ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/LiquidCrystal.tex
(Generate patch)

Comparing trunk/tengDissertation/LiquidCrystal.tex (file contents):
Revision 2784 by tim, Thu Jun 1 20:14:11 2006 UTC vs.
Revision 2785 by tim, Fri Jun 2 21:31:49 2006 UTC

# Line 116 | Line 116 | orientation and position dependent range ($\sigma$) an
116   potential used to mimic the apolar characteristics of liquid crystal
117   molecules takes the familiar form of Lennard-Jones function with
118   orientation and position dependent range ($\sigma$) and well depth
119 < ($\epsilon$) parameters. It can can be expressed as,
119 > ($\epsilon$) parameters. The potential between a pair of three-site
120 > banana-shaped molecules $a$ and $b$ is given by
121   \begin{equation}
122 + V_{ab}^{GB}  = \sum\limits_{i \in a,j \in b} {V_{ij}^{GB} }.
123 + \end{equation}
124 + Every site-site interaction can can be expressed as,
125 + \begin{equation}
126   V_{ij}^{GB}  = 4\epsilon (\hat u_i ,\hat u_j ,\hat r_{ij} )\left[
127   {\left( {\frac{{\sigma _0 }}{{r_{ij}  - \sigma (\hat u_i ,\hat u_j
128   ,\hat r_{ij} )}}} \right)^{12}  - \left( {\frac{{\sigma _0
# Line 146 | Line 151 | and the end-to-end length of the ellipsoid, respective
151   \label{LCEquation:chi}
152   \end{equation}
153   Here, $\sigma_ s$ and $\sigma_{e}$ refer to the side-by-side breadth
154 < and the end-to-end length of the ellipsoid, respectively. Twell
154 > and the end-to-end length of the ellipsoid, respectively. The well
155   depth parameters takes the form
156   \begin{equation}
157   \epsilon (\hat u_i ,\hat u_j ,\hat r_{ij} ) = \epsilon _0 \epsilon
# Line 169 | Line 174 | ratio between \textit{end-to-end} well depth $\epsilon
174   where the well depth anisotropy parameter $\chi '$ depends on the
175   ratio between \textit{end-to-end} well depth $\epsilon _e$ and
176   \textit{side-by-side} well depth $\epsilon_s$,
177 < \begin{eqaution}
177 > \begin{equation}
178   \chi ' = \frac{{1 - (\epsilon _e /\epsilon _s )^{1/\mu} }}{{1 +
179   (\epsilon _e /\epsilon _s )^{1/\mu} }}.
180   \end{equation}
# Line 182 | Line 187 | ratio between \textit{end-to-end} well depth $\epsilon
187  
188   \begin{figure}
189   \centering
190 < \includegraphics[width=\linewidth]{bananGB_grained.eps}
190 > \includegraphics[width=\linewidth]{bananGB.eps}
191   \caption[]{} \label{LCFigure:BananaGB}
192   \end{figure}
193  
# Line 194 | Line 199 | vectors for a pair of Gay-Berne molecules}
199   \label{LCFigure:GBScheme}
200   \end{figure}
201  
202 + To account for the permanent dipolar interactions, there should be
203 + an electrostatic interaction term of the form
204 + \begin{equation}
205 + V_{ab}^{dp}  = \sum\limits_{i \in a,j \in b} {\frac{1}{{4\pi
206 + \epsilon _{fs} }}\left[ {\frac{{\mu _i  \cdot \mu _j }}{{r_{ij}^3 }}
207 + - \frac{{3\left( {\mu _i  \cdot r_{ij} } \right)\left( {\mu _i \cdot
208 + r_{ij} } \right)}}{{r_{ij}^5 }}} \right]}
209 + \end{equation}
210 + where $\epsilon _{fs}$ is the permittivity of free space.
211 +
212   \section{\label{liquidCrystalSection:methods}Methods}
213  
214   \section{\label{liquidCrystalSection:resultDiscussion}Results and Discussion}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines