ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/LiquidCrystal.tex
Revision: 2938
Committed: Mon Jul 17 15:28:44 2006 UTC (17 years, 11 months ago) by tim
Content type: application/x-tex
File size: 17364 byte(s)
Log Message:
corrections from steve

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:liquidcrystal}LIQUID CRYSTAL}
2    
3     \section{\label{liquidCrystalSection:introduction}Introduction}
4    
5 tim 2909 Rod-like (calamitic) and disk-like anisotropy liquid crystals have
6     been investigated in great detail in the last two
7     decades\cite{Huh2004}. Typically, these mesogens consist of a rigid
8     aromatic core and one or more attached aliphatic chains. For short
9     chain molecules, only nematic phases, in which positional order is
10     limited or absent, can be observed, because the entropy of mixing
11     different parts of the mesogens is larger than the dispersion
12     interaction. In contrast, formation of one dimension lamellar
13     smectic phase in rod-like molecules with sufficiently long aliphatic
14     chains has been reported, as well as the segregation phenomena in
15     disk-like molecules\cite{McMillan1971}. Recently, banana-shaped or
16     bent-core liquid crystals have became one of the most active
17     research areas in mesogenic materials and supramolecular
18     chemistry\cite{Niori1996, Link1997, Pelzl1999}. Unlike rods and
19     disks, the polarity and biaxiality of the banana-shaped molecules
20     allow the molecules organize into a variety of novel liquid
21     crystalline phases which show interesting material properties. Of
22     particular interest is the spontaneous formation of macroscopic
23     chiral layers from achiral banana-shaped molecules, where polar
24     molecule orientational ordering exhibited layered plane as well as
25     the tilted arrangement of the molecules relative to the polar axis.
26     As a consequence of supramolecular chirality, the spontaneous
27     polarization arises in ferroelectric (FE) and antiferroelectic (AF)
28     switching of smectic liquid crystal phases, demonstrating some
29     promising applications in second-order nonlinear optical devices.
30     The most widely investigated mesophase formed by banana-shaped
31     moleculed is the $\text{B}_2$ phase, which is also referred to as
32     $\text{SmCP}$\cite{Link1997}. Of the most important discoveries in
33     this tilt lamellar phase is the four distinct packing arrangements
34     (two conglomerates and two macroscopic racemates), which depend on
35     the tilt direction and the polar direction of the molecule in
36     adjacent layer (see Fig.~\ref{LCFig:SMCP})\cite{Link1997}.
37 tim 2781
38 tim 2784 \begin{figure}
39     \centering
40     \includegraphics[width=\linewidth]{smcp.eps}
41 tim 2888 \caption[SmCP Phase Packing] {Four possible SmCP phase packings that
42     are characterized by the relative tilt direction(A and S refer an
43     anticlinic tilt or a synclinic ) and the polarization orientation (A
44     and F represent antiferroelectric or ferroelectric polar order).}
45 tim 2784 \label{LCFig:SMCP}
46     \end{figure}
47    
48 tim 2782 Many liquid crystal synthesis experiments suggest that the
49     occurrence of polarity and chirality strongly relies on the
50 tim 2786 molecular structure and intermolecular interaction\cite{Reddy2006}.
51     From a theoretical point of view, it is of fundamental interest to
52     study the structural properties of liquid crystal phases formed by
53 tim 2782 banana-shaped molecules and understand their connection to the
54     molecular structure, especially with respect to the spontaneous
55     achiral symmetry breaking. As a complementary tool to experiment,
56     computer simulation can provide unique insight into molecular
57     ordering and phase behavior, and hence improve the development of
58     new experiments and theories. In the last two decades, all-atom
59     models have been adopted to investigate the structural properties of
60     smectic arrangements\cite{Cook2000, Lansac2001}, as well as other
61     bulk properties, such as rotational viscosity and flexoelectric
62     coefficients\cite{Cheung2002, Cheung2004}. However, due to the
63 tim 2909 limitation of time scales required for phase transition and the
64 tim 2786 length scale required for representing bulk behavior,
65     models\cite{Perram1985, Gay1981}, which are based on the observation
66     that liquid crystal order is exhibited by a range of non-molecular
67 tim 2909 bodies with high shape anisotropies, have become the dominant models
68     in the field of liquid crystal phase behavior. Previous simulation
69     studies using a hard spherocylinder dimer model\cite{Camp1999}
70     produced nematic phases, while hard rod simulation studies
71     identified a direct transition to the biaxial nematic and other
72     possible liquid crystal phases\cite{Lansac2003}. Other anisotropic
73     models using the Gay-Berne(GB) potential, which produces
74     interactions that favor local alignment, give evidence of the novel
75     packing arrangements of bent-core molecules\cite{Memmer2002}.
76 tim 2781
77 tim 2784 Experimental studies by Levelut {\it et al.}~\cite{Levelut1981}
78     revealed that terminal cyano or nitro groups usually induce
79     permanent longitudinal dipole moments, which affect the phase
80 tim 2909 behavior considerably. Equivalent conclusions have also been drawn
81     from a series of theoretical studies. Monte Carlo studies of the GB
82     potential with fixed longitudinal dipoles (i.e. pointed along the
83     principal axis of rotation) were shown to enhance smectic phase
84 tim 2784 stability~\cite{Berardi1996,Satoh1996}. Molecular simulation of GB
85     ellipsoids with transverse dipoles at the terminus of the molecule
86     also demonstrated that partial striped bilayer structures were
87     developed from the smectic phase ~\cite{Berardi1996}. More
88     significant effects have been shown by including multiple
89     electrostatic moments. Adding longitudinal point quadrupole moments
90     to rod-shaped GB mesogens, Withers \textit{et al} induced tilted
91     smectic behaviour in the molecular system~\cite{Withers2003}. Thus,
92     it is clear that many liquid-crystal forming molecules, specially,
93     bent-core molecules, could be modeled more accurately by
94     incorporating electrostatic interaction.
95    
96 tim 2909 In this chapter, we consider a system consisting of banana-shaped
97 tim 2891 molecule represented by three rigid GB particles with two point
98     dipoles. Performing a series of molecular dynamics simulations, we
99     explore the structural properties of tilted smectic phases as well
100     as the effect of electrostatic interactions.
101 tim 2784
102 tim 2685 \section{\label{liquidCrystalSection:model}Model}
103    
104 tim 2784 A typical banana-shaped molecule consists of a rigid aromatic
105     central bent unit with several rod-like wings which are held
106     together by some linking units and terminal chains (see
107     Fig.~\ref{LCFig:BananaMolecule}). In this work, each banana-shaped
108     mesogen has been modeled as a rigid body consisting of three
109     equivalent prolate ellipsoidal GB particles. The GB interaction
110     potential used to mimic the apolar characteristics of liquid crystal
111     molecules takes the familiar form of Lennard-Jones function with
112     orientation and position dependent range ($\sigma$) and well depth
113 tim 2785 ($\epsilon$) parameters. The potential between a pair of three-site
114     banana-shaped molecules $a$ and $b$ is given by
115 tim 2784 \begin{equation}
116 tim 2785 V_{ab}^{GB} = \sum\limits_{i \in a,j \in b} {V_{ij}^{GB} }.
117     \end{equation}
118     Every site-site interaction can can be expressed as,
119     \begin{equation}
120 tim 2784 V_{ij}^{GB} = 4\epsilon (\hat u_i ,\hat u_j ,\hat r_{ij} )\left[
121     {\left( {\frac{{\sigma _0 }}{{r_{ij} - \sigma (\hat u_i ,\hat u_j
122     ,\hat r_{ij} )}}} \right)^{12} - \left( {\frac{{\sigma _0
123     }}{{r_{ij} - \sigma (\hat u_i ,\hat u_j ,\hat r_{ij} )}}} \right)^6
124     } \right] \label{LCEquation:gb}
125     \end{equation}
126     where $\hat u_i,\hat u_j$ are unit vectors specifying the
127 tim 2909 orientation of two ellipsoids $i$ and $j$ separated by
128     intermolecular vector $r_{ij}$. $\hat r_{ij}$ is the unit vector
129     along the inter-ellipsoid vector. A schematic diagram of the
130     orientation vectors is shown in Fig.\ref{LCFigure:GBScheme}. The
131     functional form for $\sigma$ is given by
132 tim 2784 \begin{equation}
133     \sigma (\hat u_i ,\hat u_i ,\hat r_{ij} ) = \sigma _0 \left[ {1 -
134     \frac{\chi }{2}\left( {\frac{{(\hat r_{ij} \cdot \hat u_i + \hat
135     r_{ij} \cdot \hat u_j )^2 }}{{1 + \chi \hat u_i \cdot \hat u_j }}
136     + \frac{{(\hat r_{ij} \cdot \hat u_i - \hat r_{ij} \cdot \hat u_j
137     )^2 }}{{1 - \chi \hat u_i \cdot \hat u_j }}} \right)} \right]^{ -
138     \frac{1}{2}},
139     \end{equation}
140     where the aspect ratio of the particles is governed by shape
141     anisotropy parameter
142     \begin{equation}
143     \chi = \frac{{(\sigma _e /\sigma _s )^2 - 1}}{{(\sigma _e /\sigma
144     _s )^2 + 1}}.
