ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/LiquidCrystal.tex
(Generate patch)

Comparing trunk/tengDissertation/LiquidCrystal.tex (file contents):
Revision 2783 by tim, Thu Jun 1 05:11:14 2006 UTC vs.
Revision 2784 by tim, Thu Jun 1 20:14:11 2006 UTC

# Line 1 | Line 1
1   \chapter{\label{chapt:liquidcrystal}LIQUID CRYSTAL}
2  
3   \section{\label{liquidCrystalSection:introduction}Introduction}
4 % liquid crystal
4  
5   Long range orientational order is one of the most fundamental
6   properties of liquid crystal mesophases. This orientational
# Line 18 | Line 17 | segregation phenomena in disk-like molecules.
17   sufficiently long aliphatic chains has been reported, as well as the
18   segregation phenomena in disk-like molecules.
19  
21 % banana shaped
20   Recently, the banana-shaped or bent-core liquid crystal have became
21   one of the most active research areas in mesogenic materials and
22   supramolecular chemistry. Unlike rods and disks, the polarity and
# Line 41 | Line 39 | Fig.~\cite{LCFig:SMCP}).
39   direction of the molecule in adjacent layer (see
40   Fig.~\cite{LCFig:SMCP}).
41  
42 < %general banana-shaped molecule modeling
42 > \begin{figure}
43 > \centering
44 > \includegraphics[width=\linewidth]{smcp.eps}
45 > \caption[]
46 > {}
47 > \label{LCFig:SMCP}
48 > \end{figure}
49 >
50   Many liquid crystal synthesis experiments suggest that the
51   occurrence of polarity and chirality strongly relies on the
52   molecular structure and intermolecular interaction. From a
# Line 67 | Line 72 | which the isotropic phase undergoes a transition direc
72   simulation studies using hard spherocylinder dimer
73   model\cite{Camp1999} produce nematic phases, while hard rod
74   simulation studies identified a Landau point\cite{Bates2005}, at
75 < which the isotropic phase undergoes a transition directly to the
75 > which the isotropic phase undergoes a direct transition to the
76   biaxial nematic, as well as some possible liquid crystal
77 < phases\cite{Lansac2003}. Other anisotropic models using Gay-Berne
78 < potential give the evidence of the novel packing arrangement of
77 > phases\cite{Lansac2003}. Other anisotropic models using
78 > Gay-Berne(GB) potential, which produce interactions that favor local
79 > alignment, give the evidence of the novel packing arrangements of
80   bent-core molecules\cite{Memmer2002,Orlandi2006}.
81  
82 + Experimental studies by Levelut {\it et al.}~\cite{Levelut1981}
83 + revealed that terminal cyano or nitro groups usually induce
84 + permanent longitudinal dipole moments, which affect the phase
85 + behavior considerably. A series of theoretical studies also drawn
86 + equivalent conclusions. Monte Carlo studies of the GB potential with
87 + fixed longitudinal dipoles (i.e. pointed along the principal axis of
88 + rotation) were shown to enhance smectic phase
89 + stability~\cite{Berardi1996,Satoh1996}. Molecular simulation of GB
90 + ellipsoids with transverse dipoles at the terminus of the molecule
91 + also demonstrated that partial striped bilayer structures were
92 + developed from the smectic phase ~\cite{Berardi1996}. More
93 + significant effects have been shown by including multiple
94 + electrostatic moments. Adding longitudinal point quadrupole moments
95 + to rod-shaped GB mesogens, Withers \textit{et al} induced tilted
96 + smectic behaviour in the molecular system~\cite{Withers2003}. Thus,
97 + it is clear that many liquid-crystal forming molecules, specially,
98 + bent-core molecules, could be modeled more accurately by
99 + incorporating electrostatic interaction.
100 +
101 + In this chapter, we consider system consisting of banana-shaped
102 + molecule represented by three rigid GB particles with one or two
103 + point dipoles at different location. Performing a series of
104 + molecular dynamics simulations, we explore the structural properties
105 + of tilted smectic phases as well as the effect of electrostatic
106 + interactions.
107 +
108   \section{\label{liquidCrystalSection:model}Model}
109  
110 + A typical banana-shaped molecule consists of a rigid aromatic
111 + central bent unit with several rod-like wings which are held
112 + together by some linking units and terminal chains (see
113 + Fig.~\ref{LCFig:BananaMolecule}). In this work, each banana-shaped
114 + mesogen has been modeled as a rigid body consisting of three
115 + equivalent prolate ellipsoidal GB particles. The GB interaction
116 + potential used to mimic the apolar characteristics of liquid crystal
117 + molecules takes the familiar form of Lennard-Jones function with
118 + orientation and position dependent range ($\sigma$) and well depth
119 + ($\epsilon$) parameters. It can can be expressed as,
120 + \begin{equation}
121 + V_{ij}^{GB}  = 4\epsilon (\hat u_i ,\hat u_j ,\hat r_{ij} )\left[
122 + {\left( {\frac{{\sigma _0 }}{{r_{ij}  - \sigma (\hat u_i ,\hat u_j
123 + ,\hat r_{ij} )}}} \right)^{12}  - \left( {\frac{{\sigma _0
124 + }}{{r_{ij}  - \sigma (\hat u_i ,\hat u_j ,\hat r_{ij} )}}} \right)^6
125 + } \right] \label{LCEquation:gb}
126 + \end{equation}
127 + where $\hat u_i,\hat u_j$ are unit vectors specifying the
128 + orientation of two molecules $i$ and $j$ separated by intermolecular
129 + vector $r_{ij}$. $\hat r_{ij}$ is the unit vector along the
130 + intermolecular vector. A schematic diagram of the orientation
131 + vectors is shown in Fig.\ref{LCFigure:GBScheme}. The functional form
132 + for $\sigma$ is given by
133 + \begin{equation}
134 + \sigma (\hat u_i ,\hat u_i ,\hat r_{ij} ) = \sigma _0 \left[ {1 -
135 + \frac{\chi }{2}\left( {\frac{{(\hat r_{ij}  \cdot \hat u_i  + \hat
136 + r_{ij}  \cdot \hat u_j )^2 }}{{1 + \chi \hat u_i  \cdot \hat u_j }}
137 + + \frac{{(\hat r_{ij}  \cdot \hat u_i  - \hat r_{ij}  \cdot \hat u_j
138 + )^2 }}{{1 - \chi \hat u_i  \cdot \hat u_j }}} \right)} \right]^{ -
139 + \frac{1}{2}},
140 + \end{equation}
141 + where the aspect ratio of the particles is governed by shape
142 + anisotropy parameter
143 + \begin{equation}
144 + \chi  = \frac{{(\sigma _e /\sigma _s )^2  - 1}}{{(\sigma _e /\sigma
145 + _s )^2  + 1}}.
146 + \label{LCEquation:chi}
147 + \end{equation}
148 + Here, $\sigma_ s$ and $\sigma_{e}$ refer to the side-by-side breadth
149 + and the end-to-end length of the ellipsoid, respectively. Twell
150 + depth parameters takes the form
151 + \begin{equation}
152 + \epsilon (\hat u_i ,\hat u_j ,\hat r_{ij} ) = \epsilon _0 \epsilon
153 + ^v (\hat u_i ,\hat u_j )\epsilon '^\mu (\hat u_i ,\hat u_j ,\hat
154 + r_{ij} )
155 + \end{equation}
156 + where $\epsilon_{0}$ is a constant term and
157 + \begin{equation}
158 + \epsilon (\hat u_i ,\hat u_j ) = \frac{1}{{\sqrt {1 - \chi ^2 (\hat
159 + u_i  \cdot \hat u_j )^2 } }}
160 + \end{equation}
161 + and
162 + \begin{equation}
163 + \epsilon '(\hat u_i ,\hat u_j ,\hat r_{ij} ) = 1 - \frac{{\chi
164 + '}}{2}\left[ {\frac{{(\hat r_{ij}  \cdot \hat u_i  + \hat r_{ij}
165 + \cdot \hat u_j )^2 }}{{1 + \chi '\hat u_i  \cdot \hat u_j }} +
166 + \frac{{(\hat r_{ij}  \cdot \hat u_i  - \hat r_{ij}  \cdot \hat u_j
167 + )^2 }}{{1 - \chi '\hat u_i  \cdot \hat u_j }}} \right]
168 + \end{equation}
169 + where the well depth anisotropy parameter $\chi '$ depends on the
170 + ratio between \textit{end-to-end} well depth $\epsilon _e$ and
171 + \textit{side-by-side} well depth $\epsilon_s$,
172 + \begin{eqaution}
173 + \chi ' = \frac{{1 - (\epsilon _e /\epsilon _s )^{1/\mu} }}{{1 +
174 + (\epsilon _e /\epsilon _s )^{1/\mu} }}.
175 + \end{equation}
176 +
177 + \begin{figure}
178 + \centering
179 + \includegraphics[width=\linewidth]{banana.eps}
180 + \caption[]{} \label{LCFig:BananaMolecule}
181 + \end{figure}
182 +
183 + \begin{figure}
184 + \centering
185 + \includegraphics[width=\linewidth]{bananGB_grained.eps}
186 + \caption[]{} \label{LCFigure:BananaGB}
187 + \end{figure}
188 +
189 + \begin{figure}
190 + \centering
191 + \includegraphics[width=\linewidth]{gb_scheme.eps}
192 + \caption[]{Schematic diagram showing definitions of the orientation
193 + vectors for a pair of Gay-Berne molecules}
194 + \label{LCFigure:GBScheme}
195 + \end{figure}
196 +
197   \section{\label{liquidCrystalSection:methods}Methods}
198  
199   \section{\label{liquidCrystalSection:resultDiscussion}Results and Discussion}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines