ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Methodology.tex
Revision: 2854
Committed: Sun Jun 11 02:53:15 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 30769 byte(s)
Log Message:
minor fixes

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:methodology}METHODOLOGY}
2    
3     \section{\label{methodSection:rigidBodyIntegrators}Integrators for Rigid Body Motion in Molecular Dynamics}
4    
5 tim 2729 In order to mimic the experiments, which are usually performed under
6     constant temperature and/or pressure, extended Hamiltonian system
7 tim 2739 methods have been developed to generate statistical ensembles, such
8 tim 2729 as canonical ensemble and isobaric-isothermal ensemble \textit{etc}.
9     In addition to the standard ensemble, specific ensembles have been
10     developed to account for the anisotropy between the lateral and
11     normal directions of membranes. The $NPAT$ ensemble, in which the
12     normal pressure and the lateral surface area of the membrane are
13     kept constant, and the $NP\gamma T$ ensemble, in which the normal
14     pressure and the lateral surface tension are kept constant were
15     proposed to address this issue.
16 tim 2685
17 tim 2729 Integration schemes for rotational motion of the rigid molecules in
18     microcanonical ensemble have been extensively studied in the last
19 tim 2850 two decades. Matubayasi developed a time-reversible integrator for
20     rigid bodies in quaternion representation. Although it is not
21     symplectic, this integrator still demonstrates a better long-time
22     energy conservation than traditional methods because of the
23     time-reversible nature. Extending Trotter-Suzuki to general system
24     with a flat phase space, Miller and his colleagues devised an novel
25     symplectic, time-reversible and volume-preserving integrator in
26     quaternion representation, which was shown to be superior to the
27     Matubayasi's time-reversible integrator. However, all of the
28     integrators in quaternion representation suffer from the
29 tim 2729 computational penalty of constructing a rotation matrix from
30     quaternions to evolve coordinates and velocities at every time step.
31     An alternative integration scheme utilizing rotation matrix directly
32     proposed by Dullweber, Leimkuhler and McLachlan (DLM) also preserved
33     the same structural properties of the Hamiltonian flow. In this
34     section, the integration scheme of DLM method will be reviewed and
35     extended to other ensembles.
36 tim 2685
37 tim 2729 \subsection{\label{methodSection:DLM}Integrating the Equations of Motion: the
38     DLM method}
39    
40     The DLM method uses a Trotter factorization of the orientational
41     propagator. This has three effects:
42     \begin{enumerate}
43     \item the integrator is area-preserving in phase space (i.e. it is
44     {\it symplectic}),
45     \item the integrator is time-{\it reversible}, making it suitable for Hybrid
46     Monte Carlo applications, and
47     \item the error for a single time step is of order $\mathcal{O}\left(h^4\right)$
48     for timesteps of length $h$.
49     \end{enumerate}
50    
51     The integration of the equations of motion is carried out in a
52     velocity-Verlet style 2-part algorithm, where $h= \delta t$:
53    
54     {\tt moveA:}
55     \begin{align*}
56     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
57     + \frac{h}{2} \left( {\bf f}(t) / m \right), \\
58     %
59     {\bf r}(t + h) &\leftarrow {\bf r}(t)
60     + h {\bf v}\left(t + h / 2 \right), \\
61     %
62     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
63     + \frac{h}{2} {\bf \tau}^b(t), \\
64     %
65     \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
66     (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right).
67     \end{align*}
68    
69     In this context, the $\mathrm{rotate}$ function is the reversible
70     product of the three body-fixed rotations,
71     \begin{equation}
72     \mathrm{rotate}({\bf a}) = \mathsf{G}_x(a_x / 2) \cdot
73     \mathsf{G}_y(a_y / 2) \cdot \mathsf{G}_z(a_z) \cdot \mathsf{G}_y(a_y
74     / 2) \cdot \mathsf{G}_x(a_x /2),
75     \end{equation}
76     where each rotational propagator, $\mathsf{G}_\alpha(\theta)$,
77     rotates both the rotation matrix ($\mathsf{A}$) and the body-fixed
78     angular momentum (${\bf j}$) by an angle $\theta$ around body-fixed
79     axis $\alpha$,
80     \begin{equation}
81     \mathsf{G}_\alpha( \theta ) = \left\{
82     \begin{array}{lcl}
83     \mathsf{A}(t) & \leftarrow & \mathsf{A}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
84     {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf
85     j}(0).
86     \end{array}
87     \right.
88     \end{equation}
89     $\mathsf{R}_\alpha$ is a quadratic approximation to the single-axis
90     rotation matrix. For example, in the small-angle limit, the
91     rotation matrix around the body-fixed x-axis can be approximated as
92     \begin{equation}
93     \mathsf{R}_x(\theta) \approx \left(
94     \begin{array}{ccc}
95     1 & 0 & 0 \\
96     0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4} & -\frac{\theta}{1+
97     \theta^2 / 4} \\
98     0 & \frac{\theta}{1+ \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 +
99     \theta^2 / 4}
100     \end{array}
101     \right).
102     \end{equation}
103     All other rotations follow in a straightforward manner.
104    
105     After the first part of the propagation, the forces and body-fixed
106     torques are calculated at the new positions and orientations
107    
108     {\tt doForces:}
109     \begin{align*}
110     {\bf f}(t + h) &\leftarrow
111     - \left(\frac{\partial V}{\partial {\bf r}}\right)_{{\bf r}(t + h)}, \\
112     %
113     {\bf \tau}^{s}(t + h) &\leftarrow {\bf u}(t + h)
114     \times \frac{\partial V}{\partial {\bf u}}, \\
115     %
116     {\bf \tau}^{b}(t + h) &\leftarrow \mathsf{A}(t + h)
117     \cdot {\bf \tau}^s(t + h).
118     \end{align*}
119    
120 tim 2854 ${\bf u}$ will be automatically updated when the rotation matrix
121 tim 2729 $\mathsf{A}$ is calculated in {\tt moveA}. Once the forces and
122     torques have been obtained at the new time step, the velocities can
123     be advanced to the same time value.
124    
125     {\tt moveB:}
126     \begin{align*}
127     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t + h / 2
128     \right)
129     + \frac{h}{2} \left( {\bf f}(t + h) / m \right), \\
130     %
131     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t + h / 2
132     \right)
133     + \frac{h}{2} {\bf \tau}^b(t + h) .
134     \end{align*}
135    
136     The matrix rotations used in the DLM method end up being more costly
137     computationally than the simpler arithmetic quaternion propagation.
138     With the same time step, a 1000-molecule water simulation shows an
139     average 7\% increase in computation time using the DLM method in
140     place of quaternions. This cost is more than justified when
141     comparing the energy conservation of the two methods as illustrated
142 tim 2807 in Fig.~\ref{methodFig:timestep}.
143 tim 2729
144     \begin{figure}
145     \centering
146     \includegraphics[width=\linewidth]{timeStep.eps}
147     \caption[Energy conservation for quaternion versus DLM
148     dynamics]{Energy conservation using quaternion based integration
149     versus the method proposed by Dullweber \emph{et al.} with
150     increasing time step. For each time step, the dotted line is total
151     energy using the DLM integrator, and the solid line comes from the
152     quaternion integrator. The larger time step plots are shifted up
153 tim 2801 from the true energy baseline for clarity.}
154     \label{methodFig:timestep}
155 tim 2729 \end{figure}
156    
157 tim 2801 In Fig.~\ref{methodFig:timestep}, the resulting energy drift at
158     various time steps for both the DLM and quaternion integration
159     schemes is compared. All of the 1000 molecule water simulations
160     started with the same configuration, and the only difference was the
161     method for handling rotational motion. At time steps of 0.1 and 0.5
162     fs, both methods for propagating molecule rotation conserve energy
163     fairly well, with the quaternion method showing a slight energy
164     drift over time in the 0.5 fs time step simulation. At time steps of
165     1 and 2 fs, the energy conservation benefits of the DLM method are
166     clearly demonstrated. Thus, while maintaining the same degree of
167     energy conservation, one can take considerably longer time steps,
168     leading to an overall reduction in computation time.
169 tim 2729
170     \subsection{\label{methodSection:NVT}Nos\'{e}-Hoover Thermostatting}
171    
172 tim 2801 The Nos\'e-Hoover equations of motion are given by\cite{Hoover1985}
173 tim 2729 \begin{eqnarray}
174     \dot{{\bf r}} & = & {\bf v}, \\
175     \dot{{\bf v}} & = & \frac{{\bf f}}{m} - \chi {\bf v} ,\\
176     \dot{\mathsf{A}} & = & \mathsf{A} \cdot
177     \mbox{ skew}\left(\overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j}\right), \\
178     \dot{{\bf j}} & = & {\bf j} \times \left(
179     \overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j} \right) - \mbox{
180     rot}\left(\mathsf{A}^{T} \cdot \frac{\partial V}{\partial
181     \mathsf{A}} \right) - \chi {\bf j}. \label{eq:nosehoovereom}
182     \end{eqnarray}
183    
184     $\chi$ is an ``extra'' variable included in the extended system, and
185     it is propagated using the first order equation of motion
186     \begin{equation}
187     \dot{\chi} = \frac{1}{\tau_{T}^2} \left(
188     \frac{T}{T_{\mathrm{target}}} - 1 \right). \label{eq:nosehooverext}
189     \end{equation}
190    
191     The instantaneous temperature $T$ is proportional to the total
192     kinetic energy (both translational and orientational) and is given
193     by
194     \begin{equation}
195     T = \frac{2 K}{f k_B}
196     \end{equation}
197     Here, $f$ is the total number of degrees of freedom in the system,
198     \begin{equation}
199     f = 3 N + 3 N_{\mathrm{orient}} - N_{\mathrm{constraints}},
200     \end{equation}
201     and $K$ is the total kinetic energy,
202     \begin{equation}
203     K = \sum_{i=1}^{N} \frac{1}{2} m_i {\bf v}_i^T \cdot {\bf v}_i +
204     \sum_{i=1}^{N_{\mathrm{orient}}} \frac{1}{2} {\bf j}_i^T \cdot
205     \overleftrightarrow{\mathsf{I}}_i^{-1} \cdot {\bf j}_i.
206     \end{equation}
207    
208     In eq.(\ref{eq:nosehooverext}), $\tau_T$ is the time constant for
209     relaxation of the temperature to the target value. To set values
210     for $\tau_T$ or $T_{\mathrm{target}}$ in a simulation, one would use
211     the {\tt tauThermostat} and {\tt targetTemperature} keywords in the
212     {\tt .bass} file. The units for {\tt tauThermostat} are fs, and the
213     units for the {\tt targetTemperature} are degrees K. The
214     integration of the equations of motion is carried out in a
215     velocity-Verlet style 2 part algorithm:
216    
217     {\tt moveA:}
218     \begin{align*}
219     T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
220     %
221     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
222     + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t)
223     \chi(t)\right), \\
224     %
225     {\bf r}(t + h) &\leftarrow {\bf r}(t)
226     + h {\bf v}\left(t + h / 2 \right) ,\\
227     %
228     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
229     + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
230     \chi(t) \right) ,\\
231     %
232     \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}
233     \left(h * {\bf j}(t + h / 2)
234     \overleftrightarrow{\mathsf{I}}^{-1} \right) ,\\
235     %
236     \chi\left(t + h / 2 \right) &\leftarrow \chi(t)
237     + \frac{h}{2 \tau_T^2} \left( \frac{T(t)}
238     {T_{\mathrm{target}}} - 1 \right) .
239     \end{align*}
240    
241     Here $\mathrm{rotate}(h * {\bf j}
242     \overleftrightarrow{\mathsf{I}}^{-1})$ is the same symplectic
243     Trotter factorization of the three rotation operations that was
244     discussed in the section on the DLM integrator. Note that this
245     operation modifies both the rotation matrix $\mathsf{A}$ and the
246     angular momentum ${\bf j}$. {\tt moveA} propagates velocities by a
247     half time step, and positional degrees of freedom by a full time
248     step. The new positions (and orientations) are then used to
249     calculate a new set of forces and torques in exactly the same way
250     they are calculated in the {\tt doForces} portion of the DLM
251     integrator.
252    
253     Once the forces and torques have been obtained at the new time step,
254     the temperature, velocities, and the extended system variable can be
255     advanced to the same time value.
256    
257     {\tt moveB:}
258     \begin{align*}
259     T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
260     \left\{{\bf j}(t + h)\right\}, \\
261     %
262     \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
263     2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+h)}
264     {T_{\mathrm{target}}} - 1 \right), \\
265     %
266     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t
267     + h / 2 \right) + \frac{h}{2} \left(
268     \frac{{\bf f}(t + h)}{m} - {\bf v}(t + h)
269     \chi(t h)\right) ,\\
270     %
271     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
272     + h / 2 \right) + \frac{h}{2}
273     \left( {\bf \tau}^b(t + h) - {\bf j}(t + h)
274     \chi(t + h) \right) .
275     \end{align*}
276    
277     Since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required to
278     caclculate $T(t + h)$ as well as $\chi(t + h)$, they indirectly
279     depend on their own values at time $t + h$. {\tt moveB} is
280     therefore done in an iterative fashion until $\chi(t + h)$ becomes
281 tim 2854 self-consistent.
282 tim 2729
283     The Nos\'e-Hoover algorithm is known to conserve a Hamiltonian for
284     the extended system that is, to within a constant, identical to the
285 tim 2801 Helmholtz free energy,\cite{Melchionna1993}
286 tim 2729 \begin{equation}
287     H_{\mathrm{NVT}} = V + K + f k_B T_{\mathrm{target}} \left(
288     \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
289     dt^\prime \right).
290     \end{equation}
291     Poor choices of $h$ or $\tau_T$ can result in non-conservation of
292     $H_{\mathrm{NVT}}$, so the conserved quantity is maintained in the
293     last column of the {\tt .stat} file to allow checks on the quality
294     of the integration.
295    
296     \subsection{\label{methodSection:NPTi}Constant-pressure integration with
297     isotropic box deformations (NPTi)}
298    
299 tim 2854 Isobaric-isothermal ensemble integrator is implemented using the
300     Melchionna modifications to the Nos\'e-Hoover-Andersen equations of
301     motion,\cite{Melchionna1993}
302 tim 2729
303     \begin{eqnarray}
304     \dot{{\bf r}} & = & {\bf v} + \eta \left( {\bf r} - {\bf R}_0 \right), \\
305     \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\eta + \chi) {\bf v}, \\
306     \dot{\mathsf{A}} & = & \mathsf{A} \cdot
307     \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right),\\
308     \dot{{\bf j}} & = & {\bf j} \times \left(
309     \overleftrightarrow{I}^{-1} \cdot {\bf j} \right) - \mbox{
310     rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
311     V}{\partial \mathsf{A}} \right) - \chi {\bf j}, \\
312     \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
313     \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
314     \dot{\eta} & = & \frac{1}{\tau_{B}^2 f k_B T_{\mathrm{target}}} V
315     \left( P -
316     P_{\mathrm{target}} \right), \\
317     \dot{\mathcal{V}} & = & 3 \mathcal{V} \eta . \label{eq:melchionna1}
318     \end{eqnarray}
319    
320     $\chi$ and $\eta$ are the ``extra'' degrees of freedom in the
321     extended system. $\chi$ is a thermostat, and it has the same
322     function as it does in the Nos\'e-Hoover NVT integrator. $\eta$ is
323     a barostat which controls changes to the volume of the simulation
324     box. ${\bf R}_0$ is the location of the center of mass for the
325     entire system, and $\mathcal{V}$ is the volume of the simulation
326     box. At any time, the volume can be calculated from the determinant
327     of the matrix which describes the box shape:
328     \begin{equation}
329     \mathcal{V} = \det(\mathsf{H}).
330     \end{equation}
331    
332     The NPTi integrator requires an instantaneous pressure. This
333     quantity is calculated via the pressure tensor,
334     \begin{equation}
335     \overleftrightarrow{\mathsf{P}}(t) = \frac{1}{\mathcal{V}(t)} \left(
336     \sum_{i=1}^{N} m_i {\bf v}_i(t) \otimes {\bf v}_i(t) \right) +
337     \overleftrightarrow{\mathsf{W}}(t).
338     \end{equation}
339     The kinetic contribution to the pressure tensor utilizes the {\it
340     outer} product of the velocities denoted by the $\otimes$ symbol.
341     The stress tensor is calculated from another outer product of the
342     inter-atomic separation vectors (${\bf r}_{ij} = {\bf r}_j - {\bf
343     r}_i$) with the forces between the same two atoms,
344     \begin{equation}
345     \overleftrightarrow{\mathsf{W}}(t) = \sum_{i} \sum_{j>i} {\bf
346     r}_{ij}(t) \otimes {\bf f}_{ij}(t).
347     \end{equation}
348     The instantaneous pressure is then simply obtained from the trace of
349     the Pressure tensor,
350     \begin{equation}
351     P(t) = \frac{1}{3} \mathrm{Tr} \left(
352     \overleftrightarrow{\mathsf{P}}(t). \right)
353     \end{equation}
354    
355     In eq.(\ref{eq:melchionna1}), $\tau_B$ is the time constant for
356 tim 2853 relaxation of the pressure to the target value. Like in the NVT
357 tim 2729 integrator, the integration of the equations of motion is carried
358     out in a velocity-Verlet style 2 part algorithm:
359    
360     {\tt moveA:}
361     \begin{align*}
362     T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
363     %
364     P(t) &\leftarrow \left\{{\bf r}(t)\right\}, \left\{{\bf v}(t)\right\} ,\\
365     %
366     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
367     + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t)
368     \left(\chi(t) + \eta(t) \right) \right), \\
369     %
370     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
371     + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
372     \chi(t) \right), \\
373     %
374     \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
375     {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
376     \right) ,\\
377     %
378     \chi\left(t + h / 2 \right) &\leftarrow \chi(t) +
379     \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}} - 1
380     \right) ,\\
381     %
382     \eta(t + h / 2) &\leftarrow \eta(t) + \frac{h
383     \mathcal{V}(t)}{2 N k_B T(t) \tau_B^2} \left( P(t)
384     - P_{\mathrm{target}} \right), \\
385     %
386     {\bf r}(t + h) &\leftarrow {\bf r}(t) + h
387     \left\{ {\bf v}\left(t + h / 2 \right)
388     + \eta(t + h / 2)\left[ {\bf r}(t + h)
389     - {\bf R}_0 \right] \right\} ,\\
390     %
391     \mathsf{H}(t + h) &\leftarrow e^{-h \eta(t + h / 2)}
392     \mathsf{H}(t).
393     \end{align*}
394    
395     Most of these equations are identical to their counterparts in the
396     NVT integrator, but the propagation of positions to time $t + h$
397 tim 2854 depends on the positions at the same time. The simulation box
398     $\mathsf{H}$ is scaled uniformly for one full time step by an
399     exponential factor that depends on the value of $\eta$ at time $t +
400     h / 2$. Reshaping the box uniformly also scales the volume of the
401     box by
402 tim 2729 \begin{equation}
403     \mathcal{V}(t + h) \leftarrow e^{ - 3 h \eta(t + h /2)}.
404     \mathcal{V}(t)
405     \end{equation}
406    
407     The {\tt doForces} step for the NPTi integrator is exactly the same
408     as in both the DLM and NVT integrators. Once the forces and torques
409     have been obtained at the new time step, the velocities can be
410     advanced to the same time value.
411    
412     {\tt moveB:}
413     \begin{align*}
414     T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
415     \left\{{\bf j}(t + h)\right\} ,\\
416     %
417     P(t + h) &\leftarrow \left\{{\bf r}(t + h)\right\},
418     \left\{{\bf v}(t + h)\right\}, \\
419     %
420     \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
421     2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+h)}
422     {T_{\mathrm{target}}} - 1 \right), \\
423     %
424     \eta(t + h) &\leftarrow \eta(t + h / 2) +
425     \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h)
426     \tau_B^2} \left( P(t + h) - P_{\mathrm{target}} \right), \\
427     %
428     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t
429     + h / 2 \right) + \frac{h}{2} \left(
430     \frac{{\bf f}(t + h)}{m} - {\bf v}(t + h)
431     (\chi(t + h) + \eta(t + h)) \right) ,\\
432     %
433     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
434     + h / 2 \right) + \frac{h}{2} \left( {\bf
435     \tau}^b(t + h) - {\bf j}(t + h)
436     \chi(t + h) \right) .
437     \end{align*}
438    
439     Once again, since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required
440     to caclculate $T(t + h)$, $P(t + h)$, $\chi(t + h)$, and $\eta(t +
441     h)$, they indirectly depend on their own values at time $t + h$.
442     {\tt moveB} is therefore done in an iterative fashion until $\chi(t
443 tim 2854 + h)$ and $\eta(t + h)$ become self-consistent.
444 tim 2729
445     The Melchionna modification of the Nos\'e-Hoover-Andersen algorithm
446     is known to conserve a Hamiltonian for the extended system that is,
447     to within a constant, identical to the Gibbs free energy,
448     \begin{equation}
449     H_{\mathrm{NPTi}} = V + K + f k_B T_{\mathrm{target}} \left(
450     \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
451     dt^\prime \right) + P_{\mathrm{target}} \mathcal{V}(t).
452     \end{equation}
453     Poor choices of $\delta t$, $\tau_T$, or $\tau_B$ can result in
454     non-conservation of $H_{\mathrm{NPTi}}$, so the conserved quantity
455     is maintained in the last column of the {\tt .stat} file to allow
456     checks on the quality of the integration. It is also known that
457     this algorithm samples the equilibrium distribution for the enthalpy
458     (including contributions for the thermostat and barostat),
459     \begin{equation}
460     H_{\mathrm{NPTi}} = V + K + \frac{f k_B T_{\mathrm{target}}}{2}
461     \left( \chi^2 \tau_T^2 + \eta^2 \tau_B^2 \right) +
462     P_{\mathrm{target}} \mathcal{V}(t).
463     \end{equation}
464    
465     \subsection{\label{methodSection:NPTf}Constant-pressure integration with a
466     flexible box (NPTf)}
467    
468     There is a relatively simple generalization of the
469     Nos\'e-Hoover-Andersen method to include changes in the simulation
470     box {\it shape} as well as in the volume of the box. This method
471     utilizes the full $3 \times 3$ pressure tensor and introduces a
472     tensor of extended variables ($\overleftrightarrow{\eta}$) to
473     control changes to the box shape. The equations of motion for this
474     method are
475     \begin{eqnarray}
476     \dot{{\bf r}} & = & {\bf v} + \overleftrightarrow{\eta} \cdot \left( {\bf r} - {\bf R}_0 \right), \\
477     \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\overleftrightarrow{\eta} +
478     \chi \cdot \mathsf{1}) {\bf v}, \\
479     \dot{\mathsf{A}} & = & \mathsf{A} \cdot
480     \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right) ,\\
481     \dot{{\bf j}} & = & {\bf j} \times \left(
482     \overleftrightarrow{I}^{-1} \cdot {\bf j} \right) - \mbox{
483     rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
484     V}{\partial \mathsf{A}} \right) - \chi {\bf j} ,\\
485     \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
486     \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
487     \dot{\overleftrightarrow{\eta}} & = & \frac{1}{\tau_{B}^2 f k_B
488     T_{\mathrm{target}}} V \left( \overleftrightarrow{\mathsf{P}} - P_{\mathrm{target}}\mathsf{1} \right) ,\\
489     \dot{\mathsf{H}} & = & \overleftrightarrow{\eta} \cdot \mathsf{H} .
490     \label{eq:melchionna2}
491     \end{eqnarray}
492    
493     Here, $\mathsf{1}$ is the unit matrix and
494     $\overleftrightarrow{\mathsf{P}}$ is the pressure tensor. Again,
495     the volume, $\mathcal{V} = \det \mathsf{H}$.
496    
497     The propagation of the equations of motion is nearly identical to
498     the NPTi integration:
499    
500     {\tt moveA:}
501     \begin{align*}
502     T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
503     %
504     \overleftrightarrow{\mathsf{P}}(t) &\leftarrow \left\{{\bf
505     r}(t)\right\},
506     \left\{{\bf v}(t)\right\} ,\\
507     %
508     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
509     + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} -
510     \left(\chi(t)\mathsf{1} + \overleftrightarrow{\eta}(t) \right) \cdot
511     {\bf v}(t) \right), \\
512     %
513     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
514     + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
515     \chi(t) \right), \\
516     %
517     \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
518     {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
519     \right), \\
520     %
521     \chi\left(t + h / 2 \right) &\leftarrow \chi(t) +
522     \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}}
523     - 1 \right), \\
524     %
525     \overleftrightarrow{\eta}(t + h / 2) &\leftarrow
526     \overleftrightarrow{\eta}(t) + \frac{h \mathcal{V}(t)}{2 N k_B
527     T(t) \tau_B^2} \left( \overleftrightarrow{\mathsf{P}}(t)
528     - P_{\mathrm{target}}\mathsf{1} \right), \\
529     %
530     {\bf r}(t + h) &\leftarrow {\bf r}(t) + h \left\{ {\bf v}
531     \left(t + h / 2 \right) + \overleftrightarrow{\eta}(t +
532     h / 2) \cdot \left[ {\bf r}(t + h)
533     - {\bf R}_0 \right] \right\}, \\
534     %
535     \mathsf{H}(t + h) &\leftarrow \mathsf{H}(t) \cdot e^{-h
536     \overleftrightarrow{\eta}(t + h / 2)} .
537     \end{align*}
538 tim 2854 Here, a power series expansion truncated at second order for the
539     exponential operation is used to scale the simulation box.
540 tim 2729
541     The {\tt moveB} portion of the algorithm is largely unchanged from
542     the NPTi integrator:
543    
544     {\tt moveB:}
545     \begin{align*}
546     T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
547     \left\{{\bf j}(t + h)\right\}, \\
548     %
549     \overleftrightarrow{\mathsf{P}}(t + h) &\leftarrow \left\{{\bf r}
550     (t + h)\right\}, \left\{{\bf v}(t
551     + h)\right\}, \left\{{\bf f}(t + h)\right\} ,\\
552     %
553     \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
554     2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+
555     h)}{T_{\mathrm{target}}} - 1 \right), \\
556     %
557     \overleftrightarrow{\eta}(t + h) &\leftarrow
558     \overleftrightarrow{\eta}(t + h / 2) +
559     \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h)
560     \tau_B^2} \left( \overleftrightarrow{P}(t + h)
561     - P_{\mathrm{target}}\mathsf{1} \right) ,\\
562     %
563     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t
564     + h / 2 \right) + \frac{h}{2} \left(
565     \frac{{\bf f}(t + h)}{m} -
566     (\chi(t + h)\mathsf{1} + \overleftrightarrow{\eta}(t
567     + h)) \right) \cdot {\bf v}(t + h), \\
568     %
569     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
570     + h / 2 \right) + \frac{h}{2} \left( {\bf \tau}^b(t
571     + h) - {\bf j}(t + h) \chi(t + h) \right) .
572     \end{align*}
573    
574     The iterative schemes for both {\tt moveA} and {\tt moveB} are
575     identical to those described for the NPTi integrator.
576    
577     The NPTf integrator is known to conserve the following Hamiltonian:
578 tim 2854 \begin{eqnarray*}
579     H_{\mathrm{NPTf}} & = & V + K + f k_B T_{\mathrm{target}} \left(
580 tim 2729 \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
581 tim 2854 dt^\prime \right) \\
582     + P_{\mathrm{target}} \mathcal{V}(t) + \frac{f
583     k_B T_{\mathrm{target}}}{2}
584 tim 2729 \mathrm{Tr}\left[\overleftrightarrow{\eta}(t)\right]^2 \tau_B^2.
585 tim 2854 \end{eqnarray*}
586 tim 2729
587     This integrator must be used with care, particularly in liquid
588     simulations. Liquids have very small restoring forces in the
589     off-diagonal directions, and the simulation box can very quickly
590     form elongated and sheared geometries which become smaller than the
591     electrostatic or Lennard-Jones cutoff radii. The NPTf integrator
592     finds most use in simulating crystals or liquid crystals which
593     assume non-orthorhombic geometries.
594    
595 tim 2854 \subsubsection{\label{methodSection:NPAT}NPAT Ensemble}
596 tim 2729
597 tim 2739 A comprehensive understanding of structure¨Cfunction relations of
598     biological membrane system ultimately relies on structure and
599     dynamics of lipid bilayer, which are strongly affected by the
600     interfacial interaction between lipid molecules and surrounding
601     media. One quantity to describe the interfacial interaction is so
602     called the average surface area per lipid. Constat area and constant
603     lateral pressure simulation can be achieved by extending the
604     standard NPT ensemble with a different pressure control strategy
605 tim 2798
606 tim 2729 \begin{equation}
607 tim 2799 \dot {\overleftrightarrow{\eta}} _{\alpha \beta}=\left\{\begin{array}{ll}
608 tim 2798 \frac{{V(P_{\alpha \beta } - P_{{\rm{target}}} )}}{{\tau_{\rm{B}}^{\rm{2}} fk_B T_{{\rm{target}}} }}
609 tim 2799 & \mbox{if $ \alpha = \beta = z$}\\
610 tim 2798 0 & \mbox{otherwise}\\
611     \end{array}
612     \right.
613 tim 2729 \end{equation}
614 tim 2798
615 tim 2739 Note that the iterative schemes for NPAT are identical to those
616     described for the NPTi integrator.
617 tim 2729
618 tim 2854 \subsection{\label{methodSection:NPrT}NP$\gamma$T
619     Ensemble}
620 tim 2729
621 tim 2739 Theoretically, the surface tension $\gamma$ of a stress free
622     membrane system should be zero since its surface free energy $G$ is
623     minimum with respect to surface area $A$
624     \[
625     \gamma = \frac{{\partial G}}{{\partial A}}.
626     \]
627     However, a surface tension of zero is not appropriate for relatively
628     small patches of membrane. In order to eliminate the edge effect of
629 tim 2776 the membrane simulation, a special ensemble, NP$\gamma$T, is
630     proposed to maintain the lateral surface tension and normal
631     pressure. The equation of motion for cell size control tensor,
632 tim 2778 $\eta$, in $NP\gamma T$ is
633 tim 2729 \begin{equation}
634 tim 2799 \dot {\overleftrightarrow{\eta}} _{\alpha \beta}=\left\{\begin{array}{ll}
635 tim 2798 - A_{xy} (\gamma _\alpha - \gamma _{{\rm{target}}} ) & \mbox{$\alpha = \beta = x$ or $\alpha = \beta = y$}\\
636     \frac{{V(P_{\alpha \beta } - P_{{\rm{target}}} )}}{{\tau _{\rm{B}}^{\rm{2}} fk_B T_{{\rm{target}}}}} & \mbox{$\alpha = \beta = z$} \\
637     0 & \mbox{$\alpha \ne \beta$} \\
638 tim 2799 \end{array}
639 tim 2798 \right.
640 tim 2729 \end{equation}
641 tim 2739 where $ \gamma _{{\rm{target}}}$ is the external surface tension and
642     the instantaneous surface tensor $\gamma _\alpha$ is given by
643 tim 2729 \begin{equation}
644 tim 2800 \gamma _\alpha = - h_z( \overleftrightarrow{P} _{\alpha \alpha }
645     - P_{{\rm{target}}} )
646 tim 2739 \label{methodEquation:instantaneousSurfaceTensor}
647 tim 2729 \end{equation}
648    
649 tim 2739 There is one additional extended system integrator (NPTxyz), in
650     which each attempt to preserve the target pressure along the box
651     walls perpendicular to that particular axis. The lengths of the box
652     axes are allowed to fluctuate independently, but the angle between
653     the box axes does not change. It should be noted that the NPTxyz
654     integrator is a special case of $NP\gamma T$ if the surface tension
655     $\gamma$ is set to zero.
656 tim 2729
657 tim 2804 \section{\label{methodSection:zcons}Z-Constraint Method}
658 tim 2776
659 tim 2804 Based on the fluctuation-dissipation theorem, a force
660     auto-correlation method was developed by Roux and Karplus to
661     investigate the dynamics of ions inside ion channels\cite{Roux1991}.
662     The time-dependent friction coefficient can be calculated from the
663     deviation of the instantaneous force from its mean force.
664     \begin{equation}
665     \xi(z,t)=\langle\delta F(z,t)\delta F(z,0)\rangle/k_{B}T,
666     \end{equation}
667     where%
668     \begin{equation}
669     \delta F(z,t)=F(z,t)-\langle F(z,t)\rangle.
670     \end{equation}
671 tim 2776
672 tim 2804 If the time-dependent friction decays rapidly, the static friction
673     coefficient can be approximated by
674     \begin{equation}
675     \xi_{\text{static}}(z)=\int_{0}^{\infty}\langle\delta F(z,t)\delta
676     F(z,0)\rangle dt.
677     \end{equation}
678     Allowing diffusion constant to then be calculated through the
679     Einstein relation:\cite{Marrink1994}
680     \begin{equation}
681     D(z)=\frac{k_{B}T}{\xi_{\text{static}}(z)}=\frac{(k_{B}T)^{2}}{\int_{0}^{\infty
682     }\langle\delta F(z,t)\delta F(z,0)\rangle dt}.%
683     \end{equation}
684 tim 2776
685 tim 2804 The Z-Constraint method, which fixes the z coordinates of the
686     molecules with respect to the center of the mass of the system, has
687     been a method suggested to obtain the forces required for the force
688     auto-correlation calculation.\cite{Marrink1994} However, simply
689     resetting the coordinate will move the center of the mass of the
690     whole system. To avoid this problem, we reset the forces of
691     z-constrained molecules as well as subtract the total constraint
692     forces from the rest of the system after the force calculation at
693     each time step instead of resetting the coordinate.
694    
695     After the force calculation, define $G_\alpha$ as
696     \begin{equation}
697     G_{\alpha} = \sum_i F_{\alpha i}, \label{oopseEq:zc1}
698     \end{equation}
699     where $F_{\alpha i}$ is the force in the z direction of atom $i$ in
700     z-constrained molecule $\alpha$. The forces of the z constrained
701     molecule are then set to:
702     \begin{equation}
703     F_{\alpha i} = F_{\alpha i} -
704     \frac{m_{\alpha i} G_{\alpha}}{\sum_i m_{\alpha i}}.
705     \end{equation}
706     Here, $m_{\alpha i}$ is the mass of atom $i$ in the z-constrained
707     molecule. Having rescaled the forces, the velocities must also be
708     rescaled to subtract out any center of mass velocity in the z
709     direction.
710     \begin{equation}
711     v_{\alpha i} = v_{\alpha i} -
712     \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}},
713     \end{equation}
714     where $v_{\alpha i}$ is the velocity of atom $i$ in the z direction.
715     Lastly, all of the accumulated z constrained forces must be
716     subtracted from the system to keep the system center of mass from
717     drifting.
718     \begin{equation}
719     F_{\beta i} = F_{\beta i} - \frac{m_{\beta i} \sum_{\alpha}
720     G_{\alpha}}
721     {\sum_{\beta}\sum_i m_{\beta i}},
722     \end{equation}
723     where $\beta$ are all of the unconstrained molecules in the system.
724     Similarly, the velocities of the unconstrained molecules must also
725     be scaled.
726     \begin{equation}
727     v_{\beta i} = v_{\beta i} + \sum_{\alpha}
728     \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}}.
729     \end{equation}
730    
731     At the very beginning of the simulation, the molecules may not be at
732     their constrained positions. To move a z-constrained molecule to its
733     specified position, a simple harmonic potential is used
734     \begin{equation}
735     U(t)=\frac{1}{2}k_{\text{Harmonic}}(z(t)-z_{\text{cons}})^{2},%
736     \end{equation}
737     where $k_{\text{Harmonic}}$ is the harmonic force constant, $z(t)$
738     is the current $z$ coordinate of the center of mass of the
739     constrained molecule, and $z_{\text{cons}}$ is the constrained
740     position. The harmonic force operating on the z-constrained molecule
741     at time $t$ can be calculated by
742     \begin{equation}
743     F_{z_{\text{Harmonic}}}(t)=-\frac{\partial U(t)}{\partial z(t)}=
744     -k_{\text{Harmonic}}(z(t)-z_{\text{cons}}).
745     \end{equation}