ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Lipid.tex
(Generate patch)

Comparing trunk/tengDissertation/Lipid.tex (file contents):
Revision 2881 by tim, Fri Jun 23 20:21:54 2006 UTC vs.
Revision 2885 by tim, Sun Jun 25 18:19:46 2006 UTC

# Line 62 | Line 62 | interaction between two water molecules:
62   site, as well as a point dipole. A tetrahedral potential is added to
63   correct for hydrogen bonding. The following equation describes the
64   interaction between two water molecules:
65 < \[
65 > \begin{equation}
66   V_{SSD}  = V_{LJ} (r_{ij} ) + V_{dp} (r_{ij} ,\Omega _i ,\Omega _j )
67   + V_{sticky} (r_{ij} ,\Omega _i ,\Omega _j )
68 < \]
69 < where $r_{ij}$ is the vector between molecule $i$ and molecule $j$,
68 > \label{lipidSection:ssdEquation}
69 > \end{equation}
70 > where$r_{ij}$ is the vector between molecule $i$ and molecule $j$,
71   $\Omega _i$ and $\Omega _j$ are the orientational degrees of freedom
72 < for molecule $i$ and molecule $j$ respectively.
73 < \[
74 < V_{LJ} (r_{ij} ) = 4\varepsilon _{ij} \left[ {\left( {\frac{{\sigma
75 < _{ij} }}{{r_{ij} }}} \right)^{12}  - \left( {\frac{{\sigma _{ij}
76 < }}{{r_{ij} }}} \right)^6 } \right]
77 < \]
78 < \[
79 < V_{dp} (r_{ij} ,\Omega _i ,\Omega _j ) = \frac{1}{{4\pi \varepsilon
80 < _0 }}\left[ {\frac{{\mu _i  \cdot \mu _j }}{{r_{ij}^3 }} -
81 < \frac{{3\left( {\mu _i  \cdot r_{ij} } \right)\left( {\mu _i  \cdot
82 < r_{ij} } \right)}}{{r_{ij}^5 }}} \right]
83 < \]
84 < \[
85 < V_{sticky} (r_{ij} ,\Omega _i ,\Omega _j ) = v_0 [s(r_{ij} )w(r_{ij}
86 < ,\Omega _i ,\Omega _j ) + s'(r_{ij} )w'(r_{ij} ,\Omega _i ,\Omega _j
86 < )]
87 < \]
72 > for molecule $i$ and molecule $j$ respectively. The potential terms
73 > in Eq.~\ref{lipidSection:ssdEquation} are given by :
74 > \begin{eqnarray}
75 > V_{LJ} (r_{ij} ) &= &4\varepsilon _{ij} \left[ {\left(
76 > {\frac{{\sigma _{ij} }}{{r_{ij} }}} \right)^{12}  - \left(
77 > {\frac{{\sigma _{ij}
78 > }}{{r_{ij} }}} \right)^6 } \right], \\
79 > V_{dp} (r_{ij} ,\Omega _i ,\Omega _j ) &= &
80 > \frac{|\mu_i||\mu_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
81 > \hat{u}_{i} \cdot \hat{u}_{j} - 3(\hat{u}_i \cdot \hat{\mathbf{r}}_{ij}) %
82 > (\hat{u}_j \cdot \hat{\mathbf{r}}_{ij}) \biggr],\\
83 > V_{sticky} (r_{ij} ,\Omega _i ,\Omega _j ) &=& v_0 [s(r_{ij}
84 > )w(r_{ij} ,\Omega _i ,\Omega _j ) + s'(r_{ij} )w'(r_{ij} ,\Omega _i
85 > ,\Omega _j )]
86 > \end{eqnarray}
87   where $v_0$ is a strength parameter, $s$ and $s'$ are cubic
88 < switching functions, while $w$   and $w'$  are responsible for the
88 > switching functions, while $w$ and $w'$  are responsible for the
89   tetrahedral potential and the short-range correction to the dipolar
90 < interaction respectively.
91 < \[
92 < \begin{array}{l}
93 < w(r_{ij} ,\Omega _i ,\Omega _j ) = \sin \theta _{ij} \sin 2\theta _{ij} \cos 2\phi _{ij}  \\
94 < w'(r_{ij} ,\Omega _i ,\Omega _j ) = (\cos \theta _{ij}  - 0.6)^2 (\cos \theta _{ij}  + 0.8)^2  - w_0  \\
95 < \end{array}
96 < \]
97 < Although the dipole-dipole and sticky interactions are more
90 > interaction respectively:
91 > \begin{eqnarray}
92 > w(r_{ij} ,\Omega _i ,\Omega _j )& = &\sin \theta _{ij} \sin 2\theta _{ij} \cos 2\phi _{ij},  \\
93 > w'(r_{ij} ,\Omega _i ,\Omega _j )& = &(\cos \theta _{ij}  - 0.6)^2 (\cos \theta _{ij}  + 0.8)^2  -
94 > w_0.
95 > \end{eqnarray}
96 > Here $\theta _{ij}$ and $\phi _{ij}$ are the spherical polar angles
97 > representing relative orientations between molecule $i$ and molecule
98 > $j$. Although the dipole-dipole and sticky interactions are more
99   mathematically complicated than Coulomb interactions, the number of
100   pair interactions is reduced dramatically both because the model
101   only contains a single-point as well as "short range" nature of the
# Line 117 | Line 117 | $\text{{\sc NC}}_4$ group (blue) and a united $\text{{
117   \caption[A representation of coarse-grained phospholipid model]{A
118   representation of coarse-grained phospholipid model. The lipid
119   headgroup consists of $\text{{\sc PO}}_4$ group (yellow),
120 < $\text{{\sc NC}}_4$ group (blue) and a united $\text{{\sc C}}$ atom
121 < (gray) $ with a dipole, while the glycerol backbone includes dipolar
122 < $\text{{\sc CE}}$ (red) and $\text{{\sc CK}}$ (pink) groups. Alkyl
123 < groups in hydrocarbon chains are simply represented by gray united
124 < atoms.} \label{lipidFigure:coarseGrained}
120 > $\text{{\sc NC}}_4$ group (blue) and a united C atom (gray) with a
121 > dipole, while the glycerol backbone includes dipolar $\text{{\sc
122 > CE}}$ (red) and $\text{{\sc CK}}$ (pink) groups. Alkyl groups in
123 > hydrocarbon chains are simply represented by gray united atoms.}
124 > \label{lipidFigure:coarseGrained}
125   \end{figure}
126  
127   Accurate and efficient computation of electrostatics is one of the
# Line 166 | Line 166 | separation $d$ (4.63 $\AA$ in PC headgroup) may be com
166   $\frac{{d^2 }}{4}$ inside the square root of the denominator is
167   neglected. This is a reasonable approximation in most cases.
168   Unfortunately, in our headgroup model, the distance of charge
169 < separation $d$ (4.63 $\AA$ in PC headgroup) may be comparable to
170 < $r$. Nevertheless, we could still assume  $ \cos \theta  \approx 0$
171 < in the central region of the headgroup. Using Taylor expansion and
169 > separation $d$ (4.63 \AA  in PC headgroup) may be comparable to $r$.
170 > Nevertheless, we could still assume  $ \cos \theta  \approx 0$ in
171 > the central region of the headgroup. Using Taylor expansion and
172   associating appropriate terms with electric moments will result in a
173   "split-dipole" approximation:
174   \[
# Line 238 | Line 238 | solvation shell (3.5 $\AA$) and the second solvation s
238   \end{equation}
239  
240   From Fig.~\ref{lipidFigure:PCFAtom}, we can identify the first
241 < solvation shell (3.5 $\AA$) and the second solvation shell (5.0
242 < $\AA$) from both plots. However, the corresponding orientations are
241 > solvation shell (3.5 \AA) and the second solvation shell (5.0 \AA)
242 > from both plots. However, the corresponding orientations are
243   different. In DLPE, water molecules prefer to sit around $\text{{\sc
244   NH}}_3$ group due to the hydrogen bonding. In contrast, because of
245   the hydrophobic effect of the $ {\rm{N(CH}}_{\rm{3}}
# Line 360 | Line 360 | density profile, calculated from our simulations to be
360   electron density is in the hydrocarbon region. As a good
361   approximation to the thickness of the bilayer, the headgroup spacing
362   , is defined as the distance between two peaks in the electron
363 < density profile, calculated from our simulations to be 34.1 $\AA$.
363 > density profile, calculated from our simulations to be 34.1 \AA.
364   This value is close to the x-ray diffraction experimental value 34.4
365 < $\AA$\cite{Petrache1998}.
365 > \AA\cite{Petrache1998}.
366  
367   \begin{figure}
368   \centering

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines