ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/LiquidCrystal.tex
Revision: 2905
Committed: Wed Jun 28 19:09:25 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 17647 byte(s)
Log Message:
more corrections.

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:liquidcrystal}LIQUID CRYSTAL}
2    
3     \section{\label{liquidCrystalSection:introduction}Introduction}
4    
5 tim 2781 Long range orientational order is one of the most fundamental
6     properties of liquid crystal mesophases. This orientational
7     anisotropy of the macroscopic phases originates in the shape
8     anisotropy of the constituent molecules. Among these anisotropy
9     mesogens, rod-like (calamitic) and disk-like molecules have been
10 tim 2786 exploited in great detail in the last two decades\cite{Huh2004}.
11     Typically, these mesogens consist of a rigid aromatic core and one
12     or more attached aliphatic chains. For short chain molecules, only
13     nematic phases, in which positional order is limited or absent, can
14     be observed, because the entropy of mixing different parts of the
15     mesogens is paramount to the dispersion interaction. In contrast,
16     formation of the one dimension lamellar sematic phase in rod-like
17     molecules with sufficiently long aliphatic chains has been reported,
18     as well as the segregation phenomena in disk-like molecules.
19 tim 2781
20     Recently, the banana-shaped or bent-core liquid crystal have became
21     one of the most active research areas in mesogenic materials and
22 tim 2786 supramolecular chemistry\cite{Niori1996, Link1997, Pelzl1999}.
23     Unlike rods and disks, the polarity and biaxiality of the
24     banana-shaped molecules allow the molecules organize into a variety
25     of novel liquid crystalline phases which show interesting material
26     properties. Of particular interest is the spontaneous formation of
27     macroscopic chiral layers from achiral banana-shaped molecules,
28     where polar molecule orientational ordering is shown within the
29     layer plane as well as the tilted arrangement of the molecules
30     relative to the polar axis. As a consequence of supramolecular
31     chirality, the spontaneous polarization arises in ferroelectric (FE)
32     and antiferroelectic (AF) switching of smectic liquid crystal
33     phases, demonstrating some promising applications in second-order
34     nonlinear optical devices. The most widely investigated mesophase
35     formed by banana-shaped moleculed is the $\text{B}_2$ phase, which
36     is also referred to as $\text{SmCP}$\cite{Link1997}. Of the most
37 tim 2782 important discover in this tilt lamellar phase is the four distinct
38     packing arrangements (two conglomerates and two macroscopic
39     racemates), which depend on the tilt direction and the polar
40     direction of the molecule in adjacent layer (see
41 tim 2839 Fig.~\ref{LCFig:SMCP}).
42 tim 2781
43 tim 2784 \begin{figure}
44     \centering
45     \includegraphics[width=\linewidth]{smcp.eps}
46 tim 2888 \caption[SmCP Phase Packing] {Four possible SmCP phase packings that
47     are characterized by the relative tilt direction(A and S refer an
48     anticlinic tilt or a synclinic ) and the polarization orientation (A
49     and F represent antiferroelectric or ferroelectric polar order).}
50 tim 2784 \label{LCFig:SMCP}
51     \end{figure}
52    
53 tim 2782 Many liquid crystal synthesis experiments suggest that the
54     occurrence of polarity and chirality strongly relies on the
55 tim 2786 molecular structure and intermolecular interaction\cite{Reddy2006}.
56     From a theoretical point of view, it is of fundamental interest to
57     study the structural properties of liquid crystal phases formed by
58 tim 2782 banana-shaped molecules and understand their connection to the
59     molecular structure, especially with respect to the spontaneous
60     achiral symmetry breaking. As a complementary tool to experiment,
61     computer simulation can provide unique insight into molecular
62     ordering and phase behavior, and hence improve the development of
63     new experiments and theories. In the last two decades, all-atom
64     models have been adopted to investigate the structural properties of
65     smectic arrangements\cite{Cook2000, Lansac2001}, as well as other
66     bulk properties, such as rotational viscosity and flexoelectric
67     coefficients\cite{Cheung2002, Cheung2004}. However, due to the
68 tim 2786 limitation of time scale required for phase transition and the
69     length scale required for representing bulk behavior,
70     models\cite{Perram1985, Gay1981}, which are based on the observation
71     that liquid crystal order is exhibited by a range of non-molecular
72     bodies with high shape anisotropies, became the dominant models in
73     the field of liquid crystal phase behavior. Previous simulation
74     studies using hard spherocylinder dimer model\cite{Camp1999} produce
75     nematic phases, while hard rod simulation studies identified a
76     Landau point\cite{Bates2005}, at which the isotropic phase undergoes
77     a direct transition to the biaxial nematic, as well as some possible
78     liquid crystal phases\cite{Lansac2003}. Other anisotropic models
79     using Gay-Berne(GB) potential, which produce interactions that favor
80     local alignment, give the evidence of the novel packing arrangements
81 tim 2892 of bent-core molecules\cite{Memmer2002}.
82 tim 2781
83 tim 2784 Experimental studies by Levelut {\it et al.}~\cite{Levelut1981}
84     revealed that terminal cyano or nitro groups usually induce
85     permanent longitudinal dipole moments, which affect the phase
86     behavior considerably. A series of theoretical studies also drawn
87     equivalent conclusions. Monte Carlo studies of the GB potential with
88     fixed longitudinal dipoles (i.e. pointed along the principal axis of
89     rotation) were shown to enhance smectic phase
90     stability~\cite{Berardi1996,Satoh1996}. Molecular simulation of GB
91     ellipsoids with transverse dipoles at the terminus of the molecule
92     also demonstrated that partial striped bilayer structures were
93     developed from the smectic phase ~\cite{Berardi1996}. More
94     significant effects have been shown by including multiple
95     electrostatic moments. Adding longitudinal point quadrupole moments
96     to rod-shaped GB mesogens, Withers \textit{et al} induced tilted
97     smectic behaviour in the molecular system~\cite{Withers2003}. Thus,
98     it is clear that many liquid-crystal forming molecules, specially,
99     bent-core molecules, could be modeled more accurately by
100     incorporating electrostatic interaction.
101    
102     In this chapter, we consider system consisting of banana-shaped
103 tim 2891 molecule represented by three rigid GB particles with two point
104     dipoles. Performing a series of molecular dynamics simulations, we
105     explore the structural properties of tilted smectic phases as well
106     as the effect of electrostatic interactions.
107 tim 2784
108 tim 2685 \section{\label{liquidCrystalSection:model}Model}
109    
110 tim 2784 A typical banana-shaped molecule consists of a rigid aromatic
111     central bent unit with several rod-like wings which are held
112     together by some linking units and terminal chains (see
113     Fig.~\ref{LCFig:BananaMolecule}). In this work, each banana-shaped
114     mesogen has been modeled as a rigid body consisting of three
115     equivalent prolate ellipsoidal GB particles. The GB interaction
116     potential used to mimic the apolar characteristics of liquid crystal
117     molecules takes the familiar form of Lennard-Jones function with
118     orientation and position dependent range ($\sigma$) and well depth
119 tim 2785 ($\epsilon$) parameters. The potential between a pair of three-site
120     banana-shaped molecules $a$ and $b$ is given by
121 tim 2784 \begin{equation}
122 tim 2785 V_{ab}^{GB} = \sum\limits_{i \in a,j \in b} {V_{ij}^{GB} }.
123     \end{equation}
124     Every site-site interaction can can be expressed as,
125     \begin{equation}
126 tim 2784 V_{ij}^{GB} = 4\epsilon (\hat u_i ,\hat u_j ,\hat r_{ij} )\left[
127     {\left( {\frac{{\sigma _0 }}{{r_{ij} - \sigma (\hat u_i ,\hat u_j
128     ,\hat r_{ij} )}}} \right)^{12} - \left( {\frac{{\sigma _0
129     }}{{r_{ij} - \sigma (\hat u_i ,\hat u_j ,\hat r_{ij} )}}} \right)^6
130     } \right] \label{LCEquation:gb}
131     \end{equation}
132     where $\hat u_i,\hat u_j$ are unit vectors specifying the
133     orientation of two molecules $i$ and $j$ separated by intermolecular
134     vector $r_{ij}$. $\hat r_{ij}$ is the unit vector along the
135     intermolecular vector. A schematic diagram of the orientation
136     vectors is shown in Fig.\ref{LCFigure:GBScheme}. The functional form
137     for $\sigma$ is given by
138     \begin{equation}
139     \sigma (\hat u_i ,\hat u_i ,\hat r_{ij} ) = \sigma _0 \left[ {1 -
140     \frac{\chi }{2}\left( {\frac{{(\hat r_{ij} \cdot \hat u_i + \hat
141     r_{ij} \cdot \hat u_j )^2 }}{{1 + \chi \hat u_i \cdot \hat u_j }}
142     + \frac{{(\hat r_{ij} \cdot \hat u_i - \hat r_{ij} \cdot \hat u_j
143     )^2 }}{{1 - \chi \hat u_i \cdot \hat u_j }}} \right)} \right]^{ -
144     \frac{1}{2}},
145     \end{equation}
146     where the aspect ratio of the particles is governed by shape
147     anisotropy parameter
148     \begin{equation}
149     \chi = \frac{{(\sigma _e /\sigma _s )^2 - 1}}{{(\sigma _e /\sigma
150     _s )^2 + 1}}.
151     \label{LCEquation:chi}
152     \end{equation}
153     Here, $\sigma_ s$ and $\sigma_{e}$ refer to the side-by-side breadth
154 tim 2785 and the end-to-end length of the ellipsoid, respectively. The well
155 tim 2784 depth parameters takes the form
156     \begin{equation}
157     \epsilon (\hat u_i ,\hat u_j ,\hat r_{ij} ) = \epsilon _0 \epsilon
158     ^v (\hat u_i ,\hat u_j )\epsilon '^\mu (\hat u_i ,\hat u_j ,\hat
159     r_{ij} )
160     \end{equation}
161     where $\epsilon_{0}$ is a constant term and
162     \begin{equation}
163     \epsilon (\hat u_i ,\hat u_j ) = \frac{1}{{\sqrt {1 - \chi ^2 (\hat
164     u_i \cdot \hat u_j )^2 } }}
165     \end{equation}
166     and
167     \begin{equation}
168     \epsilon '(\hat u_i ,\hat u_j ,\hat r_{ij} ) = 1 - \frac{{\chi
169     '}}{2}\left[ {\frac{{(\hat r_{ij} \cdot \hat u_i + \hat r_{ij}
170     \cdot \hat u_j )^2 }}{{1 + \chi '\hat u_i \cdot \hat u_j }} +
171     \frac{{(\hat r_{ij} \cdot \hat u_i - \hat r_{ij} \cdot \hat u_j
172     )^2 }}{{1 - \chi '\hat u_i \cdot \hat u_j }}} \right]
173     \end{equation}
174     where the well depth anisotropy parameter $\chi '$ depends on the
175     ratio between \textit{end-to-end} well depth $\epsilon _e$ and
176     \textit{side-by-side} well depth $\epsilon_s$,
177 tim 2785 \begin{equation}
178 tim 2784 \chi ' = \frac{{1 - (\epsilon _e /\epsilon _s )^{1/\mu} }}{{1 +
179     (\epsilon _e /\epsilon _s )^{1/\mu} }}.
180     \end{equation}
181    
182     \begin{figure}
183     \centering
184     \includegraphics[width=\linewidth]{banana.eps}
185 tim 2888 \caption[Schematic representation of a typical banana shaped
186     molecule]{Schematic representation of a typical banana shaped
187     molecule.} \label{LCFig:BananaMolecule}
188 tim 2784 \end{figure}
189     \begin{figure}
190     \centering
191     \includegraphics[width=\linewidth]{gb_scheme.eps}
192 tim 2890 \caption[Schematic diagram showing definitions of the orientation
193     vectors for a pair of Gay-Berne molecules]{Schematic diagram showing
194     definitions of the orientation vectors for a pair of Gay-Berne
195     molecules} \label{LCFigure:GBScheme}
196 tim 2784 \end{figure}
197 tim 2785 To account for the permanent dipolar interactions, there should be
198     an electrostatic interaction term of the form
199     \begin{equation}
200     V_{ab}^{dp} = \sum\limits_{i \in a,j \in b} {\frac{1}{{4\pi
201     \epsilon _{fs} }}\left[ {\frac{{\mu _i \cdot \mu _j }}{{r_{ij}^3 }}
202     - \frac{{3\left( {\mu _i \cdot r_{ij} } \right)\left( {\mu _i \cdot
203     r_{ij} } \right)}}{{r_{ij}^5 }}} \right]}
204     \end{equation}
205     where $\epsilon _{fs}$ is the permittivity of free space.
206    
207 tim 2891 \section{Results and Discussion}
208 tim 2867
209     A series of molecular dynamics simulations were perform to study the
210 tim 2870 phase behavior of banana shaped liquid crystals. In each simulation,
211 tim 2880 every banana shaped molecule has been represented by three GB
212     particles which is characterized by $\mu = 1,~ \nu = 2,
213 tim 2870 ~\epsilon_{e}/\epsilon_{s} = 1/5$ and $\sigma_{e}/\sigma_{s} = 3$.
214     All of the simulations begin with same equilibrated isotropic
215     configuration where 1024 molecules without dipoles were confined in
216     a $160\times 160 \times 120$ box. After the dipolar interactions are
217     switched on, 2~ns NPTi cooling run with themostat of 2~ps and
218     barostat of 50~ps were used to equilibrate the system to desired
219 tim 2895 temperature and pressure. NPTi Production runs last for 40~ns with
220     time step of 20~fs.
221 tim 2867
222 tim 2871 \subsection{Order Parameters}
223    
224 tim 2870 To investigate the phase structure of the model liquid crystal, we
225     calculated various order parameters and correlation functions.
226     Particulary, the $P_2$ order parameter allows us to estimate average
227     alignment along the director axis $Z$ which can be identified from
228     the largest eigen value obtained by diagonalizing the order
229     parameter tensor
230 tim 2867 \begin{equation}
231 tim 2870 \overleftrightarrow{\mathsf{Q}} = \frac{1}{N}\sum_i^N %
232     \begin{pmatrix} %
233     u_{ix}u_{ix}-\frac{1}{3} & u_{ix}u_{iy} & u_{ix}u_{iz} \\
234     u_{iy}u_{ix} & u_{iy}u_{iy}-\frac{1}{3} & u_{iy}u_{iz} \\
235     u_{iz}u_{ix} & u_{iz}u_{iy} & u_{iz}u_{iz}-\frac{1}{3} %
236     \end{pmatrix},
237 tim 2891 \label{lipidEq:p2}
238 tim 2867 \end{equation}
239 tim 2870 where the $u_{i\alpha}$ is the $\alpha$ element of the unit vector
240     $\mathbf{\hat{u}}_i$, and the sum over $i$ averages over the whole
241     collection of unit vectors. The $P_2$ order parameter for uniaxial
242     phase is then simply given by
243     \begin{equation}
244     \langle P_2 \rangle = \frac{3}{2}\lambda_{\text{max}}.
245     \label{lipidEq:po3}
246     \end{equation}
247 tim 2891 %In addition to the $P_2$ order parameter, $ R_{2,2}^2$ order
248     %parameter for biaxial phase is introduced to describe the ordering
249     %in the plane orthogonal to the director by
250     %\begin{equation}
251     %R_{2,2}^2 = \frac{1}{4}\left\langle {(x_i \cdot X)^2 - (x_i \cdot
252     %Y)^2 - (y_i \cdot X)^2 + (y_i \cdot Y)^2 } \right\rangle
253     %\end{equation}
254     %where $X$, $Y$ and $Z$ are axis of the director frame.
255     The unit vector for the banana shaped molecule was defined by the
256     principle aixs of its middle GB particle. The $P_2$ order parameters
257     for the bent-core liquid crystal at different temperature is
258     summarized in Table~\ref{liquidCrystal:p2} which identifies a phase
259     transition temperature range.
260 tim 2867
261 tim 2891 \begin{table}
262     \caption{LIQUID CRYSTAL STRUCTURAL PROPERTIES AS A FUNCTION OF
263     TEMPERATURE} \label{liquidCrystal:p2}
264     \begin{center}
265 tim 2892 \begin{tabular}{cccccc}
266 tim 2891 \hline
267     Temperature (K) & 420 & 440 & 460 & 480 & 600\\
268     \hline
269     $\langle P_2\rangle$ & 0.984 & 0.982 & 0.975 & 0.967 & 0.067\\
270     \hline
271     \end{tabular}
272     \end{center}
273     \end{table}
274    
275 tim 2871 \subsection{Structure Properties}
276 tim 2867
277 tim 2891 The molecular organization obtained at temperature $T = 460K$ (below
278     transition temperature) is shown in Figure~\ref{LCFigure:snapshot}.
279 tim 2892 The diagonal view in Fig~\ref{LCFigure:snapshot}(a) shows the
280     stacking of the banana shaped molecules while the side view in n
281     Figure~\ref{LCFigure:snapshot}(b) demonstrates formation of a
282     chevron structure. The first peak of Radial distribution function
283     $g(r)$ in Fig.~\ref{LCFigure:gofrz}(a) shows the minimum distance
284     for two in plane banana shaped molecules is 4.9 \AA, while the
285     second split peak implies the biaxial packing. It is also important
286     to show the density correlation along the director which is given by
287     :
288 tim 2871 \begin{equation}
289 tim 2892 g(z) =\frac{1}{\pi R^{2} \rho}< \delta (z-z_{ij})>_{ij}
290 tim 2870 \end{equation},
291 tim 2871 where $z_{ij} = r_{ij} \dot Z$ was measured in the director frame
292 tim 2892 and $R$ is the radius of the cylindrical sampling region. The
293     oscillation in density plot along the director in
294     Fig.~\ref{LCFigure:gofrz}(b) implies the existence of the layered
295     structure, and the peak at 27 \AA is attribute to the defect in the
296     system.
297 tim 2867
298 tim 2871 \subsection{Rotational Invariants}
299 tim 2867
300 tim 2871 As a useful set of correlation functions to describe
301     position-orientation correlation, rotation invariants were first
302     applied in a spherical symmetric system to study x-ray and light
303 tim 2887 scatting\cite{Blum1972}. Latterly, expansion of the orientation pair
304 tim 2871 correlation in terms of rotation invariant for molecules of
305     arbitrary shape was introduce by Stone\cite{Stone1978} and adopted
306 tim 2892 by other researchers in liquid crystal studies\cite{Berardi2003}. In
307     order to study the correlation between biaxiality and molecular
308     separation distance $r$, we calculate a rotational invariant
309     function $S_{22}^{220} (r)$, which is given by :
310 tim 2880 \begin{eqnarray}
311 tim 2882 S_{22}^{220} (r) & = & \frac{1}{{4\sqrt 5 }} \left< \delta (r -
312     r_{ij} )((\hat x_i \cdot \hat x_j )^2 - (\hat x_i \cdot \hat y_j
313     )^2 - (\hat y_i \cdot \hat x_j )^2 + (\hat y_i \cdot \hat y_j
314 tim 2892 )^2 ) \right. \notag \\
315 tim 2882 & & \left. - 2(\hat x_i \cdot \hat y_j )(\hat y_i \cdot \hat x_j ) -
316 tim 2892 2(\hat x_i \cdot \hat x_j )(\hat y_i \cdot \hat y_j )) \right>.
317 tim 2880 \end{eqnarray}
318 tim 2895 The long range behavior of second rank orientational correlation
319     $S_{22}^{220} (r)$ in Fig~\ref{LCFigure:S22220} also confirm the
320     biaxiality of the system.
321 tim 2871
322 tim 2894 \begin{figure}
323     \centering
324 tim 2895 \includegraphics[width=4.5in]{snapshot.eps}
325     \caption[Snapshot of the molecular organization in the layered phase
326     formed at temperature T = 460K and pressure P = 1 atm]{Snapshot of
327     the molecular organization in the layered phase formed at
328     temperature T = 460K and pressure P = 1 atm. (a) diagonal view; (b)
329     side view.} \label{LCFigure:snapshot}
330     \end{figure}
331    
332     \begin{figure}
333     \centering
334     \includegraphics[width=\linewidth]{gofr_gofz.eps}
335     \caption[Correlation Functions of a Bent-core Liquid Crystal System
336     at Temperature T = 460K and Pressure P = 10 atm]{Correlation
337     Functions of a Bent-core Liquid Crystal System at Temperature T =
338     460K and Pressure P = 10 atm. (a) radial correlation function
339     $g(r)$; and (b) density along the director $g(z)$.}
340     \label{LCFigure:gofrz}
341     \end{figure}
342    
343     \begin{figure}
344     \centering
345 tim 2894 \includegraphics[width=\linewidth]{s22_220.eps}
346     \caption[Average orientational correlation Correlation Functions of
347     a Bent-core Liquid Crystal System at Temperature T = 460K and
348     Pressure P = 10 atm]{Correlation Functions of a Bent-core Liquid
349     Crystal System at Temperature T = 460K and Pressure P = 10 atm. (a)
350     radial correlation function $g(r)$; and (b) density along the
351     director $g(z)$.} \label{LCFigure:S22220}
352     \end{figure}
353    
354 tim 2891 \section{Conclusion}
355 tim 2892
356     We have presented a simple dipolar three-site GB model for banana
357     shaped molecules which are capable of forming smectic phases from
358 tim 2895 isotropic configuration. Various order parameters and correlation
359     functions were used to characterized the structural properties of
360     these smectic phase. However, the forming layered structure still
361     had some defects because of the mismatching between the layer
362     structure spacing and the shape of simulation box. This mismatching
363     can be broken by using NPTf integrator in further simulations. The
364 tim 2896 role of terminal chain in controlling transition temperatures and
365     the type of mesophase formed have been studied
366 tim 2897 extensively\cite{Pelzl1999}. The lack of flexibility in our model
367     due to the missing terminal chains could explained the fact that we
368     did not find evidence of chirality.