ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/LiquidCrystal.tex
(Generate patch)

Comparing trunk/tengDissertation/LiquidCrystal.tex (file contents):
Revision 2786 by tim, Sun Jun 4 20:18:07 2006 UTC vs.
Revision 2880 by tim, Thu Jun 22 22:19:02 2006 UTC

# Line 38 | Line 38 | Fig.~\cite{LCFig:SMCP}).
38   packing arrangements (two conglomerates and two macroscopic
39   racemates), which depend on the tilt direction and the polar
40   direction of the molecule in adjacent layer (see
41 < Fig.~\cite{LCFig:SMCP}).
41 > Fig.~\ref{LCFig:SMCP}).
42  
43   \begin{figure}
44   \centering
# Line 184 | Line 184 | ratio between \textit{end-to-end} well depth $\epsilon
184   \caption[]{} \label{LCFig:BananaMolecule}
185   \end{figure}
186  
187 < \begin{figure}
188 < \centering
189 < \includegraphics[width=\linewidth]{bananGB.eps}
190 < \caption[]{} \label{LCFigure:BananaGB}
191 < \end{figure}
187 > %\begin{figure}
188 > %\centering
189 > %\includegraphics[width=\linewidth]{bananGB.eps}
190 > %\caption[]{} \label{LCFigure:BananaGB}
191 > %\end{figure}
192  
193   \begin{figure}
194   \centering
# Line 208 | Line 208 | where $\epsilon _{fs}$ is the permittivity of free spa
208   \end{equation}
209   where $\epsilon _{fs}$ is the permittivity of free space.
210  
211 < \section{\label{liquidCrystalSection:methods}Methods}
211 > \section{Computational Methodology}
212  
213 < \section{\label{liquidCrystalSection:resultDiscussion}Results and Discussion}
213 > A series of molecular dynamics simulations were perform to study the
214 > phase behavior of banana shaped liquid crystals. In each simulation,
215 > every banana shaped molecule has been represented by three GB
216 > particles which is characterized by $\mu = 1,~ \nu = 2,
217 > ~\epsilon_{e}/\epsilon_{s} = 1/5$ and $\sigma_{e}/\sigma_{s} = 3$.
218 > All of the simulations begin with same equilibrated isotropic
219 > configuration where 1024 molecules without dipoles were confined in
220 > a $160\times 160 \times 120$ box. After the dipolar interactions are
221 > switched on, 2~ns NPTi cooling run with themostat of 2~ps and
222 > barostat of 50~ps were used to equilibrate the system to desired
223 > temperature and pressure.
224 >
225 > \subsection{Order Parameters}
226 >
227 > To investigate the phase structure of the model liquid crystal, we
228 > calculated various order parameters and correlation functions.
229 > Particulary, the $P_2$ order parameter allows us to estimate average
230 > alignment along the director axis $Z$ which can be identified from
231 > the largest eigen value obtained by diagonalizing the order
232 > parameter tensor
233 > \begin{equation}
234 > \overleftrightarrow{\mathsf{Q}} = \frac{1}{N}\sum_i^N %
235 >    \begin{pmatrix} %
236 >    u_{ix}u_{ix}-\frac{1}{3} & u_{ix}u_{iy} & u_{ix}u_{iz} \\
237 >    u_{iy}u_{ix} & u_{iy}u_{iy}-\frac{1}{3} & u_{iy}u_{iz} \\
238 >    u_{iz}u_{ix} & u_{iz}u_{iy} & u_{iz}u_{iz}-\frac{1}{3} %
239 >    \end{pmatrix},
240 > \label{lipidEq:po1}
241 > \end{equation}
242 > where the $u_{i\alpha}$ is the $\alpha$ element of the unit vector
243 > $\mathbf{\hat{u}}_i$, and the sum over $i$ averages over the whole
244 > collection of unit vectors. The $P_2$ order parameter for uniaxial
245 > phase is then simply given by
246 > \begin{equation}
247 > \langle P_2 \rangle = \frac{3}{2}\lambda_{\text{max}}.
248 > \label{lipidEq:po3}
249 > \end{equation}
250 > In addition to the $P_2$ order parameter, $ R_{2,2}^2$ order
251 > parameter for biaxial phase is introduced to describe the ordering
252 > in the plane orthogonal to the director by
253 > \begin{equation}
254 > R_{2,2}^2  = \frac{1}{4}\left\langle {(x_i  \cdot X)^2  - (x_i \cdot
255 > Y)^2  - (y_i  \cdot X)^2  + (y_i  \cdot Y)^2 } \right\rangle
256 > \end{equation}
257 > where $X$, $Y$ and $Z$ are axis of the director frame.
258 >
259 > \subsection{Structure Properties}
260 >
261 > It is more important to show the density correlation along the
262 > director
263 > \begin{equation}
264 > g(z) =< \delta (z-z_{ij})>_{ij} / \pi R^{2} \rho
265 > \end{equation},
266 > where $z_{ij} = r_{ij} \dot Z$ was measured in the director frame
267 > and $R$ is the radius of the cylindrical sampling region.
268 >
269 > \subsection{Rotational Invariants}
270 >
271 > As a useful set of correlation functions to describe
272 > position-orientation correlation, rotation invariants were first
273 > applied in a spherical symmetric system to study x-ray and light
274 > scatting\cite{Blum1971}. Latterly, expansion of the orientation pair
275 > correlation in terms of rotation invariant for molecules of
276 > arbitrary shape was introduce by Stone\cite{Stone1978} and adopted
277 > by other researchers in liquid crystal studies\cite{Berardi2000}.
278 >
279 > \begin{eqnarray}
280 > S_{22}^{220} (r) & = & \frac{1}{{4\sqrt 5 }}\left\langle {\delta (r
281 > - r_{ij} )((\hat x_i  \cdot \hat x_j )^2  - (\hat x_i  \cdot \hat
282 > y_j )^2  - (\hat y_i  \cdot \hat x_j )^2  + (\hat y_i  \cdot \hat
283 > y_j
284 > )^2 ) \right.\\
285 > & & \left.- 2(\hat x_i  \cdot \hat y_j )(\hat y_i \cdot \hat x_j ) -
286 > 2(\hat x_i  \cdot \hat x_j )(\hat y_i  \cdot \hat y_j ))}
287 > \right\rangle
288 > \end{eqnarray}
289 >
290 > \begin{equation}
291 > S_{00}^{221} (r) =  - \frac{{\sqrt 3 }}{{\sqrt {10} }}\left\langle
292 > {\delta (r - r_{ij} )((\hat z_i  \cdot \hat z_j )(\hat z_i  \cdot
293 > \hat z_j  \times \hat r_{ij} ))} \right\rangle
294 > \end{equation}
295 >
296 > \section{Results and Conclusion}
297 > \label{sec:results and conclusion}
298 >
299 > To investigate the molecular organization behavior due to different
300 > dipolar orientation and position with respect to the center of the
301 > molecule,

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines