ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Lipid.tex
(Generate patch)

Comparing trunk/tengDissertation/Lipid.tex (file contents):
Revision 2778 by tim, Fri May 26 17:56:36 2006 UTC vs.
Revision 2781 by tim, Wed May 31 04:29:44 2006 UTC

# Line 101 | Line 101 | Figure 1 shows a schematic for our coarse-grained phos
101  
102   \subsection{\label{lipidSection:coarseGrained}The Coarse-Grained Phospholipid Model}
103  
104 < Figure 1 shows a schematic for our coarse-grained phospholipid
105 < model. The lipid head group is modeled by a linear rigid body which
106 < consists of three Lennard-Jones spheres and a centrally located
107 < point-dipole. The backbone atoms in the glycerol motif are modeled
108 < by Lennard-Jones spheres with dipoles. Alkyl groups in hydrocarbon
109 < chains are replaced with unified CH2 or CH3 atoms.
104 > Fig.~\ref{lipidFigure:coarseGrained} shows a schematic for our
105 > coarse-grained phospholipid model. The lipid head group is modeled
106 > by a linear rigid body which consists of three Lennard-Jones spheres
107 > and a centrally located point-dipole. The backbone atoms in the
108 > glycerol motif are modeled by Lennard-Jones spheres with dipoles.
109 > Alkyl groups in hydrocarbon chains are replaced with unified
110 > $\text{{\sc CH}}_2$ or $\text{{\sc CH}}_3$ atoms.
111  
112 + \begin{figure}
113 + \centering
114 + \includegraphics[width=\linewidth]{coarse_grained.eps}
115 + \caption[A representation of coarse-grained phospholipid model]{}
116 + \label{lipidFigure:coarseGrained}
117 + \end{figure}
118 +
119   Accurate and efficient computation of electrostatics is one of the
120   most difficult tasks in molecular modeling. Traditionally, the
121   electrostatic interaction between two molecular species is
# Line 137 | Line 145 | electrostatic potential at point $P$ is given by:
145   \theta } }} + \frac{q}{{\sqrt {r^2  + \frac{{d^2 }}{4} - rd\cos
146   \theta } }}} \right)
147   \]
148 +
149 + \begin{figure}
150 + \centering
151 + \includegraphics[width=\linewidth]{charge_dipole.eps}
152 + \caption[Electrostatic potential due to a linear molecule comprising
153 + two point charges]{Electrostatic potential due to a linear molecule
154 + comprising two point charges} \label{lipidFigure:chargeDipole}
155 + \end{figure}
156  
157   The basic assumption of the multipole expansion is $r \gg d$ , thus,
158   $\frac{{d^2 }}{4}$ inside the square root of the denominator is
# Line 259 | Line 275 | atoms.
275    \hline
276    % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
277    Atom type & Mass & $\sigma$ & $\epsilon$ & charge & Dipole \\
262
278    $\text{{\sc CH}}_2$ & 14.03  & 3.95 & 0.0914 & 0 & 0 \\
279    $\text{{\sc CH}}_3$ & 15.04  & 3.75 & 0.195  & 0 & 0 \\
280 <  $\text{{\sc CE}}$   & 28.01  & 3.427& 0.294  & 0 & 1.693
280 >  $\text{{\sc CE}}$   & 28.01  & 3.427& 0.294  & 0 & 1.693 \\
281    $\text{{\sc CK}}$   & 28.01  & 3.592& 0.311  & 0 & 2.478 \\
282    $\text{{\sc PO}}_4$ & 108.995& 3.9  & 1.88   & -1&  0 \\
283    $\text{{\sc HDP}}$  & 14.03  & 4.0  & 0.13   & 0 &  0 \\
# Line 376 | Line 391 | of $|\text{S}_{\text{{\sc cd}}}|$ between coarse-grain
391   (blue) and DMPC\cite{petrache00} (black) near 300~K.}
392   \label{lipidFigure:Scd}
393   \end{figure}
394 +
395 + %\subsection{Bilayer Simulations Using Gay-Berne Ellipsoid Model}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines