ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/LiquidCrystal.tex
(Generate patch)

Comparing trunk/tengDissertation/LiquidCrystal.tex (file contents):
Revision 2839 by tim, Fri Jun 9 02:41:58 2006 UTC vs.
Revision 2888 by tim, Mon Jun 26 13:34:46 2006 UTC

# Line 43 | Line 43 | Fig.~\ref{LCFig:SMCP}).
43   \begin{figure}
44   \centering
45   \includegraphics[width=\linewidth]{smcp.eps}
46 < \caption[]
47 < {}
46 > \caption[SmCP Phase Packing] {Four possible SmCP phase packings that
47 > are characterized by the relative tilt direction(A and S refer an
48 > anticlinic tilt or a synclinic ) and the polarization orientation (A
49 > and F represent antiferroelectric or ferroelectric polar order).}
50   \label{LCFig:SMCP}
51   \end{figure}
52  
# Line 181 | Line 183 | ratio between \textit{end-to-end} well depth $\epsilon
183   \begin{figure}
184   \centering
185   \includegraphics[width=\linewidth]{banana.eps}
186 < \caption[]{} \label{LCFig:BananaMolecule}
186 > \caption[Schematic representation of a typical banana shaped
187 > molecule]{Schematic representation of a typical banana shaped
188 > molecule.} \label{LCFig:BananaMolecule}
189   \end{figure}
190  
191   %\begin{figure}
# Line 208 | Line 212 | where $\epsilon _{fs}$ is the permittivity of free spa
212   \end{equation}
213   where $\epsilon _{fs}$ is the permittivity of free space.
214  
215 < \section{\label{liquidCrystalSection:methods}Methods}
215 > \section{Computational Methodology}
216  
217 < \section{\label{liquidCrystalSection:resultDiscussion}Results and Discussion}
217 > A series of molecular dynamics simulations were perform to study the
218 > phase behavior of banana shaped liquid crystals. In each simulation,
219 > every banana shaped molecule has been represented by three GB
220 > particles which is characterized by $\mu = 1,~ \nu = 2,
221 > ~\epsilon_{e}/\epsilon_{s} = 1/5$ and $\sigma_{e}/\sigma_{s} = 3$.
222 > All of the simulations begin with same equilibrated isotropic
223 > configuration where 1024 molecules without dipoles were confined in
224 > a $160\times 160 \times 120$ box. After the dipolar interactions are
225 > switched on, 2~ns NPTi cooling run with themostat of 2~ps and
226 > barostat of 50~ps were used to equilibrate the system to desired
227 > temperature and pressure.
228 >
229 > \subsection{Order Parameters}
230 >
231 > To investigate the phase structure of the model liquid crystal, we
232 > calculated various order parameters and correlation functions.
233 > Particulary, the $P_2$ order parameter allows us to estimate average
234 > alignment along the director axis $Z$ which can be identified from
235 > the largest eigen value obtained by diagonalizing the order
236 > parameter tensor
237 > \begin{equation}
238 > \overleftrightarrow{\mathsf{Q}} = \frac{1}{N}\sum_i^N %
239 >    \begin{pmatrix} %
240 >    u_{ix}u_{ix}-\frac{1}{3} & u_{ix}u_{iy} & u_{ix}u_{iz} \\
241 >    u_{iy}u_{ix} & u_{iy}u_{iy}-\frac{1}{3} & u_{iy}u_{iz} \\
242 >    u_{iz}u_{ix} & u_{iz}u_{iy} & u_{iz}u_{iz}-\frac{1}{3} %
243 >    \end{pmatrix},
244 > \label{lipidEq:po1}
245 > \end{equation}
246 > where the $u_{i\alpha}$ is the $\alpha$ element of the unit vector
247 > $\mathbf{\hat{u}}_i$, and the sum over $i$ averages over the whole
248 > collection of unit vectors. The $P_2$ order parameter for uniaxial
249 > phase is then simply given by
250 > \begin{equation}
251 > \langle P_2 \rangle = \frac{3}{2}\lambda_{\text{max}}.
252 > \label{lipidEq:po3}
253 > \end{equation}
254 > In addition to the $P_2$ order parameter, $ R_{2,2}^2$ order
255 > parameter for biaxial phase is introduced to describe the ordering
256 > in the plane orthogonal to the director by
257 > \begin{equation}
258 > R_{2,2}^2  = \frac{1}{4}\left\langle {(x_i  \cdot X)^2  - (x_i \cdot
259 > Y)^2  - (y_i  \cdot X)^2  + (y_i  \cdot Y)^2 } \right\rangle
260 > \end{equation}
261 > where $X$, $Y$ and $Z$ are axis of the director frame.
262 >
263 > \subsection{Structure Properties}
264 >
265 > It is more important to show the density correlation along the
266 > director
267 > \begin{equation}
268 > g(z) =< \delta (z-z_{ij})>_{ij} / \pi R^{2} \rho
269 > \end{equation},
270 > where $z_{ij} = r_{ij} \dot Z$ was measured in the director frame
271 > and $R$ is the radius of the cylindrical sampling region.
272 >
273 > \subsection{Rotational Invariants}
274 >
275 > As a useful set of correlation functions to describe
276 > position-orientation correlation, rotation invariants were first
277 > applied in a spherical symmetric system to study x-ray and light
278 > scatting\cite{Blum1972}. Latterly, expansion of the orientation pair
279 > correlation in terms of rotation invariant for molecules of
280 > arbitrary shape was introduce by Stone\cite{Stone1978} and adopted
281 > by other researchers in liquid crystal studies\cite{Berardi2003}.
282 >
283 > \begin{eqnarray}
284 > S_{22}^{220} (r) & = & \frac{1}{{4\sqrt 5 }} \left< \delta (r -
285 > r_{ij} )((\hat x_i  \cdot \hat x_j )^2  - (\hat x_i  \cdot \hat y_j
286 > )^2  - (\hat y_i  \cdot \hat x_j )^2  + (\hat y_i  \cdot \hat y_j
287 > )^2 ) \right. \\
288 > & & \left. - 2(\hat x_i  \cdot \hat y_j )(\hat y_i \cdot \hat x_j ) -
289 > 2(\hat x_i  \cdot \hat x_j )(\hat y_i  \cdot \hat y_j )) \right>
290 > \end{eqnarray}
291 >
292 > \begin{equation}
293 > S_{00}^{221} (r) =  - \frac{{\sqrt 3 }}{{\sqrt {10} }}\left\langle
294 > {\delta (r - r_{ij} )((\hat z_i  \cdot \hat z_j )(\hat z_i  \cdot
295 > \hat z_j  \times \hat r_{ij} ))} \right\rangle
296 > \end{equation}
297 >
298 > \section{Results and Conclusion}
299 > \label{sec:results and conclusion}
300 >
301 > To investigate the molecular organization behavior due to different
302 > dipolar orientation and position with respect to the center of the
303 > molecule,

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines