ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/LiquidCrystal.tex
Revision: 2876
Committed: Wed Jun 21 19:46:01 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 13860 byte(s)
Log Message:
minor fixes

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:liquidcrystal}LIQUID CRYSTAL}
2    
3     \section{\label{liquidCrystalSection:introduction}Introduction}
4    
5 tim 2781 Long range orientational order is one of the most fundamental
6     properties of liquid crystal mesophases. This orientational
7     anisotropy of the macroscopic phases originates in the shape
8     anisotropy of the constituent molecules. Among these anisotropy
9     mesogens, rod-like (calamitic) and disk-like molecules have been
10 tim 2786 exploited in great detail in the last two decades\cite{Huh2004}.
11     Typically, these mesogens consist of a rigid aromatic core and one
12     or more attached aliphatic chains. For short chain molecules, only
13     nematic phases, in which positional order is limited or absent, can
14     be observed, because the entropy of mixing different parts of the
15     mesogens is paramount to the dispersion interaction. In contrast,
16     formation of the one dimension lamellar sematic phase in rod-like
17     molecules with sufficiently long aliphatic chains has been reported,
18     as well as the segregation phenomena in disk-like molecules.
19 tim 2781
20     Recently, the banana-shaped or bent-core liquid crystal have became
21     one of the most active research areas in mesogenic materials and
22 tim 2786 supramolecular chemistry\cite{Niori1996, Link1997, Pelzl1999}.
23     Unlike rods and disks, the polarity and biaxiality of the
24     banana-shaped molecules allow the molecules organize into a variety
25     of novel liquid crystalline phases which show interesting material
26     properties. Of particular interest is the spontaneous formation of
27     macroscopic chiral layers from achiral banana-shaped molecules,
28     where polar molecule orientational ordering is shown within the
29     layer plane as well as the tilted arrangement of the molecules
30     relative to the polar axis. As a consequence of supramolecular
31     chirality, the spontaneous polarization arises in ferroelectric (FE)
32     and antiferroelectic (AF) switching of smectic liquid crystal
33     phases, demonstrating some promising applications in second-order
34     nonlinear optical devices. The most widely investigated mesophase
35     formed by banana-shaped moleculed is the $\text{B}_2$ phase, which
36     is also referred to as $\text{SmCP}$\cite{Link1997}. Of the most
37 tim 2782 important discover in this tilt lamellar phase is the four distinct
38     packing arrangements (two conglomerates and two macroscopic
39     racemates), which depend on the tilt direction and the polar
40     direction of the molecule in adjacent layer (see
41 tim 2839 Fig.~\ref{LCFig:SMCP}).
42 tim 2781
43 tim 2784 \begin{figure}
44     \centering
45     \includegraphics[width=\linewidth]{smcp.eps}
46     \caption[]
47     {}
48     \label{LCFig:SMCP}
49     \end{figure}
50    
51 tim 2782 Many liquid crystal synthesis experiments suggest that the
52     occurrence of polarity and chirality strongly relies on the
53 tim 2786 molecular structure and intermolecular interaction\cite{Reddy2006}.
54     From a theoretical point of view, it is of fundamental interest to
55     study the structural properties of liquid crystal phases formed by
56 tim 2782 banana-shaped molecules and understand their connection to the
57     molecular structure, especially with respect to the spontaneous
58     achiral symmetry breaking. As a complementary tool to experiment,
59     computer simulation can provide unique insight into molecular
60     ordering and phase behavior, and hence improve the development of
61     new experiments and theories. In the last two decades, all-atom
62     models have been adopted to investigate the structural properties of
63     smectic arrangements\cite{Cook2000, Lansac2001}, as well as other
64     bulk properties, such as rotational viscosity and flexoelectric
65     coefficients\cite{Cheung2002, Cheung2004}. However, due to the
66 tim 2786 limitation of time scale required for phase transition and the
67     length scale required for representing bulk behavior,
68     models\cite{Perram1985, Gay1981}, which are based on the observation
69     that liquid crystal order is exhibited by a range of non-molecular
70     bodies with high shape anisotropies, became the dominant models in
71     the field of liquid crystal phase behavior. Previous simulation
72     studies using hard spherocylinder dimer model\cite{Camp1999} produce
73     nematic phases, while hard rod simulation studies identified a
74     Landau point\cite{Bates2005}, at which the isotropic phase undergoes
75     a direct transition to the biaxial nematic, as well as some possible
76     liquid crystal phases\cite{Lansac2003}. Other anisotropic models
77     using Gay-Berne(GB) potential, which produce interactions that favor
78     local alignment, give the evidence of the novel packing arrangements
79     of bent-core molecules\cite{Memmer2002,Orlandi2006}.
80 tim 2781
81 tim 2784 Experimental studies by Levelut {\it et al.}~\cite{Levelut1981}
82     revealed that terminal cyano or nitro groups usually induce
83     permanent longitudinal dipole moments, which affect the phase
84     behavior considerably. A series of theoretical studies also drawn
85     equivalent conclusions. Monte Carlo studies of the GB potential with
86     fixed longitudinal dipoles (i.e. pointed along the principal axis of
87     rotation) were shown to enhance smectic phase
88     stability~\cite{Berardi1996,Satoh1996}. Molecular simulation of GB
89     ellipsoids with transverse dipoles at the terminus of the molecule
90     also demonstrated that partial striped bilayer structures were
91     developed from the smectic phase ~\cite{Berardi1996}. More
92     significant effects have been shown by including multiple
93     electrostatic moments. Adding longitudinal point quadrupole moments
94     to rod-shaped GB mesogens, Withers \textit{et al} induced tilted
95     smectic behaviour in the molecular system~\cite{Withers2003}. Thus,
96     it is clear that many liquid-crystal forming molecules, specially,
97     bent-core molecules, could be modeled more accurately by
98     incorporating electrostatic interaction.
99    
100     In this chapter, we consider system consisting of banana-shaped
101     molecule represented by three rigid GB particles with one or two
102     point dipoles at different location. Performing a series of
103     molecular dynamics simulations, we explore the structural properties
104     of tilted smectic phases as well as the effect of electrostatic
105     interactions.
106    
107 tim 2685 \section{\label{liquidCrystalSection:model}Model}
108    
109 tim 2784 A typical banana-shaped molecule consists of a rigid aromatic
110     central bent unit with several rod-like wings which are held
111     together by some linking units and terminal chains (see
112     Fig.~\ref{LCFig:BananaMolecule}). In this work, each banana-shaped
113     mesogen has been modeled as a rigid body consisting of three
114     equivalent prolate ellipsoidal GB particles. The GB interaction
115     potential used to mimic the apolar characteristics of liquid crystal
116     molecules takes the familiar form of Lennard-Jones function with
117     orientation and position dependent range ($\sigma$) and well depth
118 tim 2785 ($\epsilon$) parameters. The potential between a pair of three-site
119     banana-shaped molecules $a$ and $b$ is given by
120 tim 2784 \begin{equation}
121 tim 2785 V_{ab}^{GB} = \sum\limits_{i \in a,j \in b} {V_{ij}^{GB} }.
122     \end{equation}
123     Every site-site interaction can can be expressed as,
124     \begin{equation}
125 tim 2784 V_{ij}^{GB} = 4\epsilon (\hat u_i ,\hat u_j ,\hat r_{ij} )\left[
126     {\left( {\frac{{\sigma _0 }}{{r_{ij} - \sigma (\hat u_i ,\hat u_j
127     ,\hat r_{ij} )}}} \right)^{12} - \left( {\frac{{\sigma _0
128     }}{{r_{ij} - \sigma (\hat u_i ,\hat u_j ,\hat r_{ij} )}}} \right)^6
129     } \right] \label{LCEquation:gb}
130     \end{equation}
131     where $\hat u_i,\hat u_j$ are unit vectors specifying the
132     orientation of two molecules $i$ and $j$ separated by intermolecular
133     vector $r_{ij}$. $\hat r_{ij}$ is the unit vector along the
134     intermolecular vector. A schematic diagram of the orientation
135     vectors is shown in Fig.\ref{LCFigure:GBScheme}. The functional form
136     for $\sigma$ is given by
137     \begin{equation}
138     \sigma (\hat u_i ,\hat u_i ,\hat r_{ij} ) = \sigma _0 \left[ {1 -
139     \frac{\chi }{2}\left( {\frac{{(\hat r_{ij} \cdot \hat u_i + \hat
140     r_{ij} \cdot \hat u_j )^2 }}{{1 + \chi \hat u_i \cdot \hat u_j }}
141     + \frac{{(\hat r_{ij} \cdot \hat u_i - \hat r_{ij} \cdot \hat u_j
142     )^2 }}{{1 - \chi \hat u_i \cdot \hat u_j }}} \right)} \right]^{ -
143     \frac{1}{2}},
144     \end{equation}
145     where the aspect ratio of the particles is governed by shape
146     anisotropy parameter
147     \begin{equation}
148     \chi = \frac{{(\sigma _e /\sigma _s )^2 - 1}}{{(\sigma _e /\sigma
149     _s )^2 + 1}}.
150     \label{LCEquation:chi}
151     \end{equation}
152     Here, $\sigma_ s$ and $\sigma_{e}$ refer to the side-by-side breadth
153 tim 2785 and the end-to-end length of the ellipsoid, respectively. The well
154 tim 2784 depth parameters takes the form
155     \begin{equation}
156     \epsilon (\hat u_i ,\hat u_j ,\hat r_{ij} ) = \epsilon _0 \epsilon
157     ^v (\hat u_i ,\hat u_j )\epsilon '^\mu (\hat u_i ,\hat u_j ,\hat
158     r_{ij} )
159     \end{equation}
160     where $\epsilon_{0}$ is a constant term and
161     \begin{equation}
162     \epsilon (\hat u_i ,\hat u_j ) = \frac{1}{{\sqrt {1 - \chi ^2 (\hat
163     u_i \cdot \hat u_j )^2 } }}
164     \end{equation}
165     and
166     \begin{equation}
167     \epsilon '(\hat u_i ,\hat u_j ,\hat r_{ij} ) = 1 - \frac{{\chi
168     '}}{2}\left[ {\frac{{(\hat r_{ij} \cdot \hat u_i + \hat r_{ij}
169     \cdot \hat u_j )^2 }}{{1 + \chi '\hat u_i \cdot \hat u_j }} +
170     \frac{{(\hat r_{ij} \cdot \hat u_i - \hat r_{ij} \cdot \hat u_j
171     )^2 }}{{1 - \chi '\hat u_i \cdot \hat u_j }}} \right]
172     \end{equation}
173     where the well depth anisotropy parameter $\chi '$ depends on the
174     ratio between \textit{end-to-end} well depth $\epsilon _e$ and
175     \textit{side-by-side} well depth $\epsilon_s$,
176 tim 2785 \begin{equation}
177 tim 2784 \chi ' = \frac{{1 - (\epsilon _e /\epsilon _s )^{1/\mu} }}{{1 +
178     (\epsilon _e /\epsilon _s )^{1/\mu} }}.
179     \end{equation}
180    
181     \begin{figure}
182     \centering
183     \includegraphics[width=\linewidth]{banana.eps}
184     \caption[]{} \label{LCFig:BananaMolecule}
185     \end{figure}
186    
187 tim 2805 %\begin{figure}
188     %\centering
189     %\includegraphics[width=\linewidth]{bananGB.eps}
190     %\caption[]{} \label{LCFigure:BananaGB}
191     %\end{figure}
192 tim 2784
193     \begin{figure}
194     \centering
195     \includegraphics[width=\linewidth]{gb_scheme.eps}
196     \caption[]{Schematic diagram showing definitions of the orientation
197     vectors for a pair of Gay-Berne molecules}
198     \label{LCFigure:GBScheme}
199     \end{figure}
200    
201 tim 2785 To account for the permanent dipolar interactions, there should be
202     an electrostatic interaction term of the form
203     \begin{equation}
204     V_{ab}^{dp} = \sum\limits_{i \in a,j \in b} {\frac{1}{{4\pi
205     \epsilon _{fs} }}\left[ {\frac{{\mu _i \cdot \mu _j }}{{r_{ij}^3 }}
206     - \frac{{3\left( {\mu _i \cdot r_{ij} } \right)\left( {\mu _i \cdot
207     r_{ij} } \right)}}{{r_{ij}^5 }}} \right]}
208     \end{equation}
209     where $\epsilon _{fs}$ is the permittivity of free space.
210    
211 tim 2867 \section{Computational Methodology}
212    
213     A series of molecular dynamics simulations were perform to study the
214 tim 2870 phase behavior of banana shaped liquid crystals. In each simulation,
215     every banana shaped molecule has been represented three GB particles
216     which is characterized by $\mu = 1,~ \nu = 2,
217     ~\epsilon_{e}/\epsilon_{s} = 1/5$ and $\sigma_{e}/\sigma_{s} = 3$.
218     All of the simulations begin with same equilibrated isotropic
219     configuration where 1024 molecules without dipoles were confined in
220     a $160\times 160 \times 120$ box. After the dipolar interactions are
221     switched on, 2~ns NPTi cooling run with themostat of 2~ps and
222     barostat of 50~ps were used to equilibrate the system to desired
223     temperature and pressure.
224 tim 2867
225 tim 2871 \subsection{Order Parameters}
226    
227 tim 2870 To investigate the phase structure of the model liquid crystal, we
228     calculated various order parameters and correlation functions.
229     Particulary, the $P_2$ order parameter allows us to estimate average
230     alignment along the director axis $Z$ which can be identified from
231     the largest eigen value obtained by diagonalizing the order
232     parameter tensor
233 tim 2867 \begin{equation}
234 tim 2870 \overleftrightarrow{\mathsf{Q}} = \frac{1}{N}\sum_i^N %
235     \begin{pmatrix} %
236     u_{ix}u_{ix}-\frac{1}{3} & u_{ix}u_{iy} & u_{ix}u_{iz} \\
237     u_{iy}u_{ix} & u_{iy}u_{iy}-\frac{1}{3} & u_{iy}u_{iz} \\
238     u_{iz}u_{ix} & u_{iz}u_{iy} & u_{iz}u_{iz}-\frac{1}{3} %
239     \end{pmatrix},
240     \label{lipidEq:po1}
241 tim 2867 \end{equation}
242 tim 2870 where the $u_{i\alpha}$ is the $\alpha$ element of the unit vector
243     $\mathbf{\hat{u}}_i$, and the sum over $i$ averages over the whole
244     collection of unit vectors. The $P_2$ order parameter for uniaxial
245     phase is then simply given by
246     \begin{equation}
247     \langle P_2 \rangle = \frac{3}{2}\lambda_{\text{max}}.
248     \label{lipidEq:po3}
249     \end{equation}
250     In addition to the $P_2$ order parameter, $ R_{2,2}^2$ order
251     parameter for biaxial phase is introduced to describe the ordering
252     in the plane orthogonal to the director by
253     \begin{equation}
254     R_{2,2}^2 = \frac{1}{4}\left\langle {(x_i \cdot X)^2 - (x_i \cdot
255     Y)^2 - (y_i \cdot X)^2 + (y_i \cdot Y)^2 } \right\rangle
256     \end{equation}
257     where $X$, $Y$ and $Z$ are axis of the director frame.
258 tim 2867
259 tim 2871 \subsection{Structure Properties}
260 tim 2867
261 tim 2871 It is more important to show the density correlation along the
262     director
263     \begin{equation}
264     g(z) =< \delta (z-z_{ij})>_{ij} / \pi R^{2} \rho
265 tim 2870 \end{equation},
266 tim 2871 where $z_{ij} = r_{ij} \dot Z$ was measured in the director frame
267     and $R$ is the radius of the cylindrical sampling region.
268 tim 2867
269 tim 2871 \subsection{Rotational Invariants}
270 tim 2867
271 tim 2871 As a useful set of correlation functions to describe
272     position-orientation correlation, rotation invariants were first
273     applied in a spherical symmetric system to study x-ray and light
274     scatting\cite{Blum1971}. Latterly, expansion of the orientation pair
275     correlation in terms of rotation invariant for molecules of
276     arbitrary shape was introduce by Stone\cite{Stone1978} and adopted
277     by other researchers in liquid crystal studies\cite{Berardi2000}.
278    
279 tim 2876 \begin{eqnarray}
280     S_{22}^{220} (r) & = & \frac{1}{{4\sqrt 5 }}\left\langle {\delta (r
281     - r_{ij} )((\hat x_i \cdot \hat x_j )^2 - (\hat x_i \cdot \hat
282     y_j )^2 - (\hat y_i \cdot \hat x_j )^2 + (\hat y_i \cdot \hat
283     y_j )^2 ) \\
284     & & - 2(\hat x_i \cdot \hat y_j )(\hat y_i \cdot \hat x_j ) -
285 tim 2871 2(\hat x_i \cdot \hat x_j )(\hat y_i \cdot \hat y_j ))}
286     \right\rangle
287 tim 2876 \end{eqnarray}
288 tim 2871
289     \begin{equation}
290     S_{00}^{221} (r) = - \frac{{\sqrt 3 }}{{\sqrt {10} }}\left\langle
291     {\delta (r - r_{ij} )((\hat z_i \cdot \hat z_j )(\hat z_i \cdot
292 tim 2876 \hat z_j \times \hat r_{ij} ))} \right\rangle
293     \end{equation}
294 tim 2871
295 tim 2867 \section{Results and Conclusion}
296     \label{sec:results and conclusion}
297    
298 tim 2870 To investigate the molecular organization behavior due to different
299     dipolar orientation and position with respect to the center of the
300     molecule,