145     \label{LCEquation:chi}
146     \end{equation}
147     Here, $\sigma_ s$ and $\sigma_{e}$ refer to the side-by-side breadth
148 tim 2785 and the end-to-end length of the ellipsoid, respectively. The well
149 tim 2784 depth parameters takes the form
150     \begin{equation}
151     \epsilon (\hat u_i ,\hat u_j ,\hat r_{ij} ) = \epsilon _0 \epsilon
152     ^v (\hat u_i ,\hat u_j )\epsilon '^\mu (\hat u_i ,\hat u_j ,\hat
153     r_{ij} )
154     \end{equation}
155     where $\epsilon_{0}$ is a constant term and
156     \begin{equation}
157     \epsilon (\hat u_i ,\hat u_j ) = \frac{1}{{\sqrt {1 - \chi ^2 (\hat
158     u_i \cdot \hat u_j )^2 } }}
159     \end{equation}
160     and
161     \begin{equation}
162     \epsilon '(\hat u_i ,\hat u_j ,\hat r_{ij} ) = 1 - \frac{{\chi
163     '}}{2}\left[ {\frac{{(\hat r_{ij} \cdot \hat u_i + \hat r_{ij}
164     \cdot \hat u_j )^2 }}{{1 + \chi '\hat u_i \cdot \hat u_j }} +
165     \frac{{(\hat r_{ij} \cdot \hat u_i - \hat r_{ij} \cdot \hat u_j
166     )^2 }}{{1 - \chi '\hat u_i \cdot \hat u_j }}} \right]
167     \end{equation}
168     where the well depth anisotropy parameter $\chi '$ depends on the
169     ratio between \textit{end-to-end} well depth $\epsilon _e$ and
170     \textit{side-by-side} well depth $\epsilon_s$,
171 tim 2785 \begin{equation}
172 tim 2784 \chi ' = \frac{{1 - (\epsilon _e /\epsilon _s )^{1/\mu} }}{{1 +
173     (\epsilon _e /\epsilon _s )^{1/\mu} }}.
174     \end{equation}
175    
176     \begin{figure}
177     \centering
178     \includegraphics[width=\linewidth]{banana.eps}
179 tim 2888 \caption[Schematic representation of a typical banana shaped
180     molecule]{Schematic representation of a typical banana shaped
181     molecule.} \label{LCFig:BananaMolecule}
182 tim 2784 \end{figure}
183     \begin{figure}
184     \centering
185     \includegraphics[width=\linewidth]{gb_scheme.eps}
186 tim 2890 \caption[Schematic diagram showing definitions of the orientation
187     vectors for a pair of Gay-Berne molecules]{Schematic diagram showing
188     definitions of the orientation vectors for a pair of Gay-Berne
189 tim 2909 ellipsoids} \label{LCFigure:GBScheme}
190 tim 2784 \end{figure}
191 tim 2785 To account for the permanent dipolar interactions, there should be
192     an electrostatic interaction term of the form
193     \begin{equation}
194     V_{ab}^{dp} = \sum\limits_{i \in a,j \in b} {\frac{1}{{4\pi
195     \epsilon _{fs} }}\left[ {\frac{{\mu _i \cdot \mu _j }}{{r_{ij}^3 }}
196     - \frac{{3\left( {\mu _i \cdot r_{ij} } \right)\left( {\mu _i \cdot
197     r_{ij} } \right)}}{{r_{ij}^5 }}} \right]}
198     \end{equation}
199     where $\epsilon _{fs}$ is the permittivity of free space.
200    
201 tim 2891 \section{Results and Discussion}
202 tim 2867
203 tim 2938 A series of molecular dynamics simulations were performed to study the
204 tim 2870 phase behavior of banana shaped liquid crystals. In each simulation,
205 tim 2880 every banana shaped molecule has been represented by three GB
206     particles which is characterized by $\mu = 1,~ \nu = 2,
207 tim 2870 ~\epsilon_{e}/\epsilon_{s} = 1/5$ and $\sigma_{e}/\sigma_{s} = 3$.
208     All of the simulations begin with same equilibrated isotropic
209     configuration where 1024 molecules without dipoles were confined in
210     a $160\times 160 \times 120$ box. After the dipolar interactions are
211     switched on, 2~ns NPTi cooling run with themostat of 2~ps and
212     barostat of 50~ps were used to equilibrate the system to desired
213 tim 2895 temperature and pressure. NPTi Production runs last for 40~ns with
214     time step of 20~fs.
215 tim 2867
216 tim 2871 \subsection{Order Parameters}
217    
218 tim 2870 To investigate the phase structure of the model liquid crystal, we
219     calculated various order parameters and correlation functions.
220     Particulary, the $P_2$ order parameter allows us to estimate average
221     alignment along the director axis $Z$ which can be identified from
222 tim 2909 the largest eigenvalue obtained by diagonalizing the order parameter
223     tensor
224 tim 2867 \begin{equation}
225 tim 2870 \overleftrightarrow{\mathsf{Q}} = \frac{1}{N}\sum_i^N %
226     \begin{pmatrix} %
227     u_{ix}u_{ix}-\frac{1}{3} & u_{ix}u_{iy} & u_{ix}u_{iz} \\
228     u_{iy}u_{ix} & u_{iy}u_{iy}-\frac{1}{3} & u_{iy}u_{iz} \\
229     u_{iz}u_{ix} & u_{iz}u_{iy} & u_{iz}u_{iz}-\frac{1}{3} %
230     \end{pmatrix},
231 tim 2891 \label{lipidEq:p2}
232 tim 2867 \end{equation}
233 tim 2870 where the $u_{i\alpha}$ is the $\alpha$ element of the unit vector
234     $\mathbf{\hat{u}}_i$, and the sum over $i$ averages over the whole
235     collection of unit vectors. The $P_2$ order parameter for uniaxial
236     phase is then simply given by
237     \begin{equation}
238     \langle P_2 \rangle = \frac{3}{2}\lambda_{\text{max}}.
239     \label{lipidEq:po3}
240     \end{equation}
241 tim 2891 %In addition to the $P_2$ order parameter, $ R_{2,2}^2$ order
242     %parameter for biaxial phase is introduced to describe the ordering
243     %in the plane orthogonal to the director by
244     %\begin{equation}
245     %R_{2,2}^2 = \frac{1}{4}\left\langle {(x_i \cdot X)^2 - (x_i \cdot
246     %Y)^2 - (y_i \cdot X)^2 + (y_i \cdot Y)^2 } \right\rangle
247     %\end{equation}
248     %where $X$, $Y$ and $Z$ are axis of the director frame.
249     The unit vector for the banana shaped molecule was defined by the
250     principle aixs of its middle GB particle. The $P_2$ order parameters
251 tim 2924 for the bent-core liquid crystal at different temperature are
252 tim 2891 summarized in Table~\ref{liquidCrystal:p2} which identifies a phase
253     transition temperature range.
254 tim 2867
255 tim 2891 \begin{table}
256     \caption{LIQUID CRYSTAL STRUCTURAL PROPERTIES AS A FUNCTION OF
257     TEMPERATURE} \label{liquidCrystal:p2}
258     \begin{center}
259 tim 2892 \begin{tabular}{cccccc}
260 tim 2891 \hline
261     Temperature (K) & 420 & 440 & 460 & 480 & 600\\
262     \hline
263     $\langle P_2\rangle$ & 0.984 & 0.982 & 0.975 & 0.967 & 0.067\\
264     \hline
265     \end{tabular}
266     \end{center}
267     \end{table}
268    
269 tim 2909 \subsection{Structural Properties}
270 tim 2867
271 tim 2891 The molecular organization obtained at temperature $T = 460K$ (below
272     transition temperature) is shown in Figure~\ref{LCFigure:snapshot}.
273 tim 2892 The diagonal view in Fig~\ref{LCFigure:snapshot}(a) shows the
274 tim 2938 stacking of the banana shaped molecules while the side view in
275 tim 2892 Figure~\ref{LCFigure:snapshot}(b) demonstrates formation of a
276 tim 2909 chevron structure. The first peak of the radial distribution
277     function $g(r)$ in Fig.~\ref{LCFigure:gofrz}(a) shows that the
278     minimum distance for two in plane banana shaped molecules is 4.9
279     \AA, while the second split peak implies the biaxial packing. It is
280     also important to show the density correlation along the director
281     which is given by :
282 tim 2871 \begin{equation}
283 tim 2916 g(z) =\frac{1}{\pi R^{2} \rho}< \delta (z-z_{ij})>_{ij},
284     \end{equation}
285 tim 2909 where $ z_{ij} = r_{ij} \cdot \hat Z $ was measured in the
286     director frame and $R$ is the radius of the cylindrical sampling
287     region. The oscillation in density plot along the director in
288 tim 2892 Fig.~\ref{LCFigure:gofrz}(b) implies the existence of the layered
289 tim 2938 structure, and the peak at 27 $\rm{\AA}$ is attributed to a defect in the
290 tim 2892 system.
291 tim 2867
292 tim 2871 \subsection{Rotational Invariants}
293 tim 2867
294 tim 2871 As a useful set of correlation functions to describe
295     position-orientation correlation, rotation invariants were first
296     applied in a spherical symmetric system to study x-ray and light
297 tim 2887 scatting\cite{Blum1972}. Latterly, expansion of the orientation pair
298 tim 2871 correlation in terms of rotation invariant for molecules of
299 tim 2909 arbitrary shape has been introduced by Stone\cite{Stone1978} and
300     adopted by other researchers in liquid crystal
301     studies\cite{Berardi2003}. In order to study the correlation between
302     biaxiality and molecular separation distance $r$, we calculate a
303     rotational invariant function $S_{22}^{220} (r)$, which is given by
304     :
305 tim 2880 \begin{eqnarray}
306 tim 2882 S_{22}^{220} (r) & = & \frac{1}{{4\sqrt 5 }} \left< \delta (r -
307     r_{ij} )((\hat x_i \cdot \hat x_j )^2 - (\hat x_i \cdot \hat y_j
308     )^2 - (\hat y_i \cdot \hat x_j )^2 + (\hat y_i \cdot \hat y_j
309 tim 2892 )^2 ) \right. \notag \\
310 tim 2882 & & \left. - 2(\hat x_i \cdot \hat y_j )(\hat y_i \cdot \hat x_j ) -
311 tim 2892 2(\hat x_i \cdot \hat x_j )(\hat y_i \cdot \hat y_j )) \right>.
312 tim 2880 \end{eqnarray}
313 tim 2895 The long range behavior of second rank orientational correlation
314     $S_{22}^{220} (r)$ in Fig~\ref{LCFigure:S22220} also confirm the
315     biaxiality of the system.
316 tim 2871
317 tim 2894 \begin{figure}
318     \centering
319 tim 2895 \includegraphics[width=4.5in]{snapshot.eps}
320     \caption[Snapshot of the molecular organization in the layered phase
321     formed at temperature T = 460K and pressure P = 1 atm]{Snapshot of
322     the molecular organization in the layered phase formed at
323     temperature T = 460K and pressure P = 1 atm. (a) diagonal view; (b)
324     side view.} \label{LCFigure:snapshot}
325     \end{figure}
326    
327     \begin{figure}
328     \centering
329     \includegraphics[width=\linewidth]{gofr_gofz.eps}
330     \caption[Correlation Functions of a Bent-core Liquid Crystal System
331     at Temperature T = 460K and Pressure P = 10 atm]{Correlation
332     Functions of a Bent-core Liquid Crystal System at Temperature T =
333     460K and Pressure P = 10 atm. (a) radial correlation function
334     $g(r)$; and (b) density along the director $g(z)$.}
335     \label{LCFigure:gofrz}
336     \end{figure}
337    
338     \begin{figure}
339     \centering
340 tim 2894 \includegraphics[width=\linewidth]{s22_220.eps}
341     \caption[Average orientational correlation Correlation Functions of
342     a Bent-core Liquid Crystal System at Temperature T = 460K and
343 tim 2908 Pressure P = 10 atm]{Average orientational correlation Correlation
344     Functions of a Bent-core Liquid Crystal System at Temperature T =
345     460K and Pressure P = 10 atm.} \label{LCFigure:S22220}
346 tim 2894 \end{figure}
347    
348 tim 2891 \section{Conclusion}
349 tim 2892
350     We have presented a simple dipolar three-site GB model for banana
351     shaped molecules which are capable of forming smectic phases from
352 tim 2895 isotropic configuration. Various order parameters and correlation
353     functions were used to characterized the structural properties of
354     these smectic phase. However, the forming layered structure still
355     had some defects because of the mismatching between the layer
356     structure spacing and the shape of simulation box. This mismatching
357     can be broken by using NPTf integrator in further simulations. The
358 tim 2896 role of terminal chain in controlling transition temperatures and
359     the type of mesophase formed have been studied
360 tim 2897 extensively\cite{Pelzl1999}. The lack of flexibility in our model
361 tim 2909 due to the missing terminal chains could explain the fact that we
362 tim 2897 did not find evidence of chirality.