--- trunk/tengDissertation/LiquidCrystal.tex 2006/06/01 18:06:33 2783 +++ trunk/tengDissertation/LiquidCrystal.tex 2006/06/01 20:14:11 2784 @@ -1,7 +1,6 @@ \chapter{\label{chapt:liquidcrystal}LIQUID CRYSTAL} \section{\label{liquidCrystalSection:introduction}Introduction} -% liquid crystal Long range orientational order is one of the most fundamental properties of liquid crystal mesophases. This orientational @@ -18,7 +17,6 @@ segregation phenomena in disk-like molecules. sufficiently long aliphatic chains has been reported, as well as the segregation phenomena in disk-like molecules. -% banana shaped Recently, the banana-shaped or bent-core liquid crystal have became one of the most active research areas in mesogenic materials and supramolecular chemistry. Unlike rods and disks, the polarity and @@ -41,7 +39,14 @@ Fig.~\cite{LCFig:SMCP}). direction of the molecule in adjacent layer (see Fig.~\cite{LCFig:SMCP}). -%general banana-shaped molecule modeling +\begin{figure} +\centering +\includegraphics[width=\linewidth]{smcp.eps} +\caption[] +{} +\label{LCFig:SMCP} +\end{figure} + Many liquid crystal synthesis experiments suggest that the occurrence of polarity and chirality strongly relies on the molecular structure and intermolecular interaction. From a @@ -67,14 +72,128 @@ which the isotropic phase undergoes a transition direc simulation studies using hard spherocylinder dimer model\cite{Camp1999} produce nematic phases, while hard rod simulation studies identified a Landau point\cite{Bates2005}, at -which the isotropic phase undergoes a transition directly to the +which the isotropic phase undergoes a direct transition to the biaxial nematic, as well as some possible liquid crystal -phases\cite{Lansac2003}. Other anisotropic models using Gay-Berne -potential give the evidence of the novel packing arrangement of +phases\cite{Lansac2003}. Other anisotropic models using +Gay-Berne(GB) potential, which produce interactions that favor local +alignment, give the evidence of the novel packing arrangements of bent-core molecules\cite{Memmer2002,Orlandi2006}. +Experimental studies by Levelut {\it et al.}~\cite{Levelut1981} +revealed that terminal cyano or nitro groups usually induce +permanent longitudinal dipole moments, which affect the phase +behavior considerably. A series of theoretical studies also drawn +equivalent conclusions. Monte Carlo studies of the GB potential with +fixed longitudinal dipoles (i.e. pointed along the principal axis of +rotation) were shown to enhance smectic phase +stability~\cite{Berardi1996,Satoh1996}. Molecular simulation of GB +ellipsoids with transverse dipoles at the terminus of the molecule +also demonstrated that partial striped bilayer structures were +developed from the smectic phase ~\cite{Berardi1996}. More +significant effects have been shown by including multiple +electrostatic moments. Adding longitudinal point quadrupole moments +to rod-shaped GB mesogens, Withers \textit{et al} induced tilted +smectic behaviour in the molecular system~\cite{Withers2003}. Thus, +it is clear that many liquid-crystal forming molecules, specially, +bent-core molecules, could be modeled more accurately by +incorporating electrostatic interaction. + +In this chapter, we consider system consisting of banana-shaped +molecule represented by three rigid GB particles with one or two +point dipoles at different location. Performing a series of +molecular dynamics simulations, we explore the structural properties +of tilted smectic phases as well as the effect of electrostatic +interactions. + \section{\label{liquidCrystalSection:model}Model} +A typical banana-shaped molecule consists of a rigid aromatic +central bent unit with several rod-like wings which are held +together by some linking units and terminal chains (see +Fig.~\ref{LCFig:BananaMolecule}). In this work, each banana-shaped +mesogen has been modeled as a rigid body consisting of three +equivalent prolate ellipsoidal GB particles. The GB interaction +potential used to mimic the apolar characteristics of liquid crystal +molecules takes the familiar form of Lennard-Jones function with +orientation and position dependent range ($\sigma$) and well depth +($\epsilon$) parameters. It can can be expressed as, +\begin{equation} +V_{ij}^{GB} = 4\epsilon (\hat u_i ,\hat u_j ,\hat r_{ij} )\left[ +{\left( {\frac{{\sigma _0 }}{{r_{ij} - \sigma (\hat u_i ,\hat u_j +,\hat r_{ij} )}}} \right)^{12} - \left( {\frac{{\sigma _0 +}}{{r_{ij} - \sigma (\hat u_i ,\hat u_j ,\hat r_{ij} )}}} \right)^6 +} \right] \label{LCEquation:gb} +\end{equation} +where $\hat u_i,\hat u_j$ are unit vectors specifying the +orientation of two molecules $i$ and $j$ separated by intermolecular +vector $r_{ij}$. $\hat r_{ij}$ is the unit vector along the +intermolecular vector. A schematic diagram of the orientation +vectors is shown in Fig.\ref{LCFigure:GBScheme}. The functional form +for $\sigma$ is given by +\begin{equation} +\sigma (\hat u_i ,\hat u_i ,\hat r_{ij} ) = \sigma _0 \left[ {1 - +\frac{\chi }{2}\left( {\frac{{(\hat r_{ij} \cdot \hat u_i + \hat +r_{ij} \cdot \hat u_j )^2 }}{{1 + \chi \hat u_i \cdot \hat u_j }} ++ \frac{{(\hat r_{ij} \cdot \hat u_i - \hat r_{ij} \cdot \hat u_j +)^2 }}{{1 - \chi \hat u_i \cdot \hat u_j }}} \right)} \right]^{ - +\frac{1}{2}}, +\end{equation} +where the aspect ratio of the particles is governed by shape +anisotropy parameter +\begin{equation} +\chi = \frac{{(\sigma _e /\sigma _s )^2 - 1}}{{(\sigma _e /\sigma +_s )^2 + 1}}. +\label{LCEquation:chi} +\end{equation} +Here, $\sigma_ s$ and $\sigma_{e}$ refer to the side-by-side breadth +and the end-to-end length of the ellipsoid, respectively. Twell +depth parameters takes the form +\begin{equation} +\epsilon (\hat u_i ,\hat u_j ,\hat r_{ij} ) = \epsilon _0 \epsilon +^v (\hat u_i ,\hat u_j )\epsilon '^\mu (\hat u_i ,\hat u_j ,\hat +r_{ij} ) +\end{equation} +where $\epsilon_{0}$ is a constant term and +\begin{equation} +\epsilon (\hat u_i ,\hat u_j ) = \frac{1}{{\sqrt {1 - \chi ^2 (\hat +u_i \cdot \hat u_j )^2 } }} +\end{equation} +and +\begin{equation} +\epsilon '(\hat u_i ,\hat u_j ,\hat r_{ij} ) = 1 - \frac{{\chi +'}}{2}\left[ {\frac{{(\hat r_{ij} \cdot \hat u_i + \hat r_{ij} +\cdot \hat u_j )^2 }}{{1 + \chi '\hat u_i \cdot \hat u_j }} + +\frac{{(\hat r_{ij} \cdot \hat u_i - \hat r_{ij} \cdot \hat u_j +)^2 }}{{1 - \chi '\hat u_i \cdot \hat u_j }}} \right] +\end{equation} +where the well depth anisotropy parameter $\chi '$ depends on the +ratio between \textit{end-to-end} well depth $\epsilon _e$ and +\textit{side-by-side} well depth $\epsilon_s$, +\begin{eqaution} +\chi ' = \frac{{1 - (\epsilon _e /\epsilon _s )^{1/\mu} }}{{1 + +(\epsilon _e /\epsilon _s )^{1/\mu} }}. +\end{equation} + +\begin{figure} +\centering +\includegraphics[width=\linewidth]{banana.eps} +\caption[]{} \label{LCFig:BananaMolecule} +\end{figure} + +\begin{figure} +\centering +\includegraphics[width=\linewidth]{bananGB_grained.eps} +\caption[]{} \label{LCFigure:BananaGB} +\end{figure} + +\begin{figure} +\centering +\includegraphics[width=\linewidth]{gb_scheme.eps} +\caption[]{Schematic diagram showing definitions of the orientation +vectors for a pair of Gay-Berne molecules} +\label{LCFigure:GBScheme} +\end{figure} + \section{\label{liquidCrystalSection:methods}Methods} \section{\label{liquidCrystalSection:resultDiscussion}Results and Discussion}