ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/LiquidCrystal.tex
(Generate patch)

Comparing trunk/tengDissertation/LiquidCrystal.tex (file contents):
Revision 2880 by tim, Thu Jun 22 22:19:02 2006 UTC vs.
Revision 2892 by tim, Tue Jun 27 01:33:33 2006 UTC

# Line 43 | Line 43 | Fig.~\ref{LCFig:SMCP}).
43   \begin{figure}
44   \centering
45   \includegraphics[width=\linewidth]{smcp.eps}
46 < \caption[]
47 < {}
46 > \caption[SmCP Phase Packing] {Four possible SmCP phase packings that
47 > are characterized by the relative tilt direction(A and S refer an
48 > anticlinic tilt or a synclinic ) and the polarization orientation (A
49 > and F represent antiferroelectric or ferroelectric polar order).}
50   \label{LCFig:SMCP}
51   \end{figure}
52  
# Line 76 | Line 78 | of bent-core molecules\cite{Memmer2002,Orlandi2006}.
78   liquid crystal phases\cite{Lansac2003}. Other anisotropic models
79   using Gay-Berne(GB) potential, which produce interactions that favor
80   local alignment, give the evidence of the novel packing arrangements
81 < of bent-core molecules\cite{Memmer2002,Orlandi2006}.
81 > of bent-core molecules\cite{Memmer2002}.
82  
83   Experimental studies by Levelut {\it et al.}~\cite{Levelut1981}
84   revealed that terminal cyano or nitro groups usually induce
# Line 98 | Line 100 | molecule represented by three rigid GB particles with
100   incorporating electrostatic interaction.
101  
102   In this chapter, we consider system consisting of banana-shaped
103 < molecule represented by three rigid GB particles with one or two
104 < point dipoles at different location. Performing a series of
105 < molecular dynamics simulations, we explore the structural properties
106 < of tilted smectic phases as well as the effect of electrostatic
105 < interactions.
103 > molecule represented by three rigid GB particles with two point
104 > dipoles. Performing a series of molecular dynamics simulations, we
105 > explore the structural properties of tilted smectic phases as well
106 > as the effect of electrostatic interactions.
107  
108   \section{\label{liquidCrystalSection:model}Model}
109  
# Line 181 | Line 182 | ratio between \textit{end-to-end} well depth $\epsilon
182   \begin{figure}
183   \centering
184   \includegraphics[width=\linewidth]{banana.eps}
185 < \caption[]{} \label{LCFig:BananaMolecule}
185 > \caption[Schematic representation of a typical banana shaped
186 > molecule]{Schematic representation of a typical banana shaped
187 > molecule.} \label{LCFig:BananaMolecule}
188   \end{figure}
189  
187 %\begin{figure}
188 %\centering
189 %\includegraphics[width=\linewidth]{bananGB.eps}
190 %\caption[]{} \label{LCFigure:BananaGB}
191 %\end{figure}
192
190   \begin{figure}
191   \centering
192   \includegraphics[width=\linewidth]{gb_scheme.eps}
193 < \caption[]{Schematic diagram showing definitions of the orientation
194 < vectors for a pair of Gay-Berne molecules}
195 < \label{LCFigure:GBScheme}
193 > \caption[Schematic diagram showing definitions of the orientation
194 > vectors for a pair of Gay-Berne molecules]{Schematic diagram showing
195 > definitions of the orientation vectors for a pair of Gay-Berne
196 > molecules} \label{LCFigure:GBScheme}
197   \end{figure}
198  
199   To account for the permanent dipolar interactions, there should be
# Line 208 | Line 206 | where $\epsilon _{fs}$ is the permittivity of free spa
206   \end{equation}
207   where $\epsilon _{fs}$ is the permittivity of free space.
208  
209 < \section{Computational Methodology}
209 > \section{Results and Discussion}
210  
211   A series of molecular dynamics simulations were perform to study the
212   phase behavior of banana shaped liquid crystals. In each simulation,
# Line 237 | Line 235 | parameter tensor
235      u_{iy}u_{ix} & u_{iy}u_{iy}-\frac{1}{3} & u_{iy}u_{iz} \\
236      u_{iz}u_{ix} & u_{iz}u_{iy} & u_{iz}u_{iz}-\frac{1}{3} %
237      \end{pmatrix},
238 < \label{lipidEq:po1}
238 > \label{lipidEq:p2}
239   \end{equation}
240   where the $u_{i\alpha}$ is the $\alpha$ element of the unit vector
241   $\mathbf{\hat{u}}_i$, and the sum over $i$ averages over the whole
# Line 247 | Line 245 | In addition to the $P_2$ order parameter, $ R_{2,2}^2$
245   \langle P_2 \rangle = \frac{3}{2}\lambda_{\text{max}}.
