ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/LiquidCrystal.tex
(Generate patch)

Comparing trunk/tengDissertation/LiquidCrystal.tex (file contents):
Revision 2887 by tim, Sun Jun 25 19:43:39 2006 UTC vs.
Revision 2895 by tim, Tue Jun 27 02:42:30 2006 UTC

# Line 43 | Line 43 | Fig.~\ref{LCFig:SMCP}).
43   \begin{figure}
44   \centering
45   \includegraphics[width=\linewidth]{smcp.eps}
46 < \caption[]
47 < {}
46 > \caption[SmCP Phase Packing] {Four possible SmCP phase packings that
47 > are characterized by the relative tilt direction(A and S refer an
48 > anticlinic tilt or a synclinic ) and the polarization orientation (A
49 > and F represent antiferroelectric or ferroelectric polar order).}
50   \label{LCFig:SMCP}
51   \end{figure}
52  
# Line 76 | Line 78 | of bent-core molecules\cite{Memmer2002,Orlandi2006}.
78   liquid crystal phases\cite{Lansac2003}. Other anisotropic models
79   using Gay-Berne(GB) potential, which produce interactions that favor
80   local alignment, give the evidence of the novel packing arrangements
81 < of bent-core molecules\cite{Memmer2002,Orlandi2006}.
81 > of bent-core molecules\cite{Memmer2002}.
82  
83   Experimental studies by Levelut {\it et al.}~\cite{Levelut1981}
84   revealed that terminal cyano or nitro groups usually induce
# Line 98 | Line 100 | molecule represented by three rigid GB particles with
100   incorporating electrostatic interaction.
101  
102   In this chapter, we consider system consisting of banana-shaped
103 < molecule represented by three rigid GB particles with one or two
104 < point dipoles at different location. Performing a series of
105 < molecular dynamics simulations, we explore the structural properties
106 < of tilted smectic phases as well as the effect of electrostatic
105 < interactions.
103 > molecule represented by three rigid GB particles with two point
104 > dipoles. Performing a series of molecular dynamics simulations, we
105 > explore the structural properties of tilted smectic phases as well
106 > as the effect of electrostatic interactions.
107  
108   \section{\label{liquidCrystalSection:model}Model}
109  
# Line 181 | Line 182 | ratio between \textit{end-to-end} well depth $\epsilon
182   \begin{figure}
183   \centering
184   \includegraphics[width=\linewidth]{banana.eps}
185 < \caption[]{} \label{LCFig:BananaMolecule}
185 > \caption[Schematic representation of a typical banana shaped
186 > molecule]{Schematic representation of a typical banana shaped
187 > molecule.} \label{LCFig:BananaMolecule}
188   \end{figure}
189  
187 %\begin{figure}
188 %\centering
189 %\includegraphics[width=\linewidth]{bananGB.eps}
190 %\caption[]{} \label{LCFigure:BananaGB}
191 %\end{figure}
192
190   \begin{figure}
191   \centering
192   \includegraphics[width=\linewidth]{gb_scheme.eps}
193 < \caption[]{Schematic diagram showing definitions of the orientation
194 < vectors for a pair of Gay-Berne molecules}
195 < \label{LCFigure:GBScheme}
193 > \caption[Schematic diagram showing definitions of the orientation
194 > vectors for a pair of Gay-Berne molecules]{Schematic diagram showing
195 > definitions of the orientation vectors for a pair of Gay-Berne
196 > molecules} \label{LCFigure:GBScheme}
197   \end{figure}
198  
199   To account for the permanent dipolar interactions, there should be
# Line 208 | Line 206 | where $\epsilon _{fs}$ is the permittivity of free spa
206   \end{equation}
207   where $\epsilon _{fs}$ is the permittivity of free space.
208  
209 < \section{Computational Methodology}
209 > \section{Results and Discussion}
210  
211   A series of molecular dynamics simulations were perform to study the
212   phase behavior of banana shaped liquid crystals. In each simulation,
# Line 220 | Line 218 | temperature and pressure.
218   a $160\times 160 \times 120$ box. After the dipolar interactions are
219   switched on, 2~ns NPTi cooling run with themostat of 2~ps and
220   barostat of 50~ps were used to equilibrate the system to desired
221 < temperature and pressure.
221 > temperature and pressure. NPTi Production runs last for 40~ns with
222 > time step of 20~fs.
223  
224   \subsection{Order Parameters}
225  
# Line 237 | Line 236 | parameter tensor
236      u_{iy}u_{ix} & u_{iy}u_{iy}-\frac{1}{3} & u_{iy}u_{iz} \\
237      u_{iz}u_{ix} & u_{iz}u_{iy} & u_{iz}u_{iz}-\frac{1}{3} %
238      \end{pmatrix},
239 < \label{lipidEq:po1}
239 > \label{lipidEq:p2}
240   \end{equation}
241   where the $u_{i\alpha}$ is the $\alpha$ element of the unit vector
242   $\mathbf{\hat{u}}_i$, and the sum over $i$ averages over the whole
# Line 247 | Line 246 | In addition to the $P_2$ order parameter, $ R_{2,2}^2$
246   \langle P_2 \rangle = \frac{3}{2}\lambda_{\text{max}}.
247   \label{lipidEq:po3}
248   \end{equation}
249 < In addition to the $P_2$ order parameter, $ R_{2,2}^2$ order
250 < parameter for biaxial phase is introduced to describe the ordering
251 < in the plane orthogonal to the director by
252 < \begin{equation}
253 < R_{2,2}^2  = \frac{1}{4}\left\langle {(x_i  \cdot X)^2  - (x_i \cdot
254 < Y)^2  - (y_i  \cdot X)^2  + (y_i  \cdot Y)^2 } \right\rangle
255 < \end{equation}
256 < where $X$, $Y$ and $Z$ are axis of the director frame.
249 > %In addition to the $P_2$ order parameter, $ R_{2,2}^2$ order
250 > %parameter for biaxial phase is introduced to describe the ordering
251 > %in the plane orthogonal to the director by
252 > %\begin{equation}
253 > %R_{2,2}^2  = \frac{1}{4}\left\langle {(x_i  \cdot X)^2  - (x_i \cdot
254 > %Y)^2  - (y_i  \cdot X)^2  + (y_i  \cdot Y)^2 } \right\rangle
255 > %\end{equation}
256 > %where $X$, $Y$ and $Z$ are axis of the director frame.
257 > The unit vector for the banana shaped molecule was defined by the
258 > principle aixs of its middle GB particle. The $P_2$ order parameters
259 > for the bent-core liquid crystal at different temperature is
260 > summarized in Table~\ref{liquidCrystal:p2} which identifies a phase
261 > transition temperature range.
262  
263 + \begin{table}
264 + \caption{LIQUID CRYSTAL STRUCTURAL PROPERTIES AS A FUNCTION OF
265 + TEMPERATURE} \label{liquidCrystal:p2}
266 + \begin{center}
267 + \begin{tabular}{cccccc}
268 + \hline
269 + Temperature (K) & 420 & 440 & 460 & 480 & 600\\
270 + \hline
271 + $\langle P_2\rangle$ & 0.984 & 0.982 & 0.975 & 0.967 & 0.067\\
272 + \hline
273 + \end{tabular}
274 + \end{center}
275 + \end{table}
276 +
277   \subsection{Structure Properties}
278  
279 < It is more important to show the density correlation along the
280 < director
279 > The molecular organization obtained at temperature $T = 460K$ (below
280 > transition temperature) is shown in Figure~\ref{LCFigure:snapshot}.
281 > The diagonal view in Fig~\ref{LCFigure:snapshot}(a) shows the
282 > stacking of the banana shaped molecules while the side view in n
283 > Figure~\ref{LCFigure:snapshot}(b) demonstrates formation of a
284 > chevron structure. The first peak of Radial distribution function
285 > $g(r)$ in Fig.~\ref{LCFigure:gofrz}(a) shows the minimum distance
286 > for two in plane banana shaped molecules is 4.9 \AA, while the
287 > second split peak implies the biaxial packing. It is also important
288 > to show the density correlation along the director which is given by
289 > :
290   \begin{equation}
291 < g(z) =< \delta (z-z_{ij})>_{ij} / \pi R^{2} \rho
291 > g(z) =\frac{1}{\pi R^{2} \rho}< \delta (z-z_{ij})>_{ij}
292   \end{equation},
293   where $z_{ij} = r_{ij} \dot Z$ was measured in the director frame
294 < and $R$ is the radius of the cylindrical sampling region.
294 > and $R$ is the radius of the cylindrical sampling region. The
295 > oscillation in density plot along the director in
296 > Fig.~\ref{LCFigure:gofrz}(b) implies the existence of the layered
297 > structure, and the peak at 27 \AA is attribute to the defect in the
298 > system.
299  
300   \subsection{Rotational Invariants}
301  
# Line 274 | Line 305 | by other researchers in liquid crystal studies\cite{Be
305   scatting\cite{Blum1972}. Latterly, expansion of the orientation pair
306   correlation in terms of rotation invariant for molecules of
307   arbitrary shape was introduce by Stone\cite{Stone1978} and adopted
308 < by other researchers in liquid crystal studies\cite{Berardi2003}.
309 <
308 > by other researchers in liquid crystal studies\cite{Berardi2003}. In
309 > order to study the correlation between biaxiality and molecular
310 > separation distance $r$, we calculate a rotational invariant
311 > function $S_{22}^{220} (r)$, which is given by :
312   \begin{eqnarray}
313   S_{22}^{220} (r) & = & \frac{1}{{4\sqrt 5 }} \left< \delta (r -
314   r_{ij} )((\hat x_i  \cdot \hat x_j )^2  - (\hat x_i  \cdot \hat y_j
315   )^2  - (\hat y_i  \cdot \hat x_j )^2  + (\hat y_i  \cdot \hat y_j
316 < )^2 ) \right. \\
316 > )^2 ) \right. \notag \\
317   & & \left. - 2(\hat x_i  \cdot \hat y_j )(\hat y_i \cdot \hat x_j ) -
318 < 2(\hat x_i  \cdot \hat x_j )(\hat y_i  \cdot \hat y_j )) \right>
318 > 2(\hat x_i  \cdot \hat x_j )(\hat y_i  \cdot \hat y_j )) \right>.
319   \end{eqnarray}
320 + The long range behavior of second rank orientational correlation
321 + $S_{22}^{220} (r)$ in Fig~\ref{LCFigure:S22220} also confirm the
322 + biaxiality of the system.
323  
324 < \begin{equation}
325 < S_{00}^{221} (r) =  - \frac{{\sqrt 3 }}{{\sqrt {10} }}\left\langle
326 < {\delta (r - r_{ij} )((\hat z_i  \cdot \hat z_j )(\hat z_i  \cdot
327 < \hat z_j  \times \hat r_{ij} ))} \right\rangle
328 < \end{equation}
324 > \begin{figure}
325 > \centering
326 > \includegraphics[width=4.5in]{snapshot.eps}
327 > \caption[Snapshot of the molecular organization in the layered phase
328 > formed at temperature T = 460K and pressure P = 1 atm]{Snapshot of
329 > the molecular organization in the layered phase formed at
330 > temperature T = 460K and pressure P = 1 atm. (a) diagonal view; (b)
331 > side view.} \label{LCFigure:snapshot}
332 > \end{figure}
333  
334 < \section{Results and Conclusion}
335 < \label{sec:results and conclusion}
334 > \begin{figure}
335 > \centering
336 > \includegraphics[width=\linewidth]{gofr_gofz.eps}
337 > \caption[Correlation Functions of a Bent-core Liquid Crystal System
338 > at Temperature T = 460K and Pressure P = 10 atm]{Correlation
339 > Functions of a Bent-core Liquid Crystal System at Temperature T =
340 > 460K and Pressure P = 10 atm. (a) radial correlation function
341 > $g(r)$; and (b) density along the director $g(z)$.}
342 > \label{LCFigure:gofrz}
343 > \end{figure}
344  
345 < To investigate the molecular organization behavior due to different
346 < dipolar orientation and position with respect to the center of the
347 < molecule,
345 > \begin{figure}
346 > \centering
347 > \includegraphics[width=\linewidth]{s22_220.eps}
348 > \caption[Average orientational correlation Correlation Functions of
349 > a Bent-core Liquid Crystal System at Temperature T = 460K and
350 > Pressure P = 10 atm]{Correlation Functions of a Bent-core Liquid
351 > Crystal System at Temperature T = 460K and Pressure P = 10 atm. (a)
352 > radial correlation function $g(r)$; and (b) density along the
353 > director $g(z)$.} \label{LCFigure:S22220}
354 > \end{figure}
355 >
356 > \section{Conclusion}
357 >
358 > We have presented a simple dipolar three-site GB model for banana
359 > shaped molecules which are capable of forming smectic phases from
360 > isotropic configuration. Various order parameters and correlation
361 > functions were used to characterized the structural properties of
362 > these smectic phase. However, the forming layered structure still
363 > had some defects because of the mismatching between the layer
364 > structure spacing and the shape of simulation box. This mismatching
365 > can be broken by using NPTf integrator in further simulations. The
366 > lack of detail in.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines