ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/LiquidCrystal.tex
Revision: 2888
Committed: Mon Jun 26 13:34:46 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 14242 byte(s)
Log Message:
more corrections

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:liquidcrystal}LIQUID CRYSTAL}
2    
3     \section{\label{liquidCrystalSection:introduction}Introduction}
4    
5 tim 2781 Long range orientational order is one of the most fundamental
6     properties of liquid crystal mesophases. This orientational
7     anisotropy of the macroscopic phases originates in the shape
8     anisotropy of the constituent molecules. Among these anisotropy
9     mesogens, rod-like (calamitic) and disk-like molecules have been
10 tim 2786 exploited in great detail in the last two decades\cite{Huh2004}.
11     Typically, these mesogens consist of a rigid aromatic core and one
12     or more attached aliphatic chains. For short chain molecules, only
13     nematic phases, in which positional order is limited or absent, can
14     be observed, because the entropy of mixing different parts of the
15     mesogens is paramount to the dispersion interaction. In contrast,
16     formation of the one dimension lamellar sematic phase in rod-like
17     molecules with sufficiently long aliphatic chains has been reported,
18     as well as the segregation phenomena in disk-like molecules.
19 tim 2781
20     Recently, the banana-shaped or bent-core liquid crystal have became
21     one of the most active research areas in mesogenic materials and
22 tim 2786 supramolecular chemistry\cite{Niori1996, Link1997, Pelzl1999}.
23     Unlike rods and disks, the polarity and biaxiality of the
24     banana-shaped molecules allow the molecules organize into a variety
25     of novel liquid crystalline phases which show interesting material
26     properties. Of particular interest is the spontaneous formation of
27     macroscopic chiral layers from achiral banana-shaped molecules,
28     where polar molecule orientational ordering is shown within the
29     layer plane as well as the tilted arrangement of the molecules
30     relative to the polar axis. As a consequence of supramolecular
31     chirality, the spontaneous polarization arises in ferroelectric (FE)
32     and antiferroelectic (AF) switching of smectic liquid crystal
33     phases, demonstrating some promising applications in second-order
34     nonlinear optical devices. The most widely investigated mesophase
35     formed by banana-shaped moleculed is the $\text{B}_2$ phase, which
36     is also referred to as $\text{SmCP}$\cite{Link1997}. Of the most
37 tim 2782 important discover in this tilt lamellar phase is the four distinct
38     packing arrangements (two conglomerates and two macroscopic
39     racemates), which depend on the tilt direction and the polar
40     direction of the molecule in adjacent layer (see
41 tim 2839 Fig.~\ref{LCFig:SMCP}).
42 tim 2781
43 tim 2784 \begin{figure}
44     \centering
45     \includegraphics[width=\linewidth]{smcp.eps}
46 tim 2888 \caption[SmCP Phase Packing] {Four possible SmCP phase packings that
47     are characterized by the relative tilt direction(A and S refer an
48     anticlinic tilt or a synclinic ) and the polarization orientation (A
49     and F represent antiferroelectric or ferroelectric polar order).}
50 tim 2784 \label{LCFig:SMCP}
51     \end{figure}
52    
53 tim 2782 Many liquid crystal synthesis experiments suggest that the
54     occurrence of polarity and chirality strongly relies on the
55 tim 2786 molecular structure and intermolecular interaction\cite{Reddy2006}.
56     From a theoretical point of view, it is of fundamental interest to
57     study the structural properties of liquid crystal phases formed by
58 tim 2782 banana-shaped molecules and understand their connection to the
59     molecular structure, especially with respect to the spontaneous
60     achiral symmetry breaking. As a complementary tool to experiment,
61     computer simulation can provide unique insight into molecular
62     ordering and phase behavior, and hence improve the development of
63     new experiments and theories. In the last two decades, all-atom
64     models have been adopted to investigate the structural properties of
65     smectic arrangements\cite{Cook2000, Lansac2001}, as well as other
66     bulk properties, such as rotational viscosity and flexoelectric
67     coefficients\cite{Cheung2002, Cheung2004}. However, due to the
68 tim 2786 limitation of time scale required for phase transition and the
69     length scale required for representing bulk behavior,
70     models\cite{Perram1985, Gay1981}, which are based on the observation
71     that liquid crystal order is exhibited by a range of non-molecular
72     bodies with high shape anisotropies, became the dominant models in
73     the field of liquid crystal phase behavior. Previous simulation
74     studies using hard spherocylinder dimer model\cite{Camp1999} produce
75     nematic phases, while hard rod simulation studies identified a
76     Landau point\cite{Bates2005}, at which the isotropic phase undergoes
77     a direct transition to the biaxial nematic, as well as some possible
78     liquid crystal phases\cite{Lansac2003}. Other anisotropic models
79     using Gay-Berne(GB) potential, which produce interactions that favor
80     local alignment, give the evidence of the novel packing arrangements
81     of bent-core molecules\cite{Memmer2002,Orlandi2006}.
82 tim 2781
83 tim 2784 Experimental studies by Levelut {\it et al.}~\cite{Levelut1981}
84     revealed that terminal cyano or nitro groups usually induce
85     permanent longitudinal dipole moments, which affect the phase
86     behavior considerably. A series of theoretical studies also drawn
87     equivalent conclusions. Monte Carlo studies of the GB potential with
88     fixed longitudinal dipoles (i.e. pointed along the principal axis of
89     rotation) were shown to enhance smectic phase
90     stability~\cite{Berardi1996,Satoh1996}. Molecular simulation of GB
91     ellipsoids with transverse dipoles at the terminus of the molecule
92     also demonstrated that partial striped bilayer structures were
93     developed from the smectic phase ~\cite{Berardi1996}. More
94     significant effects have been shown by including multiple
95     electrostatic moments. Adding longitudinal point quadrupole moments
96     to rod-shaped GB mesogens, Withers \textit{et al} induced tilted
97     smectic behaviour in the molecular system~\cite{Withers2003}. Thus,
98     it is clear that many liquid-crystal forming molecules, specially,
99     bent-core molecules, could be modeled more accurately by
100     incorporating electrostatic interaction.
101    
102     In this chapter, we consider system consisting of banana-shaped
103     molecule represented by three rigid GB particles with one or two
104     point dipoles at different location. Performing a series of
105     molecular dynamics simulations, we explore the structural properties
106     of tilted smectic phases as well as the effect of electrostatic
107     interactions.
108    
109 tim 2685 \section{\label{liquidCrystalSection:model}Model}
110    
111 tim 2784 A typical banana-shaped molecule consists of a rigid aromatic
112     central bent unit with several rod-like wings which are held
113     together by some linking units and terminal chains (see
114     Fig.~\ref{LCFig:BananaMolecule}). In this work, each banana-shaped
115     mesogen has been modeled as a rigid body consisting of three
116     equivalent prolate ellipsoidal GB particles. The GB interaction
117     potential used to mimic the apolar characteristics of liquid crystal
118     molecules takes the familiar form of Lennard-Jones function with
119     orientation and position dependent range ($\sigma$) and well depth
120 tim 2785 ($\epsilon$) parameters. The potential between a pair of three-site
121     banana-shaped molecules $a$ and $b$ is given by
122 tim 2784 \begin{equation}
123 tim 2785 V_{ab}^{GB} = \sum\limits_{i \in a,j \in b} {V_{ij}^{GB} }.
124     \end{equation}
125     Every site-site interaction can can be expressed as,
126     \begin{equation}
127 tim 2784 V_{ij}^{GB} = 4\epsilon (\hat u_i ,\hat u_j ,\hat r_{ij} )\left[
128     {\left( {\frac{{\sigma _0 }}{{r_{ij} - \sigma (\hat u_i ,\hat u_j
129     ,\hat r_{ij} )}}} \right)^{12} - \left( {\frac{{\sigma _0
130     }}{{r_{ij} - \sigma (\hat u_i ,\hat u_j ,\hat r_{ij} )}}} \right)^6
131     } \right] \label{LCEquation:gb}
132     \end{equation}
133     where $\hat u_i,\hat u_j$ are unit vectors specifying the
134     orientation of two molecules $i$ and $j$ separated by intermolecular
135     vector $r_{ij}$. $\hat r_{ij}$ is the unit vector along the
136     intermolecular vector. A schematic diagram of the orientation
137     vectors is shown in Fig.\ref{LCFigure:GBScheme}. The functional form
138     for $\sigma$ is given by
139     \begin{equation}
140     \sigma (\hat u_i ,\hat u_i ,\hat r_{ij} ) = \sigma _0 \left[ {1 -
141     \frac{\chi }{2}\left( {\frac{{(\hat r_{ij} \cdot \hat u_i + \hat
142     r_{ij} \cdot \hat u_j )^2 }}{{1 + \chi \hat u_i \cdot \hat u_j }}
143     + \frac{{(\hat r_{ij} \cdot \hat u_i - \hat r_{ij} \cdot \hat u_j
144     )^2 }}{{1 - \chi \hat u_i \cdot \hat u_j }}} \right)} \right]^{ -
145     \frac{1}{2}},
146     \end{equation}
147     where the aspect ratio of the particles is governed by shape
148     anisotropy parameter
149     \begin{equation}
150     \chi = \frac{{(\sigma _e /\sigma _s )^2 - 1}}{{(\sigma _e /\sigma
151     _s )^2 + 1}}.
152     \label{LCEquation:chi}
153     \end{equation}
154     Here, $\sigma_ s$ and $\sigma_{e}$ refer to the side-by-side breadth
155 tim 2785 and the end-to-end length of the ellipsoid, respectively. The well
156 tim 2784 depth parameters takes the form
157     \begin{equation}
158     \epsilon (\hat u_i ,\hat u_j ,\hat r_{ij} ) = \epsilon _0 \epsilon
159     ^v (\hat u_i ,\hat u_j )\epsilon '^\mu (\hat u_i ,\hat u_j ,\hat
160     r_{ij} )
161     \end{equation}
162     where $\epsilon_{0}$ is a constant term and
163     \begin{equation}
164     \epsilon (\hat u_i ,\hat u_j ) = \frac{1}{{\sqrt {1 - \chi ^2 (\hat
165     u_i \cdot \hat u_j )^2 } }}
166     \end{equation}
167     and
168     \begin{equation}
169     \epsilon '(\hat u_i ,\hat u_j ,\hat r_{ij} ) = 1 - \frac{{\chi
170     '}}{2}\left[ {\frac{{(\hat r_{ij} \cdot \hat u_i + \hat r_{ij}
171     \cdot \hat u_j )^2 }}{{1 + \chi '\hat u_i \cdot \hat u_j }} +
172     \frac{{(\hat r_{ij} \cdot \hat u_i - \hat r_{ij} \cdot \hat u_j
173     )^2 }}{{1 - \chi '\hat u_i \cdot \hat u_j }}} \right]
174     \end{equation}
175     where the well depth anisotropy parameter $\chi '$ depends on the
176     ratio between \textit{end-to-end} well depth $\epsilon _e$ and
177     \textit{side-by-side} well depth $\epsilon_s$,
178 tim 2785 \begin{equation}
179 tim 2784 \chi ' = \frac{{1 - (\epsilon _e /\epsilon _s )^{1/\mu} }}{{1 +
180     (\epsilon _e /\epsilon _s )^{1/\mu} }}.
181     \end{equation}
182    
183     \begin{figure}
184     \centering
185     \includegraphics[width=\linewidth]{banana.eps}
186 tim 2888 \caption[Schematic representation of a typical banana shaped
187     molecule]{Schematic representation of a typical banana shaped
188     molecule.} \label{LCFig:BananaMolecule}
189 tim 2784 \end{figure}
190    
191 tim 2805 %\begin{figure}
192     %\centering
193     %\includegraphics[width=\linewidth]{bananGB.eps}
194     %\caption[]{} \label{LCFigure:BananaGB}
195     %\end{figure}
196 tim 2784
197     \begin{figure}
198     \centering
199     \includegraphics[width=\linewidth]{gb_scheme.eps}
200     \caption[]{Schematic diagram showing definitions of the orientation
201     vectors for a pair of Gay-Berne molecules}
202     \label{LCFigure:GBScheme}
203     \end{figure}
204    
205 tim 2785 To account for the permanent dipolar interactions, there should be
206     an electrostatic interaction term of the form
207     \begin{equation}
208     V_{ab}^{dp} = \sum\limits_{i \in a,j \in b} {\frac{1}{{4\pi
209     \epsilon _{fs} }}\left[ {\frac{{\mu _i \cdot \mu _j }}{{r_{ij}^3 }}
210     - \frac{{3\left( {\mu _i \cdot r_{ij} } \right)\left( {\mu _i \cdot
211     r_{ij} } \right)}}{{r_{ij}^5 }}} \right]}
212     \end{equation}
213     where $\epsilon _{fs}$ is the permittivity of free space.
214    
215 tim 2867 \section{Computational Methodology}
216    
217     A series of molecular dynamics simulations were perform to study the
218 tim 2870 phase behavior of banana shaped liquid crystals. In each simulation,
219 tim 2880 every banana shaped molecule has been represented by three GB
220     particles which is characterized by $\mu = 1,~ \nu = 2,
221 tim 2870 ~\epsilon_{e}/\epsilon_{s} = 1/5$ and $\sigma_{e}/\sigma_{s} = 3$.
222     All of the simulations begin with same equilibrated isotropic
223     configuration where 1024 molecules without dipoles were confined in
224     a $160\times 160 \times 120$ box. After the dipolar interactions are
225     switched on, 2~ns NPTi cooling run with themostat of 2~ps and
226     barostat of 50~ps were used to equilibrate the system to desired
227     temperature and pressure.
