ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/LiquidCrystal.tex
Revision: 2784
Committed: Thu Jun 1 20:14:11 2006 UTC (18 years, 1 month ago) by tim
Content type: application/x-tex
File size: 9541 byte(s)
Log Message:
Adding model section into Chapter Liquid Crystal

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:liquidcrystal}LIQUID CRYSTAL}
2    
3     \section{\label{liquidCrystalSection:introduction}Introduction}
4    
5 tim 2781 Long range orientational order is one of the most fundamental
6     properties of liquid crystal mesophases. This orientational
7     anisotropy of the macroscopic phases originates in the shape
8     anisotropy of the constituent molecules. Among these anisotropy
9     mesogens, rod-like (calamitic) and disk-like molecules have been
10     exploited in great detail in the last two decades. Typically, these
11     mesogens consist of a rigid aromatic core and one or more attached
12     aliphatic chains. For short chain molecules, only nematic phases, in
13     which positional order is limited or absent, can be observed,
14     because the entropy of mixing different parts of the mesogens is
15     paramount to the dispersion interaction. In contrast, formation of
16     the one dimension lamellar sematic phase in rod-like molecules with
17     sufficiently long aliphatic chains has been reported, as well as the
18     segregation phenomena in disk-like molecules.
19    
20     Recently, the banana-shaped or bent-core liquid crystal have became
21     one of the most active research areas in mesogenic materials and
22     supramolecular chemistry. Unlike rods and disks, the polarity and
23     biaxiality of the banana-shaped molecules allow the molecules
24     organize into a variety of novel liquid crystalline phases which
25     show interesting material properties. Of particular interest is the
26     spontaneous formation of macroscopic chiral layers from achiral
27     banana-shaped molecules, where polar molecule orientational ordering
28     is shown within the layer plane as well as the tilted arrangement of
29     the molecules relative to the polar axis. As a consequence of
30     supramolecular chirality, the spontaneous polarization arises in
31     ferroelectric (FE) and antiferroelectic (AF) switching of smectic
32     liquid crystal phases, demonstrating some promising applications in
33 tim 2782 second-order nonlinear optical devices. The most widely investigated
34     mesophase formed by banana-shaped moleculed is the $\text{B}_2$
35     phase, which is also referred to as $\text{SmCP}$. Of the most
36     important discover in this tilt lamellar phase is the four distinct
37     packing arrangements (two conglomerates and two macroscopic
38     racemates), which depend on the tilt direction and the polar
39     direction of the molecule in adjacent layer (see
40     Fig.~\cite{LCFig:SMCP}).
41 tim 2781
42 tim 2784 \begin{figure}
43     \centering
44     \includegraphics[width=\linewidth]{smcp.eps}
45     \caption[]
46     {}
47     \label{LCFig:SMCP}
48     \end{figure}
49    
50 tim 2782 Many liquid crystal synthesis experiments suggest that the
51     occurrence of polarity and chirality strongly relies on the
52     molecular structure and intermolecular interaction. From a
53     theoretical point of view, it is of fundamental interest to study
54     the structural properties of liquid crystal phases formed by
55     banana-shaped molecules and understand their connection to the
56     molecular structure, especially with respect to the spontaneous
57     achiral symmetry breaking. As a complementary tool to experiment,
58     computer simulation can provide unique insight into molecular
59     ordering and phase behavior, and hence improve the development of
60     new experiments and theories. In the last two decades, all-atom
61     models have been adopted to investigate the structural properties of
62     smectic arrangements\cite{Cook2000, Lansac2001}, as well as other
63     bulk properties, such as rotational viscosity and flexoelectric
64     coefficients\cite{Cheung2002, Cheung2004}. However, due to the
65     limitation of time scale required for phase
66     transition\cite{Wilson1999} and the length scale required for
67     representing bulk behavior, the dominant models in the field of
68     liquid crystal phase behavior are generic
69     models\cite{Lebwohl1972,Perram1984, Gay1981}, which are based on the
70     observation that liquid crystal order is exhibited by a range of
71     non-molecular bodies with high shape anisotropies. Previous
72     simulation studies using hard spherocylinder dimer
73     model\cite{Camp1999} produce nematic phases, while hard rod
74     simulation studies identified a Landau point\cite{Bates2005}, at
75 tim 2784 which the isotropic phase undergoes a direct transition to the
76 tim 2782 biaxial nematic, as well as some possible liquid crystal
77 tim 2784 phases\cite{Lansac2003}. Other anisotropic models using
78     Gay-Berne(GB) potential, which produce interactions that favor local
79     alignment, give the evidence of the novel packing arrangements of
80 tim 2782 bent-core molecules\cite{Memmer2002,Orlandi2006}.
81 tim 2781
82 tim 2784 Experimental studies by Levelut {\it et al.}~\cite{Levelut1981}
83     revealed that terminal cyano or nitro groups usually induce
84     permanent longitudinal dipole moments, which affect the phase
85     behavior considerably. A series of theoretical studies also drawn
86     equivalent conclusions. Monte Carlo studies of the GB potential with
87     fixed longitudinal dipoles (i.e. pointed along the principal axis of
88     rotation) were shown to enhance smectic phase
89     stability~\cite{Berardi1996,Satoh1996}. Molecular simulation of GB
90     ellipsoids with transverse dipoles at the terminus of the molecule
91     also demonstrated that partial striped bilayer structures were
92     developed from the smectic phase ~\cite{Berardi1996}. More
93     significant effects have been shown by including multiple
94     electrostatic moments. Adding longitudinal point quadrupole moments
95     to rod-shaped GB mesogens, Withers \textit{et al} induced tilted
96     smectic behaviour in the molecular system~\cite{Withers2003}. Thus,
97     it is clear that many liquid-crystal forming molecules, specially,
98     bent-core molecules, could be modeled more accurately by
99     incorporating electrostatic interaction.
100    
101     In this chapter, we consider system consisting of banana-shaped
102     molecule represented by three rigid GB particles with one or two
103     point dipoles at different location. Performing a series of
104     molecular dynamics simulations, we explore the structural properties
105     of tilted smectic phases as well as the effect of electrostatic
106     interactions.
107    
108 tim 2685 \section{\label{liquidCrystalSection:model}Model}
109    
110 tim 2784 A typical banana-shaped molecule consists of a rigid aromatic
111     central bent unit with several rod-like wings which are held
112     together by some linking units and terminal chains (see
113     Fig.~\ref{LCFig:BananaMolecule}). In this work, each banana-shaped
114     mesogen has been modeled as a rigid body consisting of three
115     equivalent prolate ellipsoidal GB particles. The GB interaction
116     potential used to mimic the apolar characteristics of liquid crystal
117     molecules takes the familiar form of Lennard-Jones function with
118     orientation and position dependent range ($\sigma$) and well depth
119     ($\epsilon$) parameters. It can can be expressed as,
120     \begin{equation}
121     V_{ij}^{GB} = 4\epsilon (\hat u_i ,\hat u_j ,\hat r_{ij} )\left[
122     {\left( {\frac{{\sigma _0 }}{{r_{ij} - \sigma (\hat u_i ,\hat u_j
123     ,\hat r_{ij} )}}} \right)^{12} - \left( {\frac{{\sigma _0
124     }}{{r_{ij} - \sigma (\hat u_i ,\hat u_j ,\hat r_{ij} )}}} \right)^6
125     } \right] \label{LCEquation:gb}
126     \end{equation}
127     where $\hat u_i,\hat u_j$ are unit vectors specifying the
128     orientation of two molecules $i$ and $j$ separated by intermolecular
129     vector $r_{ij}$. $\hat r_{ij}$ is the unit vector along the
130     intermolecular vector. A schematic diagram of the orientation
131     vectors is shown in Fig.\ref{LCFigure:GBScheme}. The functional form
132     for $\sigma$ is given by
133     \begin{equation}
134     \sigma (\hat u_i ,\hat u_i ,\hat r_{ij} ) = \sigma _0 \left[ {1 -
135     \frac{\chi }{2}\left( {\frac{{(\hat r_{ij} \cdot \hat u_i + \hat
136     r_{ij} \cdot \hat u_j )^2 }}{{1 + \chi \hat u_i \cdot \hat u_j }}
137     + \frac{{(\hat r_{ij} \cdot \hat u_i - \hat r_{ij} \cdot \hat u_j
138     )^2 }}{{1 - \chi \hat u_i \cdot \hat u_j }}} \right)} \right]^{ -
139     \frac{1}{2}},
140     \end{equation}
141     where the aspect ratio of the particles is governed by shape
142     anisotropy parameter
143     \begin{equation}
144     \chi = \frac{{(\sigma _e /\sigma _s )^2 - 1}}{{(\sigma _e /\sigma
145     _s )^2 + 1}}.
146     \label{LCEquation:chi}
147     \end{equation}
148     Here, $\sigma_ s$ and $\sigma_{e}$ refer to the side-by-side breadth
149     and the end-to-end length of the ellipsoid, respectively. Twell
150     depth parameters takes the form
151     \begin{equation}
152     \epsilon (\hat u_i ,\hat u_j ,\hat r_{ij} ) = \epsilon _0 \epsilon
153     ^v (\hat u_i ,\hat u_j )\epsilon '^\mu (\hat u_i ,\hat u_j ,\hat
154     r_{ij} )
155     \end{equation}
156     where $\epsilon_{0}$ is a constant term and
157     \begin{equation}
158     \epsilon (\hat u_i ,\hat u_j ) = \frac{1}{{\sqrt {1 - \chi ^2 (\hat
159     u_i \cdot \hat u_j )^2 } }}
160     \end{equation}
161     and
162     \begin{equation}
163     \epsilon '(\hat u_i ,\hat u_j ,\hat r_{ij} ) = 1 - \frac{{\chi
164     '}}{2}\left[ {\frac{{(\hat r_{ij} \cdot \hat u_i + \hat r_{ij}
165     \cdot \hat u_j )^2 }}{{1 + \chi '\hat u_i \cdot \hat u_j }} +
166     \frac{{(\hat r_{ij} \cdot \hat u_i - \hat r_{ij} \cdot \hat u_j
167     )^2 }}{{1 - \chi '\hat u_i \cdot \hat u_j }}} \right]
168     \end{equation}
169     where the well depth anisotropy parameter $\chi '$ depends on the
170     ratio between \textit{end-to-end} well depth $\epsilon _e$ and
171     \textit{side-by-side} well depth $\epsilon_s$,
172     \begin{eqaution}
173     \chi ' = \frac{{1 - (\epsilon _e /\epsilon _s )^{1/\mu} }}{{1 +
174     (\epsilon _e /\epsilon _s )^{1/\mu} }}.
175     \end{equation}
176    
177     \begin{figure}
178     \centering
179     \includegraphics[width=\linewidth]{banana.eps}
180     \caption[]{} \label{LCFig:BananaMolecule}
181     \end{figure}
182    
183     \begin{figure}
184     \centering
185     \includegraphics[width=\linewidth]{bananGB_grained.eps}
186     \caption[]{} \label{LCFigure:BananaGB}
187     \end{figure}
188    
189     \begin{figure}
190     \centering
191     \includegraphics[width=\linewidth]{gb_scheme.eps}
192     \caption[]{Schematic diagram showing definitions of the orientation
193     vectors for a pair of Gay-Berne molecules}
194     \label{LCFigure:GBScheme}
195     \end{figure}
196    
197 tim 2685 \section{\label{liquidCrystalSection:methods}Methods}
198    
199     \section{\label{liquidCrystalSection:resultDiscussion}Results and Discussion}