, and $C_{n+1}$.
383     \item $\mathbf{\hat{x}}$ is the vector perpendicular to
384     $\mathbf{\hat{y}}$ and $\mathbf{\hat{z}}$.
385     \end{itemize}
386     In coarse-grained model, although there are no explicit hydrogens,
387     the order parameter can still be written in terms of carbon ordering
388 tim 2786 at each point of the chain\cite{Egberts1988}
389 tim 2776 \begin{equation}
390     S_{ij} = \frac{1}{2} < 3\cos \theta _i \cos \theta _j - \delta
391     _{ij} >.
392     \end{equation}
393    
394     Fig.~\ref{lipidFigure:Scd} shows the order parameter profile
395     calculated for our coarse-grained DMPC bilayer system at 300K. Also
396 tim 2786 shown are the experimental data of Tu\cite{Tu1995}. The fact that
397 tim 2776 $\text{S}_{\text{{\sc cd}}}$ order parameters calculated from
398     simulation are higher than the experimental ones is ascribed to the
399     assumption of the locations of implicit hydrogen atoms which are
400     fixed in coarse-grained models at positions relative to the CC
401     vector.
402    
403     \begin{figure}
404     \centering
405     \includegraphics[width=\linewidth]{scd.eps}
406     \caption[$\text{S}_{\text{{\sc cd}}}$ order parameter]{A comparison
407     of $|\text{S}_{\text{{\sc cd}}}|$ between coarse-grained model
408 tim 2845 (blue) and DMPC\cite{Petrache2000} (black) near 300~K.}
409 tim 2776 \label{lipidFigure:Scd}
410     \end{figure}
411 tim 2781
412     %\subsection{Bilayer Simulations Using Gay-Berne Ellipsoid Model}
413 tim 2844
414     \section{\label{lipidSection:Conclusion}Conclusion}
415    
416 tim 2881 Atomistic simulations have been used in this study to determine the
417 tim 2844 preferred orientation and location of water molecules relative to
418     the location and orientation of the PC and PE lipid headgroups.
419 tim 2881 Based on the results from our all-atom simulations, we developed a
420     simple coarse-grained model which captures the essential features of
421     the headgroup solvation which is crucial to transport process in
422     membrane system. In addition, the model has been explored in a
423     bilayer system was shown to have reasonable electron density
424     profiles, $\text{S}_{\text{{\sc cd}}}$ order parameter and other
425     structural properties. The accuracy of this model is achieved by
426     matching atomistic result. It is also easy to represent different
427     phospholipids by changing a few parameters of the model. Another
428 tim 2844 important characteristic of this model distinguishing itself from
429     other models\cite{Goetz1998,Marrink2004} is the computational speed
430 tim 2881 gained by introducing a short range electrostatic approximation.
431 tim 2844 Further studies of this system using z-constraint method could
432     extend the time length of the simulations to study transport
433     phenomena in large-scale membrane systems.