228 tim 2867
229 tim 2871 \subsection{Order Parameters}
230    
231 tim 2870 To investigate the phase structure of the model liquid crystal, we
232     calculated various order parameters and correlation functions.
233     Particulary, the $P_2$ order parameter allows us to estimate average
234     alignment along the director axis $Z$ which can be identified from
235     the largest eigen value obtained by diagonalizing the order
236     parameter tensor
237 tim 2867 \begin{equation}
238 tim 2870 \overleftrightarrow{\mathsf{Q}} = \frac{1}{N}\sum_i^N %
239     \begin{pmatrix} %
240     u_{ix}u_{ix}-\frac{1}{3} & u_{ix}u_{iy} & u_{ix}u_{iz} \\
241     u_{iy}u_{ix} & u_{iy}u_{iy}-\frac{1}{3} & u_{iy}u_{iz} \\
242     u_{iz}u_{ix} & u_{iz}u_{iy} & u_{iz}u_{iz}-\frac{1}{3} %
243     \end{pmatrix},
244     \label{lipidEq:po1}
245 tim 2867 \end{equation}
246 tim 2870 where the $u_{i\alpha}$ is the $\alpha$ element of the unit vector
247     $\mathbf{\hat{u}}_i$, and the sum over $i$ averages over the whole
248     collection of unit vectors. The $P_2$ order parameter for uniaxial
249     phase is then simply given by
250     \begin{equation}
251     \langle P_2 \rangle = \frac{3}{2}\lambda_{\text{max}}.
252     \label{lipidEq:po3}
253     \end{equation}
254     In addition to the $P_2$ order parameter, $ R_{2,2}^2$ order
255     parameter for biaxial phase is introduced to describe the ordering
256     in the plane orthogonal to the director by
257     \begin{equation}
258     R_{2,2}^2 = \frac{1}{4}\left\langle {(x_i \cdot X)^2 - (x_i \cdot
259     Y)^2 - (y_i \cdot X)^2 + (y_i \cdot Y)^2 } \right\rangle
260     \end{equation}
261     where $X$, $Y$ and $Z$ are axis of the director frame.
262 tim 2867
263 tim 2871 \subsection{Structure Properties}
264 tim 2867
265 tim 2871 It is more important to show the density correlation along the
266     director
267     \begin{equation}
268     g(z) =< \delta (z-z_{ij})>_{ij} / \pi R^{2} \rho
269 tim 2870 \end{equation},
270 tim 2871 where $z_{ij} = r_{ij} \dot Z$ was measured in the director frame
271     and $R$ is the radius of the cylindrical sampling region.
272 tim 2867
273 tim 2871 \subsection{Rotational Invariants}
274 tim 2867
275 tim 2871 As a useful set of correlation functions to describe
276     position-orientation correlation, rotation invariants were first
277     applied in a spherical symmetric system to study x-ray and light
278 tim 2887 scatting\cite{Blum1972}. Latterly, expansion of the orientation pair
279 tim 2871 correlation in terms of rotation invariant for molecules of
280     arbitrary shape was introduce by Stone\cite{Stone1978} and adopted
281 tim 2887 by other researchers in liquid crystal studies\cite{Berardi2003}.
282 tim 2871
283 tim 2880 \begin{eqnarray}
284 tim 2882 S_{22}^{220} (r) & = & \frac{1}{{4\sqrt 5 }} \left< \delta (r -
285     r_{ij} )((\hat x_i \cdot \hat x_j )^2 - (\hat x_i \cdot \hat y_j
286     )^2 - (\hat y_i \cdot \hat x_j )^2 + (\hat y_i \cdot \hat y_j
287     )^2 ) \right. \\
288     & & \left. - 2(\hat x_i \cdot \hat y_j )(\hat y_i \cdot \hat x_j ) -
289     2(\hat x_i \cdot \hat x_j )(\hat y_i \cdot \hat y_j )) \right>
290 tim 2880 \end{eqnarray}
291 tim 2871
292     \begin{equation}
293     S_{00}^{221} (r) = - \frac{{\sqrt 3 }}{{\sqrt {10} }}\left\langle
294     {\delta (r - r_{ij} )((\hat z_i \cdot \hat z_j )(\hat z_i \cdot
295 tim 2876 \hat z_j \times \hat r_{ij} ))} \right\rangle
296     \end{equation}
297 tim 2871
298 tim 2867 \section{Results and Conclusion}
299     \label{sec:results and conclusion}
300    
301 tim 2870 To investigate the molecular organization behavior due to different
302     dipolar orientation and position with respect to the center of the
303     molecule,