246   \label{lipidEq:po3}
247   \end{equation}
248 < In addition to the $P_2$ order parameter, $ R_{2,2}^2$ order
249 < parameter for biaxial phase is introduced to describe the ordering
250 < in the plane orthogonal to the director by
251 < \begin{equation}
252 < R_{2,2}^2  = \frac{1}{4}\left\langle {(x_i  \cdot X)^2  - (x_i \cdot
253 < Y)^2  - (y_i  \cdot X)^2  + (y_i  \cdot Y)^2 } \right\rangle
254 < \end{equation}
255 < where $X$, $Y$ and $Z$ are axis of the director frame.
248 > %In addition to the $P_2$ order parameter, $ R_{2,2}^2$ order
249 > %parameter for biaxial phase is introduced to describe the ordering
250 > %in the plane orthogonal to the director by
251 > %\begin{equation}
252 > %R_{2,2}^2  = \frac{1}{4}\left\langle {(x_i  \cdot X)^2  - (x_i \cdot
253 > %Y)^2  - (y_i  \cdot X)^2  + (y_i  \cdot Y)^2 } \right\rangle
254 > %\end{equation}
255 > %where $X$, $Y$ and $Z$ are axis of the director frame.
256 > The unit vector for the banana shaped molecule was defined by the
257 > principle aixs of its middle GB particle. The $P_2$ order parameters
258 > for the bent-core liquid crystal at different temperature is
259 > summarized in Table~\ref{liquidCrystal:p2} which identifies a phase
260 > transition temperature range.
261  
262 + \begin{table}
263 + \caption{LIQUID CRYSTAL STRUCTURAL PROPERTIES AS A FUNCTION OF
264 + TEMPERATURE} \label{liquidCrystal:p2}
265 + \begin{center}
266 + \begin{tabular}{cccccc}
267 + \hline
268 + Temperature (K) & 420 & 440 & 460 & 480 & 600\\
269 + \hline
270 + $\langle P_2\rangle$ & 0.984 & 0.982 & 0.975 & 0.967 & 0.067\\
271 + \hline
272 + \end{tabular}
273 + \end{center}
274 + \end{table}
275 +
276   \subsection{Structure Properties}
277  
278 < It is more important to show the density correlation along the
279 < director
278 > The molecular organization obtained at temperature $T = 460K$ (below
279 > transition temperature) is shown in Figure~\ref{LCFigure:snapshot}.
280 > The diagonal view in Fig~\ref{LCFigure:snapshot}(a) shows the
281 > stacking of the banana shaped molecules while the side view in n
282 > Figure~\ref{LCFigure:snapshot}(b) demonstrates formation of a
283 > chevron structure. The first peak of Radial distribution function
284 > $g(r)$ in Fig.~\ref{LCFigure:gofrz}(a) shows the minimum distance
285 > for two in plane banana shaped molecules is 4.9 \AA, while the
286 > second split peak implies the biaxial packing. It is also important
287 > to show the density correlation along the director which is given by
288 > :
289   \begin{equation}
290 < g(z) =< \delta (z-z_{ij})>_{ij} / \pi R^{2} \rho
290 > g(z) =\frac{1}{\pi R^{2} \rho}< \delta (z-z_{ij})>_{ij}
291   \end{equation},
292   where $z_{ij} = r_{ij} \dot Z$ was measured in the director frame
293 < and $R$ is the radius of the cylindrical sampling region.
293 > and $R$ is the radius of the cylindrical sampling region. The
294 > oscillation in density plot along the director in
295 > Fig.~\ref{LCFigure:gofrz}(b) implies the existence of the layered
296 > structure, and the peak at 27 \AA is attribute to the defect in the
297 > system.
298  
299 + \begin{figure}
300 + \centering
301 + \includegraphics[width=4.5in]{snapshot.eps}
302 + \caption[Snapshot of the molecular organization in the layered phase
303 + formed at temperature T = 460K and pressure P = 1 atm]{Snapshot of
304 + the molecular organization in the layered phase formed at
305 + temperature T = 460K and pressure P = 1 atm. (a) diagonal view; (b)
306 + side view.} \label{LCFigure:snapshot}
307 + \end{figure}
308 +
309 + \begin{figure}
310 + \centering
311 + \includegraphics[width=\linewidth]{gofr_gofz.eps}
312 + \caption[Correlation Functions of a Bent-core Liquid Crystal System
313 + at Temperature T = 460K and Pressure P = 10 atm]{Correlation
314 + Functions of a Bent-core Liquid Crystal System at Temperature T =
315 + 460K and Pressure P = 10 atm. (a) radial correlation function
316 + $g(r)$; and (b) density along the director $g(z)$.}
317 + \label{LCFigure:gofrz}
318 + \end{figure}
319 +
320   \subsection{Rotational Invariants}
321  
322   As a useful set of correlation functions to describe
323   position-orientation correlation, rotation invariants were first
324   applied in a spherical symmetric system to study x-ray and light
325 < scatting\cite{Blum1971}. Latterly, expansion of the orientation pair
325 > scatting\cite{Blum1972}. Latterly, expansion of the orientation pair
326   correlation in terms of rotation invariant for molecules of
327   arbitrary shape was introduce by Stone\cite{Stone1978} and adopted
328 < by other researchers in liquid crystal studies\cite{Berardi2000}.
329 <
328 > by other researchers in liquid crystal studies\cite{Berardi2003}. In
329 > order to study the correlation between biaxiality and molecular
330 > separation distance $r$, we calculate a rotational invariant
331 > function $S_{22}^{220} (r)$, which is given by :
332   \begin{eqnarray}
333 < S_{22}^{220} (r) & = & \frac{1}{{4\sqrt 5 }}\left\langle {\delta (r
334 < - r_{ij} )((\hat x_i  \cdot \hat x_j )^2  - (\hat x_i  \cdot \hat
335 < y_j )^2  - (\hat y_i  \cdot \hat x_j )^2  + (\hat y_i  \cdot \hat
336 < y_j
337 < )^2 ) \right.\\
338 < & & \left.- 2(\hat x_i  \cdot \hat y_j )(\hat y_i \cdot \hat x_j ) -
286 < 2(\hat x_i  \cdot \hat x_j )(\hat y_i  \cdot \hat y_j ))}
287 < \right\rangle
333 > S_{22}^{220} (r) & = & \frac{1}{{4\sqrt 5 }} \left< \delta (r -
334 > r_{ij} )((\hat x_i  \cdot \hat x_j )^2  - (\hat x_i  \cdot \hat y_j
335 > )^2  - (\hat y_i  \cdot \hat x_j )^2  + (\hat y_i  \cdot \hat y_j
336 > )^2 ) \right. \notag \\
337 > & & \left. - 2(\hat x_i  \cdot \hat y_j )(\hat y_i \cdot \hat x_j ) -
338 > 2(\hat x_i  \cdot \hat x_j )(\hat y_i  \cdot \hat y_j )) \right>.
339   \end{eqnarray}
340  
341 < \begin{equation}
342 < S_{00}^{221} (r) =  - \frac{{\sqrt 3 }}{{\sqrt {10} }}\left\langle
343 < {\delta (r - r_{ij} )((\hat z_i  \cdot \hat z_j )(\hat z_i  \cdot
344 < \hat z_j  \times \hat r_{ij} ))} \right\rangle
345 < \end{equation}
341 > %\begin{equation}
342 > %S_{00}^{221} (r) =  - \frac{{\sqrt 3 }}{{\sqrt {10} }}\left\langle
343 > %{\delta (r - r_{ij} )((\hat z_i  \cdot \hat z_j )(\hat z_i  \cdot
344 > %\hat z_j  \times \hat r_{ij} ))} \right\rangle
345 > %\end{equation}
346  
347 < \section{Results and Conclusion}
297 < \label{sec:results and conclusion}
347 > \section{Conclusion}
348  
349 < To investigate the molecular organization behavior due to different
350 < dipolar orientation and position with respect to the center of the
351 < molecule,
349 > We have presented a simple dipolar three-site GB model for banana
350 > shaped molecules which are capable of forming smectic phases from
351 > isotropic configuration.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines