ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/LiquidCrystal.tex
(Generate patch)

Comparing trunk/tengDissertation/LiquidCrystal.tex (file contents):
Revision 2890 by tim, Mon Jun 26 13:43:22 2006 UTC vs.
Revision 2891 by tim, Mon Jun 26 21:59:54 2006 UTC

# Line 100 | Line 100 | molecule represented by three rigid GB particles with
100   incorporating electrostatic interaction.
101  
102   In this chapter, we consider system consisting of banana-shaped
103 < molecule represented by three rigid GB particles with one or two
104 < point dipoles at different location. Performing a series of
105 < molecular dynamics simulations, we explore the structural properties
106 < of tilted smectic phases as well as the effect of electrostatic
107 < interactions.
103 > molecule represented by three rigid GB particles with two point
104 > dipoles. Performing a series of molecular dynamics simulations, we
105 > explore the structural properties of tilted smectic phases as well
106 > as the effect of electrostatic interactions.
107  
108   \section{\label{liquidCrystalSection:model}Model}
109  
# Line 207 | Line 206 | where $\epsilon _{fs}$ is the permittivity of free spa
206   \end{equation}
207   where $\epsilon _{fs}$ is the permittivity of free space.
208  
209 < \section{Computational Methodology}
209 > \section{Results and Discussion}
210  
211   A series of molecular dynamics simulations were perform to study the
212   phase behavior of banana shaped liquid crystals. In each simulation,
# Line 236 | Line 235 | parameter tensor
235      u_{iy}u_{ix} & u_{iy}u_{iy}-\frac{1}{3} & u_{iy}u_{iz} \\
236      u_{iz}u_{ix} & u_{iz}u_{iy} & u_{iz}u_{iz}-\frac{1}{3} %
237      \end{pmatrix},
238 < \label{lipidEq:po1}
238 > \label{lipidEq:p2}
239   \end{equation}
240   where the $u_{i\alpha}$ is the $\alpha$ element of the unit vector
241   $\mathbf{\hat{u}}_i$, and the sum over $i$ averages over the whole
# Line 246 | Line 245 | In addition to the $P_2$ order parameter, $ R_{2,2}^2$
245   \langle P_2 \rangle = \frac{3}{2}\lambda_{\text{max}}.
246   \label{lipidEq:po3}
247   \end{equation}
248 < In addition to the $P_2$ order parameter, $ R_{2,2}^2$ order
249 < parameter for biaxial phase is introduced to describe the ordering
250 < in the plane orthogonal to the director by
251 < \begin{equation}
252 < R_{2,2}^2  = \frac{1}{4}\left\langle {(x_i  \cdot X)^2  - (x_i \cdot
253 < Y)^2  - (y_i  \cdot X)^2  + (y_i  \cdot Y)^2 } \right\rangle
254 < \end{equation}
255 < where $X$, $Y$ and $Z$ are axis of the director frame.
248 > %In addition to the $P_2$ order parameter, $ R_{2,2}^2$ order
249 > %parameter for biaxial phase is introduced to describe the ordering
250 > %in the plane orthogonal to the director by
251 > %\begin{equation}
252 > %R_{2,2}^2  = \frac{1}{4}\left\langle {(x_i  \cdot X)^2  - (x_i \cdot
253 > %Y)^2  - (y_i  \cdot X)^2  + (y_i  \cdot Y)^2 } \right\rangle
254 > %\end{equation}
255 > %where $X$, $Y$ and $Z$ are axis of the director frame.
256 > The unit vector for the banana shaped molecule was defined by the
257 > principle aixs of its middle GB particle. The $P_2$ order parameters
258 > for the bent-core liquid crystal at different temperature is
259 > summarized in Table~\ref{liquidCrystal:p2} which identifies a phase
260 > transition temperature range.
261 >
262 > \begin{table}
263 > \caption{LIQUID CRYSTAL STRUCTURAL PROPERTIES AS A FUNCTION OF
264 > TEMPERATURE} \label{liquidCrystal:p2}
265 > \begin{center}
266 > \begin{tabular}{|c|c|c|c|c|c|}
267 > \hline
268 > Temperature (K) & 420 & 440 & 460 & 480 & 600\\
269 > \hline
270 > $\langle P_2\rangle$ & 0.984 & 0.982 & 0.975 & 0.967 & 0.067\\
271 > \hline
272 > \end{tabular}
273 > \end{center}
274 > \end{table}
275  
276   \subsection{Structure Properties}
277  
278 < It is more important to show the density correlation along the
279 < director
278 > The molecular organization obtained at temperature $T = 460K$ (below
279 > transition temperature) is shown in Figure~\ref{LCFigure:snapshot}.
280 >
281 > It is also important to show the density correlation along the
282 > director which is given by :
283   \begin{equation}
284   g(z) =< \delta (z-z_{ij})>_{ij} / \pi R^{2} \rho
285   \end{equation},
286   where $z_{ij} = r_{ij} \dot Z$ was measured in the director frame
287   and $R$ is the radius of the cylindrical sampling region.
288  
289 + \begin{figure}
290 + \centering
291 + \includegraphics[width=4.5in]{snapshot.eps}
292 + \caption[Snapshot of the molecular organization in the layered phase
293 + formed at temperature T = 460K and pressure P = 1 atm]{Snapshot of
294 + the molecular organization in the layered phase formed at
295 + temperature T = 460K and pressure P = 1 atm. (a) diagonal view; (b)
296 + side view.} \label{LCFigure:snapshot}
297 + \end{figure}
298 +
299 + \begin{figure}
300 + \centering
301 + \includegraphics[width=\linewidth]{gofr_gofz.eps}
302 + \caption[Correlation Functions of a Bent-core Liquid Crystal System
303 + at Temperature T = 460K and Pressure P = 10 atm]{Correlation
304 + Functions of a Bent-core Liquid Crystal System at Temperature T =
305 + 460K and Pressure P = 10 atm. (a) radial correlation function
306 + $g(r)$; and (b) density along the director $g(z)$.}
307 + \label{LCFigure:gofrz}
308 + \end{figure}
309 +
310   \subsection{Rotational Invariants}
311  
312   As a useful set of correlation functions to describe
# Line 290 | Line 332 | S_{00}^{221} (r) =  - \frac{{\sqrt 3 }}{{\sqrt {10} }}
332   \hat z_j  \times \hat r_{ij} ))} \right\rangle
333   \end{equation}
334  
335 < \section{Results and Conclusion}
335 > \section{Conclusion}
336   To investigate the molecular organization behavior due to different
337   dipolar orientation and position with respect to the center of the
338   molecule,

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines