ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Lipid.tex
(Generate patch)

Comparing trunk/tengDissertation/Lipid.tex (file contents):
Revision 2889 by tim, Mon Jun 26 13:42:53 2006 UTC vs.
Revision 2905 by tim, Wed Jun 28 19:09:25 2006 UTC

# Line 110 | Line 110 | $\text{{\sc CH}}_2$ or $\text{{\sc CH}}_3$ atoms.
110   glycerol motif are modeled by Lennard-Jones spheres with dipoles.
111   Alkyl groups in hydrocarbon chains are replaced with unified
112   $\text{{\sc CH}}_2$ or $\text{{\sc CH}}_3$ atoms.
113
113   \begin{figure}
114   \centering
115   \includegraphics[width=3in]{coarse_grained.eps}
# Line 152 | Line 151 | electrostatic potential at point $P$ is given by:
151   \theta } }} + \frac{q}{{\sqrt {r^2  + \frac{{d^2 }}{4} - rd\cos
152   \theta } }}} \right)
153   \]
155
154   \begin{figure}
155   \centering
156   \includegraphics[width=3in]{charge_dipole.eps}
# Line 161 | Line 159 | comprising two point charges with opposite charges. }
159   comprising two point charges with opposite charges. }
160   \label{lipidFigure:chargeDipole}
161   \end{figure}
164
162   The basic assumption of the multipole expansion is $r \gg d$ , thus,
163   $\frac{{d^2 }}{4}$ inside the square root of the denominator is
164   neglected. This is a reasonable approximation in most cases.
# Line 212 | Line 209 | split-dipole approximation.} \label{lipidFigure:splitD
209   split-dipole approximation.} \label{lipidFigure:splitDipole}
210   \end{figure}
211  
215 %\section{\label{lipidSection:methods}Methods}
216
212   \section{\label{lipidSection:resultDiscussion}Results and Discussion}
213  
214   \subsection{One Lipid in Sea of Water Molecules}
# Line 225 | Line 220 | density.
220   distribution functions, which give the probability of finding a pair
221   of molecular species a distance apart, relative to the probability
222   expected for a completely random distribution function at the same
223 < density.
224 <
225 < \begin{equation}
226 < g_{AB} (r) = \frac{1}{{\rho _B }}\frac{1}{{N_A }} < \sum\limits_{i
227 < \in A} {\sum\limits_{j \in B} {\delta (r - r_{ij} )} }  >
228 < \end{equation}
234 < \begin{equation}
235 < g_{AB} (r,\cos \theta ) = \frac{1}{{\rho _B }}\frac{1}{{N_A }} <
223 > density
224 > \begin{eqnarray}
225 > g_{AB} (r) & = & \frac{1}{{\rho _B }}\frac{1}{{N_A }} <
226 > \sum\limits_{i
227 > \in A} {\sum\limits_{j \in B} {\delta (r - r_{ij} )} }  >, \\
228 > g_{AB} (r,\cos \theta ) & = & \frac{1}{{\rho _B }}\frac{1}{{N_A }} <
229   \sum\limits_{i \in A} {\sum\limits_{j \in B} {\delta (r - r_{ij} )}
230 < } \delta (\cos \theta _{ij}  - \cos \theta ) >
231 < \end{equation}
239 <
230 > } \delta (\cos \theta _{ij}  - \cos \theta ) >.
231 > \end{eqnarray}
232   From Fig.~\ref{lipidFigure:PCFAtom}, we can identify the first
233   solvation shell (3.5 \AA) and the second solvation shell (5.0 \AA)
234   from both plots. However, the corresponding orientations are
# Line 255 | Line 247 | dipole of headgroup.
247   dipole in both plots tell us that in the closely-bound region, the
248   dipoles of the water molecules are preferentially aligned with the
249   dipole of headgroup.
258
250   \begin{figure}
251   \centering
252   \includegraphics[width=\linewidth]{g_atom.eps}
# Line 278 | Line 269 | atoms.
269   Fig.~\ref{lipidFigure:PCFCoarse}. It is clear that the phosphate end
270   in DMPC and the amine end in DMPE are the two most heavily solvated
271   atoms.
281
272   \begin{figure}
273   \centering
274   \includegraphics[width=\linewidth]{g_coarse.eps}
# Line 287 | Line 277 | models]{The pair correlation functions for coarse-grai
277   (a)$g(r,\cos \theta )$ for DMPC; (b) $g(r,\cos \theta )$ for DLPE.}
278   \label{lipidFigure:PCFCoarse}
279   \end{figure}
290
280   \begin{figure}
281   \centering
282   \includegraphics[width=\linewidth]{EWD_coarse.eps}
# Line 300 | Line 289 | phospholipids.} \label{lipidFigure:EWDCoarse}
289   \caption{THE PARAMETERS FOR COARSE-GRAINED PHOSPHOLIPIDS}
290   \label{lipidTable:parameter}
291   \begin{center}
292 < \begin{tabular}{|l|c|c|c|c|c|}
292 > \begin{tabular}{lccccc}
293    \hline
294    % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
295    Atom type & Mass & $\sigma$ & $\epsilon$ & charge & Dipole \\
296 +  \hline
297    $\text{{\sc CH}}_2$ & 14.03  & 3.95 & 0.0914 & 0 & 0 \\
298    $\text{{\sc CH}}_3$ & 15.04  & 3.75 & 0.195  & 0 & 0 \\
299    $\text{{\sc CE}}$   & 28.01  & 3.427& 0.294  & 0 & 1.693 \\
# Line 329 | Line 319 | different properties were evaluated over a production
319   was relaxed by performing under NPT conditions using Nos\'{e}-Hoover
320   extended system isothermal-isobaric dynamics. After equilibration,
321   different properties were evaluated over a production run of 5 ns.
332
322   \begin{figure}
323   \centering
324   \includegraphics[width=\linewidth]{bilayer.eps}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines