ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Lipid.tex
(Generate patch)

Comparing trunk/tengDissertation/Lipid.tex (file contents):
Revision 2786 by tim, Sun Jun 4 20:18:07 2006 UTC vs.
Revision 2819 by tim, Wed Jun 7 21:03:46 2006 UTC

# Line 57 | Line 57 | model\cite{Chandra1999,Fennel2004} is used as the expl
57   In a typical bilayer simulation, the dominant portion of the
58   computation time will be spent calculating water-water interactions.
59   As an efficient solvent model, the Soft Sticky Dipole (SSD) water
60 < model\cite{Chandra1999,Fennel2004} is used as the explicit solvent
60 > model\cite{Chandra1999,Fennell2004} is used as the explicit solvent
61   in this project. Unlike other water models which have partial
62   charges distributed throughout the whole molecule, the SSD water
63   model consists of a single site which is a Lennard-Jones interaction
# Line 115 | Line 115 | $\text{{\sc CH}}_2$ or $\text{{\sc CH}}_3$ atoms.
115  
116   \begin{figure}
117   \centering
118 < \includegraphics[width=\linewidth]{coarse_grained.eps}
118 > \includegraphics[width=3in]{coarse_grained.eps}
119   \caption[A representation of coarse-grained phospholipid model]{}
120   \label{lipidFigure:coarseGrained}
121   \end{figure}
# Line 152 | Line 152 | electrostatic potential at point $P$ is given by:
152  
153   \begin{figure}
154   \centering
155 < \includegraphics[width=\linewidth]{charge_dipole.eps}
155 > \includegraphics[width=3in]{charge_dipole.eps}
156   \caption[Electrostatic potential due to a linear molecule comprising
157   two point charges]{Electrostatic potential due to a linear molecule
158   comprising two point charges} \label{lipidFigure:chargeDipole}
# Line 182 | Line 182 | $i$ and molecule $j$, and $R_{ij{$ is given by,
182   \]
183   where $\mu _i$  and  $\mu _j$ are the dipole moment of molecule $i$
184   and molecule $j$ respectively, $r_{ij}$ is vector between molecule
185 < $i$ and molecule $j$, and $R_{ij{$ is given by,
185 > $i$ and molecule $j$, and $R_{ij}$ is given by,
186   \[
187   R_{ij}  = \sqrt {r_{ij}^2  + \frac{{d_i^2 }}{4} + \frac{{d_j^2
188   }}{4}}
# Line 315 | Line 315 | molecules.}
315   \label{lipidFigure:bilayer}
316   \end{figure}
317  
318 < \subsubsection{Electron Density Profile (EDP)}
318 > \subsubsection{\textbf{Electron Density Profile (EDP)}}
319  
320   Assuming a gaussian distribution of electrons on each atomic center
321   with a variance estimated from the size of the van der Waals radius,
# Line 351 | Line 351 | and total density due to DMPC in blue.}
351   \label{lipidFigure:electronDensity}
352   \end{figure}
353  
354 < \subsubsection{$\text{S}_{\text{{\sc cd}}}$ Order Parameter}
354 > \subsubsection{\textbf{$\text{S}_{\text{{\sc cd}}}$ Order Parameter}}
355  
356   Measuring deuterium order parameters by NMR is a useful technique to
357   study the orientation of hydrocarbon chains in phospholipids. The

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines