ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Methodology.tex
Revision: 2864
Committed: Fri Jun 16 01:53:48 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 30494 byte(s)
Log Message:
finishing temperature control of Langevin

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:methodology}METHODOLOGY}
2    
3     \section{\label{methodSection:rigidBodyIntegrators}Integrators for Rigid Body Motion in Molecular Dynamics}
4    
5 tim 2729 In order to mimic the experiments, which are usually performed under
6     constant temperature and/or pressure, extended Hamiltonian system
7 tim 2739 methods have been developed to generate statistical ensembles, such
8 tim 2729 as canonical ensemble and isobaric-isothermal ensemble \textit{etc}.
9     In addition to the standard ensemble, specific ensembles have been
10     developed to account for the anisotropy between the lateral and
11     normal directions of membranes. The $NPAT$ ensemble, in which the
12     normal pressure and the lateral surface area of the membrane are
13     kept constant, and the $NP\gamma T$ ensemble, in which the normal
14     pressure and the lateral surface tension are kept constant were
15     proposed to address this issue.
16 tim 2685
17 tim 2729 Integration schemes for rotational motion of the rigid molecules in
18     microcanonical ensemble have been extensively studied in the last
19 tim 2850 two decades. Matubayasi developed a time-reversible integrator for
20     rigid bodies in quaternion representation. Although it is not
21     symplectic, this integrator still demonstrates a better long-time
22     energy conservation than traditional methods because of the
23     time-reversible nature. Extending Trotter-Suzuki to general system
24     with a flat phase space, Miller and his colleagues devised an novel
25     symplectic, time-reversible and volume-preserving integrator in
26     quaternion representation, which was shown to be superior to the
27     Matubayasi's time-reversible integrator. However, all of the
28     integrators in quaternion representation suffer from the
29 tim 2729 computational penalty of constructing a rotation matrix from
30     quaternions to evolve coordinates and velocities at every time step.
31     An alternative integration scheme utilizing rotation matrix directly
32     proposed by Dullweber, Leimkuhler and McLachlan (DLM) also preserved
33     the same structural properties of the Hamiltonian flow. In this
34     section, the integration scheme of DLM method will be reviewed and
35     extended to other ensembles.
36 tim 2685
37 tim 2729 \subsection{\label{methodSection:DLM}Integrating the Equations of Motion: the
38     DLM method}
39    
40     The DLM method uses a Trotter factorization of the orientational
41     propagator. This has three effects:
42     \begin{enumerate}
43     \item the integrator is area-preserving in phase space (i.e. it is
44     {\it symplectic}),
45     \item the integrator is time-{\it reversible}, making it suitable for Hybrid
46     Monte Carlo applications, and
47     \item the error for a single time step is of order $\mathcal{O}\left(h^4\right)$
48     for timesteps of length $h$.
49     \end{enumerate}
50    
51     The integration of the equations of motion is carried out in a
52     velocity-Verlet style 2-part algorithm, where $h= \delta t$:
53    
54     {\tt moveA:}
55     \begin{align*}
56     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
57     + \frac{h}{2} \left( {\bf f}(t) / m \right), \\
58     %
59     {\bf r}(t + h) &\leftarrow {\bf r}(t)
60     + h {\bf v}\left(t + h / 2 \right), \\
61     %
62     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
63     + \frac{h}{2} {\bf \tau}^b(t), \\
64     %
65     \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
66     (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right).
67     \end{align*}
68    
69     In this context, the $\mathrm{rotate}$ function is the reversible
70     product of the three body-fixed rotations,
71     \begin{equation}
72     \mathrm{rotate}({\bf a}) = \mathsf{G}_x(a_x / 2) \cdot
73     \mathsf{G}_y(a_y / 2) \cdot \mathsf{G}_z(a_z) \cdot \mathsf{G}_y(a_y
74     / 2) \cdot \mathsf{G}_x(a_x /2),
75     \end{equation}
76     where each rotational propagator, $\mathsf{G}_\alpha(\theta)$,
77     rotates both the rotation matrix ($\mathsf{A}$) and the body-fixed
78     angular momentum (${\bf j}$) by an angle $\theta$ around body-fixed
79     axis $\alpha$,
80     \begin{equation}
81     \mathsf{G}_\alpha( \theta ) = \left\{
82     \begin{array}{lcl}
83     \mathsf{A}(t) & \leftarrow & \mathsf{A}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
84     {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf
85     j}(0).
86     \end{array}
87     \right.
88     \end{equation}
89     $\mathsf{R}_\alpha$ is a quadratic approximation to the single-axis
90     rotation matrix. For example, in the small-angle limit, the
91     rotation matrix around the body-fixed x-axis can be approximated as
92     \begin{equation}
93     \mathsf{R}_x(\theta) \approx \left(
94     \begin{array}{ccc}
95     1 & 0 & 0 \\
96     0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4} & -\frac{\theta}{1+
97     \theta^2 / 4} \\
98     0 & \frac{\theta}{1+ \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 +
99     \theta^2 / 4}
100     \end{array}
101     \right).
102     \end{equation}
103     All other rotations follow in a straightforward manner.
104    
105     After the first part of the propagation, the forces and body-fixed
106     torques are calculated at the new positions and orientations
107    
108     {\tt doForces:}
109     \begin{align*}
110     {\bf f}(t + h) &\leftarrow
111     - \left(\frac{\partial V}{\partial {\bf r}}\right)_{{\bf r}(t + h)}, \\
112     %
113     {\bf \tau}^{s}(t + h) &\leftarrow {\bf u}(t + h)
114     \times \frac{\partial V}{\partial {\bf u}}, \\
115     %
116     {\bf \tau}^{b}(t + h) &\leftarrow \mathsf{A}(t + h)
117     \cdot {\bf \tau}^s(t + h).
118     \end{align*}
119    
120 tim 2854 ${\bf u}$ will be automatically updated when the rotation matrix
121 tim 2729 $\mathsf{A}$ is calculated in {\tt moveA}. Once the forces and
122     torques have been obtained at the new time step, the velocities can
123     be advanced to the same time value.
124    
125     {\tt moveB:}
126     \begin{align*}
127     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t + h / 2
128     \right)
129     + \frac{h}{2} \left( {\bf f}(t + h) / m \right), \\
130     %
131     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t + h / 2
132     \right)
133     + \frac{h}{2} {\bf \tau}^b(t + h) .
134     \end{align*}
135    
136     The matrix rotations used in the DLM method end up being more costly
137     computationally than the simpler arithmetic quaternion propagation.
138     With the same time step, a 1000-molecule water simulation shows an
139     average 7\% increase in computation time using the DLM method in
140     place of quaternions. This cost is more than justified when
141     comparing the energy conservation of the two methods as illustrated
142 tim 2807 in Fig.~\ref{methodFig:timestep}.
143 tim 2729
144     \begin{figure}
145     \centering
146     \includegraphics[width=\linewidth]{timeStep.eps}
147     \caption[Energy conservation for quaternion versus DLM
148     dynamics]{Energy conservation using quaternion based integration
149     versus the method proposed by Dullweber \emph{et al.} with
150     increasing time step. For each time step, the dotted line is total
151     energy using the DLM integrator, and the solid line comes from the
152     quaternion integrator. The larger time step plots are shifted up
153 tim 2801 from the true energy baseline for clarity.}
154     \label{methodFig:timestep}
155 tim 2729 \end{figure}
156    
157 tim 2801 In Fig.~\ref{methodFig:timestep}, the resulting energy drift at
158     various time steps for both the DLM and quaternion integration
159     schemes is compared. All of the 1000 molecule water simulations
160     started with the same configuration, and the only difference was the
161     method for handling rotational motion. At time steps of 0.1 and 0.5
162     fs, both methods for propagating molecule rotation conserve energy
163     fairly well, with the quaternion method showing a slight energy
164     drift over time in the 0.5 fs time step simulation. At time steps of
165     1 and 2 fs, the energy conservation benefits of the DLM method are
166     clearly demonstrated. Thus, while maintaining the same degree of
167     energy conservation, one can take considerably longer time steps,
168     leading to an overall reduction in computation time.
169 tim 2729
170     \subsection{\label{methodSection:NVT}Nos\'{e}-Hoover Thermostatting}
171    
172 tim 2801 The Nos\'e-Hoover equations of motion are given by\cite{Hoover1985}
173 tim 2729 \begin{eqnarray}
174     \dot{{\bf r}} & = & {\bf v}, \\
175     \dot{{\bf v}} & = & \frac{{\bf f}}{m} - \chi {\bf v} ,\\
176     \dot{\mathsf{A}} & = & \mathsf{A} \cdot
177     \mbox{ skew}\left(\overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j}\right), \\
178     \dot{{\bf j}} & = & {\bf j} \times \left(
179     \overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j} \right) - \mbox{
180     rot}\left(\mathsf{A}^{T} \cdot \frac{\partial V}{\partial
181     \mathsf{A}} \right) - \chi {\bf j}. \label{eq:nosehoovereom}
182     \end{eqnarray}
183    
184     $\chi$ is an ``extra'' variable included in the extended system, and
185     it is propagated using the first order equation of motion
186     \begin{equation}
187     \dot{\chi} = \frac{1}{\tau_{T}^2} \left(
188     \frac{T}{T_{\mathrm{target}}} - 1 \right). \label{eq:nosehooverext}
189     \end{equation}
190    
191     The instantaneous temperature $T$ is proportional to the total
192     kinetic energy (both translational and orientational) and is given
193     by
194     \begin{equation}
195     T = \frac{2 K}{f k_B}
196     \end{equation}
197     Here, $f$ is the total number of degrees of freedom in the system,
198     \begin{equation}
199     f = 3 N + 3 N_{\mathrm{orient}} - N_{\mathrm{constraints}},
200     \end{equation}
201     and $K$ is the total kinetic energy,
202     \begin{equation}
203     K = \sum_{i=1}^{N} \frac{1}{2} m_i {\bf v}_i^T \cdot {\bf v}_i +
204     \sum_{i=1}^{N_{\mathrm{orient}}} \frac{1}{2} {\bf j}_i^T \cdot
205     \overleftrightarrow{\mathsf{I}}_i^{-1} \cdot {\bf j}_i.
206     \end{equation}
207    
208     In eq.(\ref{eq:nosehooverext}), $\tau_T$ is the time constant for
209 tim 2864 relaxation of the temperature to the target value. The integration
210     of the equations of motion is carried out in a velocity-Verlet style
211     2 part algorithm:
212 tim 2729
213     {\tt moveA:}
214     \begin{align*}
215     T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
216     %
217     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
218     + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t)
219     \chi(t)\right), \\
220     %
221     {\bf r}(t + h) &\leftarrow {\bf r}(t)
222     + h {\bf v}\left(t + h / 2 \right) ,\\
223     %
224     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
225     + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
226     \chi(t) \right) ,\\
227     %
228     \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}
229     \left(h * {\bf j}(t + h / 2)
230     \overleftrightarrow{\mathsf{I}}^{-1} \right) ,\\
231     %
232     \chi\left(t + h / 2 \right) &\leftarrow \chi(t)
233     + \frac{h}{2 \tau_T^2} \left( \frac{T(t)}
234     {T_{\mathrm{target}}} - 1 \right) .
235     \end{align*}
236    
237     Here $\mathrm{rotate}(h * {\bf j}
238     \overleftrightarrow{\mathsf{I}}^{-1})$ is the same symplectic
239     Trotter factorization of the three rotation operations that was
240     discussed in the section on the DLM integrator. Note that this
241     operation modifies both the rotation matrix $\mathsf{A}$ and the
242     angular momentum ${\bf j}$. {\tt moveA} propagates velocities by a
243     half time step, and positional degrees of freedom by a full time
244     step. The new positions (and orientations) are then used to
245     calculate a new set of forces and torques in exactly the same way
246     they are calculated in the {\tt doForces} portion of the DLM
247     integrator.
248    
249     Once the forces and torques have been obtained at the new time step,
250     the temperature, velocities, and the extended system variable can be
251     advanced to the same time value.
252    
253     {\tt moveB:}
254     \begin{align*}
255     T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
256     \left\{{\bf j}(t + h)\right\}, \\
257     %
258     \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
259     2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+h)}
260     {T_{\mathrm{target}}} - 1 \right), \\
261     %
262     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t
263     + h / 2 \right) + \frac{h}{2} \left(
264     \frac{{\bf f}(t + h)}{m} - {\bf v}(t + h)
265     \chi(t h)\right) ,\\
266     %
267     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
268     + h / 2 \right) + \frac{h}{2}
269     \left( {\bf \tau}^b(t + h) - {\bf j}(t + h)
270     \chi(t + h) \right) .
271     \end{align*}
272    
273     Since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required to
274     caclculate $T(t + h)$ as well as $\chi(t + h)$, they indirectly
275     depend on their own values at time $t + h$. {\tt moveB} is
276     therefore done in an iterative fashion until $\chi(t + h)$ becomes
277 tim 2854 self-consistent.
278 tim 2729
279     The Nos\'e-Hoover algorithm is known to conserve a Hamiltonian for
280     the extended system that is, to within a constant, identical to the
281 tim 2801 Helmholtz free energy,\cite{Melchionna1993}
282 tim 2729 \begin{equation}
283     H_{\mathrm{NVT}} = V + K + f k_B T_{\mathrm{target}} \left(
284     \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
285     dt^\prime \right).
286     \end{equation}
287     Poor choices of $h$ or $\tau_T$ can result in non-conservation of
288     $H_{\mathrm{NVT}}$, so the conserved quantity is maintained in the
289     last column of the {\tt .stat} file to allow checks on the quality
290     of the integration.
291    
292     \subsection{\label{methodSection:NPTi}Constant-pressure integration with
293     isotropic box deformations (NPTi)}
294    
295 tim 2854 Isobaric-isothermal ensemble integrator is implemented using the
296     Melchionna modifications to the Nos\'e-Hoover-Andersen equations of
297     motion,\cite{Melchionna1993}
298 tim 2729
299     \begin{eqnarray}
300     \dot{{\bf r}} & = & {\bf v} + \eta \left( {\bf r} - {\bf R}_0 \right), \\
301     \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\eta + \chi) {\bf v}, \\
302     \dot{\mathsf{A}} & = & \mathsf{A} \cdot
303     \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right),\\
304     \dot{{\bf j}} & = & {\bf j} \times \left(
305     \overleftrightarrow{I}^{-1} \cdot {\bf j} \right) - \mbox{
306     rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
307     V}{\partial \mathsf{A}} \right) - \chi {\bf j}, \\
308     \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
309     \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
310     \dot{\eta} & = & \frac{1}{\tau_{B}^2 f k_B T_{\mathrm{target}}} V
311     \left( P -
312     P_{\mathrm{target}} \right), \\
313     \dot{\mathcal{V}} & = & 3 \mathcal{V} \eta . \label{eq:melchionna1}
314     \end{eqnarray}
315    
316     $\chi$ and $\eta$ are the ``extra'' degrees of freedom in the
317     extended system. $\chi$ is a thermostat, and it has the same
318     function as it does in the Nos\'e-Hoover NVT integrator. $\eta$ is
319     a barostat which controls changes to the volume of the simulation
320     box. ${\bf R}_0$ is the location of the center of mass for the
321     entire system, and $\mathcal{V}$ is the volume of the simulation
322     box. At any time, the volume can be calculated from the determinant
323     of the matrix which describes the box shape:
324     \begin{equation}
325     \mathcal{V} = \det(\mathsf{H}).
326     \end{equation}
327    
328     The NPTi integrator requires an instantaneous pressure. This
329     quantity is calculated via the pressure tensor,
330     \begin{equation}
331     \overleftrightarrow{\mathsf{P}}(t) = \frac{1}{\mathcal{V}(t)} \left(
332     \sum_{i=1}^{N} m_i {\bf v}_i(t) \otimes {\bf v}_i(t) \right) +
333     \overleftrightarrow{\mathsf{W}}(t).
334     \end{equation}
335     The kinetic contribution to the pressure tensor utilizes the {\it
336     outer} product of the velocities denoted by the $\otimes$ symbol.
337     The stress tensor is calculated from another outer product of the
338     inter-atomic separation vectors (${\bf r}_{ij} = {\bf r}_j - {\bf
339     r}_i$) with the forces between the same two atoms,
340     \begin{equation}
341     \overleftrightarrow{\mathsf{W}}(t) = \sum_{i} \sum_{j>i} {\bf
342     r}_{ij}(t) \otimes {\bf f}_{ij}(t).
343     \end{equation}
344     The instantaneous pressure is then simply obtained from the trace of
345     the Pressure tensor,
346     \begin{equation}
347     P(t) = \frac{1}{3} \mathrm{Tr} \left(
348     \overleftrightarrow{\mathsf{P}}(t). \right)
349     \end{equation}
350    
351     In eq.(\ref{eq:melchionna1}), $\tau_B$ is the time constant for
352 tim 2853 relaxation of the pressure to the target value. Like in the NVT
353 tim 2729 integrator, the integration of the equations of motion is carried
354     out in a velocity-Verlet style 2 part algorithm:
355    
356     {\tt moveA:}
357     \begin{align*}
358     T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
359     %
360     P(t) &\leftarrow \left\{{\bf r}(t)\right\}, \left\{{\bf v}(t)\right\} ,\\
361     %
362     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
363     + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t)
364     \left(\chi(t) + \eta(t) \right) \right), \\
365     %
366     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
367     + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
368     \chi(t) \right), \\
369     %
370     \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
371     {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
372     \right) ,\\
373     %
374     \chi\left(t + h / 2 \right) &\leftarrow \chi(t) +
375     \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}} - 1
376     \right) ,\\
377     %
378     \eta(t + h / 2) &\leftarrow \eta(t) + \frac{h
379     \mathcal{V}(t)}{2 N k_B T(t) \tau_B^2} \left( P(t)
380     - P_{\mathrm{target}} \right), \\
381     %
382     {\bf r}(t + h) &\leftarrow {\bf r}(t) + h
383     \left\{ {\bf v}\left(t + h / 2 \right)
384     + \eta(t + h / 2)\left[ {\bf r}(t + h)
385     - {\bf R}_0 \right] \right\} ,\\
386     %
387     \mathsf{H}(t + h) &\leftarrow e^{-h \eta(t + h / 2)}
388     \mathsf{H}(t).
389     \end{align*}
390    
391     Most of these equations are identical to their counterparts in the
392     NVT integrator, but the propagation of positions to time $t + h$
393 tim 2854 depends on the positions at the same time. The simulation box
394     $\mathsf{H}$ is scaled uniformly for one full time step by an
395     exponential factor that depends on the value of $\eta$ at time $t +
396     h / 2$. Reshaping the box uniformly also scales the volume of the
397     box by
398 tim 2729 \begin{equation}
399     \mathcal{V}(t + h) \leftarrow e^{ - 3 h \eta(t + h /2)}.
400     \mathcal{V}(t)
401     \end{equation}
402    
403     The {\tt doForces} step for the NPTi integrator is exactly the same
404     as in both the DLM and NVT integrators. Once the forces and torques
405     have been obtained at the new time step, the velocities can be
406     advanced to the same time value.
407    
408     {\tt moveB:}
409     \begin{align*}
410     T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
411     \left\{{\bf j}(t + h)\right\} ,\\
412     %
413     P(t + h) &\leftarrow \left\{{\bf r}(t + h)\right\},
414     \left\{{\bf v}(t + h)\right\}, \\
415     %
416     \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
417     2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+h)}
418     {T_{\mathrm{target}}} - 1 \right), \\
419     %
420     \eta(t + h) &\leftarrow \eta(t + h / 2) +
421     \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h)
422     \tau_B^2} \left( P(t + h) - P_{\mathrm{target}} \right), \\
423     %
424     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t
425     + h / 2 \right) + \frac{h}{2} \left(
426     \frac{{\bf f}(t + h)}{m} - {\bf v}(t + h)
427     (\chi(t + h) + \eta(t + h)) \right) ,\\
428     %
429     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
430     + h / 2 \right) + \frac{h}{2} \left( {\bf
431     \tau}^b(t + h) - {\bf j}(t + h)
432     \chi(t + h) \right) .
433     \end{align*}
434    
435     Once again, since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required
436     to caclculate $T(t + h)$, $P(t + h)$, $\chi(t + h)$, and $\eta(t +
437     h)$, they indirectly depend on their own values at time $t + h$.
438     {\tt moveB} is therefore done in an iterative fashion until $\chi(t
439 tim 2854 + h)$ and $\eta(t + h)$ become self-consistent.
440 tim 2729
441     The Melchionna modification of the Nos\'e-Hoover-Andersen algorithm
442     is known to conserve a Hamiltonian for the extended system that is,
443     to within a constant, identical to the Gibbs free energy,
444     \begin{equation}
445     H_{\mathrm{NPTi}} = V + K + f k_B T_{\mathrm{target}} \left(
446     \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
447     dt^\prime \right) + P_{\mathrm{target}} \mathcal{V}(t).
448     \end{equation}
449     Poor choices of $\delta t$, $\tau_T$, or $\tau_B$ can result in
450     non-conservation of $H_{\mathrm{NPTi}}$, so the conserved quantity
451     is maintained in the last column of the {\tt .stat} file to allow
452     checks on the quality of the integration. It is also known that
453     this algorithm samples the equilibrium distribution for the enthalpy
454     (including contributions for the thermostat and barostat),
455     \begin{equation}
456     H_{\mathrm{NPTi}} = V + K + \frac{f k_B T_{\mathrm{target}}}{2}
457     \left( \chi^2 \tau_T^2 + \eta^2 \tau_B^2 \right) +
458     P_{\mathrm{target}} \mathcal{V}(t).
459     \end{equation}
460    
461     \subsection{\label{methodSection:NPTf}Constant-pressure integration with a
462     flexible box (NPTf)}
463    
464     There is a relatively simple generalization of the
465     Nos\'e-Hoover-Andersen method to include changes in the simulation
466     box {\it shape} as well as in the volume of the box. This method
467     utilizes the full $3 \times 3$ pressure tensor and introduces a
468     tensor of extended variables ($\overleftrightarrow{\eta}$) to
469     control changes to the box shape. The equations of motion for this
470     method are
471     \begin{eqnarray}
472     \dot{{\bf r}} & = & {\bf v} + \overleftrightarrow{\eta} \cdot \left( {\bf r} - {\bf R}_0 \right), \\
473     \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\overleftrightarrow{\eta} +
474     \chi \cdot \mathsf{1}) {\bf v}, \\
475     \dot{\mathsf{A}} & = & \mathsf{A} \cdot
476     \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right) ,\\
477     \dot{{\bf j}} & = & {\bf j} \times \left(
478     \overleftrightarrow{I}^{-1} \cdot {\bf j} \right) - \mbox{
479     rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
480     V}{\partial \mathsf{A}} \right) - \chi {\bf j} ,\\
481     \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
482     \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
483     \dot{\overleftrightarrow{\eta}} & = & \frac{1}{\tau_{B}^2 f k_B
484     T_{\mathrm{target}}} V \left( \overleftrightarrow{\mathsf{P}} - P_{\mathrm{target}}\mathsf{1} \right) ,\\
485     \dot{\mathsf{H}} & = & \overleftrightarrow{\eta} \cdot \mathsf{H} .
486     \label{eq:melchionna2}
487     \end{eqnarray}
488    
489     Here, $\mathsf{1}$ is the unit matrix and
490     $\overleftrightarrow{\mathsf{P}}$ is the pressure tensor. Again,
491     the volume, $\mathcal{V} = \det \mathsf{H}$.
492    
493     The propagation of the equations of motion is nearly identical to
494     the NPTi integration:
495    
496     {\tt moveA:}
497     \begin{align*}
498     T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
499     %
500     \overleftrightarrow{\mathsf{P}}(t) &\leftarrow \left\{{\bf
501     r}(t)\right\},
502     \left\{{\bf v}(t)\right\} ,\\
503     %
504     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
505     + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} -
506     \left(\chi(t)\mathsf{1} + \overleftrightarrow{\eta}(t) \right) \cdot
507     {\bf v}(t) \right), \\
508     %
509     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
510     + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
511     \chi(t) \right), \\
512     %
513     \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
514     {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
515     \right), \\
516     %
517     \chi\left(t + h / 2 \right) &\leftarrow \chi(t) +
518     \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}}
519     - 1 \right), \\
520     %
521     \overleftrightarrow{\eta}(t + h / 2) &\leftarrow
522     \overleftrightarrow{\eta}(t) + \frac{h \mathcal{V}(t)}{2 N k_B
523     T(t) \tau_B^2} \left( \overleftrightarrow{\mathsf{P}}(t)
524     - P_{\mathrm{target}}\mathsf{1} \right), \\
525     %
526     {\bf r}(t + h) &\leftarrow {\bf r}(t) + h \left\{ {\bf v}
527     \left(t + h / 2 \right) + \overleftrightarrow{\eta}(t +
528     h / 2) \cdot \left[ {\bf r}(t + h)
529     - {\bf R}_0 \right] \right\}, \\
530     %
531     \mathsf{H}(t + h) &\leftarrow \mathsf{H}(t) \cdot e^{-h
532     \overleftrightarrow{\eta}(t + h / 2)} .
533     \end{align*}
534 tim 2854 Here, a power series expansion truncated at second order for the
535     exponential operation is used to scale the simulation box.
536 tim 2729
537     The {\tt moveB} portion of the algorithm is largely unchanged from
538     the NPTi integrator:
539    
540     {\tt moveB:}
541     \begin{align*}
542     T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
543     \left\{{\bf j}(t + h)\right\}, \\
544     %
545     \overleftrightarrow{\mathsf{P}}(t + h) &\leftarrow \left\{{\bf r}
546     (t + h)\right\}, \left\{{\bf v}(t
547     + h)\right\}, \left\{{\bf f}(t + h)\right\} ,\\
548     %
549     \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
550     2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+
551     h)}{T_{\mathrm{target}}} - 1 \right), \\
552     %
553     \overleftrightarrow{\eta}(t + h) &\leftarrow
554     \overleftrightarrow{\eta}(t + h / 2) +
555     \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h)
556     \tau_B^2} \left( \overleftrightarrow{P}(t + h)
557     - P_{\mathrm{target}}\mathsf{1} \right) ,\\
558     %
559     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t
560     + h / 2 \right) + \frac{h}{2} \left(
561     \frac{{\bf f}(t + h)}{m} -
562     (\chi(t + h)\mathsf{1} + \overleftrightarrow{\eta}(t
563     + h)) \right) \cdot {\bf v}(t + h), \\
564     %
565     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
566     + h / 2 \right) + \frac{h}{2} \left( {\bf \tau}^b(t
567     + h) - {\bf j}(t + h) \chi(t + h) \right) .
568     \end{align*}
569    
570     The iterative schemes for both {\tt moveA} and {\tt moveB} are
571     identical to those described for the NPTi integrator.
572    
573     The NPTf integrator is known to conserve the following Hamiltonian:
574 tim 2854 \begin{eqnarray*}
575     H_{\mathrm{NPTf}} & = & V + K + f k_B T_{\mathrm{target}} \left(
576 tim 2729 \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
577 tim 2854 dt^\prime \right) \\
578 tim 2856 & & + P_{\mathrm{target}} \mathcal{V}(t) + \frac{f k_B
579     T_{\mathrm{target}}}{2}
580 tim 2729 \mathrm{Tr}\left[\overleftrightarrow{\eta}(t)\right]^2 \tau_B^2.
581 tim 2854 \end{eqnarray*}
582 tim 2729
583     This integrator must be used with care, particularly in liquid
584     simulations. Liquids have very small restoring forces in the
585     off-diagonal directions, and the simulation box can very quickly
586     form elongated and sheared geometries which become smaller than the
587     electrostatic or Lennard-Jones cutoff radii. The NPTf integrator
588     finds most use in simulating crystals or liquid crystals which
589     assume non-orthorhombic geometries.
590    
591 tim 2855 \subsection{\label{methodSection:NPAT}NPAT Ensemble}
592 tim 2729
593 tim 2739 A comprehensive understanding of structure¨Cfunction relations of
594     biological membrane system ultimately relies on structure and
595     dynamics of lipid bilayer, which are strongly affected by the
596     interfacial interaction between lipid molecules and surrounding
597     media. One quantity to describe the interfacial interaction is so
598     called the average surface area per lipid. Constat area and constant
599     lateral pressure simulation can be achieved by extending the
600     standard NPT ensemble with a different pressure control strategy
601 tim 2798
602 tim 2729 \begin{equation}
603 tim 2799 \dot {\overleftrightarrow{\eta}} _{\alpha \beta}=\left\{\begin{array}{ll}
604 tim 2798 \frac{{V(P_{\alpha \beta } - P_{{\rm{target}}} )}}{{\tau_{\rm{B}}^{\rm{2}} fk_B T_{{\rm{target}}} }}
605 tim 2799 & \mbox{if $ \alpha = \beta = z$}\\
606 tim 2798 0 & \mbox{otherwise}\\
607     \end{array}
608     \right.
609 tim 2729 \end{equation}
610 tim 2798
611 tim 2739 Note that the iterative schemes for NPAT are identical to those
612     described for the NPTi integrator.
613 tim 2729
614 tim 2854 \subsection{\label{methodSection:NPrT}NP$\gamma$T
615     Ensemble}
616 tim 2729
617 tim 2739 Theoretically, the surface tension $\gamma$ of a stress free
618     membrane system should be zero since its surface free energy $G$ is
619     minimum with respect to surface area $A$
620     \[
621     \gamma = \frac{{\partial G}}{{\partial A}}.
622     \]
623     However, a surface tension of zero is not appropriate for relatively
624     small patches of membrane. In order to eliminate the edge effect of
625 tim 2776 the membrane simulation, a special ensemble, NP$\gamma$T, is
626     proposed to maintain the lateral surface tension and normal
627     pressure. The equation of motion for cell size control tensor,
628 tim 2778 $\eta$, in $NP\gamma T$ is
629 tim 2729 \begin{equation}
630 tim 2799 \dot {\overleftrightarrow{\eta}} _{\alpha \beta}=\left\{\begin{array}{ll}
631 tim 2798 - A_{xy} (\gamma _\alpha - \gamma _{{\rm{target}}} ) & \mbox{$\alpha = \beta = x$ or $\alpha = \beta = y$}\\
632     \frac{{V(P_{\alpha \beta } - P_{{\rm{target}}} )}}{{\tau _{\rm{B}}^{\rm{2}} fk_B T_{{\rm{target}}}}} & \mbox{$\alpha = \beta = z$} \\
633     0 & \mbox{$\alpha \ne \beta$} \\
634 tim 2799 \end{array}
635 tim 2798 \right.
636 tim 2729 \end{equation}
637 tim 2739 where $ \gamma _{{\rm{target}}}$ is the external surface tension and
638     the instantaneous surface tensor $\gamma _\alpha$ is given by
639 tim 2729 \begin{equation}
640 tim 2800 \gamma _\alpha = - h_z( \overleftrightarrow{P} _{\alpha \alpha }
641     - P_{{\rm{target}}} )
642 tim 2739 \label{methodEquation:instantaneousSurfaceTensor}
643 tim 2729 \end{equation}
644    
645 tim 2739 There is one additional extended system integrator (NPTxyz), in
646     which each attempt to preserve the target pressure along the box
647     walls perpendicular to that particular axis. The lengths of the box
648     axes are allowed to fluctuate independently, but the angle between
649     the box axes does not change. It should be noted that the NPTxyz
650     integrator is a special case of $NP\gamma T$ if the surface tension
651     $\gamma$ is set to zero.
652 tim 2729
653 tim 2804 \section{\label{methodSection:zcons}Z-Constraint Method}
654 tim 2776
655 tim 2804 Based on the fluctuation-dissipation theorem, a force
656     auto-correlation method was developed by Roux and Karplus to
657     investigate the dynamics of ions inside ion channels\cite{Roux1991}.
658     The time-dependent friction coefficient can be calculated from the
659     deviation of the instantaneous force from its mean force.
660     \begin{equation}
661     \xi(z,t)=\langle\delta F(z,t)\delta F(z,0)\rangle/k_{B}T,
662     \end{equation}
663     where%
664     \begin{equation}
665     \delta F(z,t)=F(z,t)-\langle F(z,t)\rangle.
666     \end{equation}
667 tim 2776
668 tim 2804 If the time-dependent friction decays rapidly, the static friction
669     coefficient can be approximated by
670     \begin{equation}
671     \xi_{\text{static}}(z)=\int_{0}^{\infty}\langle\delta F(z,t)\delta
672     F(z,0)\rangle dt.
673     \end{equation}
674     Allowing diffusion constant to then be calculated through the
675     Einstein relation:\cite{Marrink1994}
676     \begin{equation}
677     D(z)=\frac{k_{B}T}{\xi_{\text{static}}(z)}=\frac{(k_{B}T)^{2}}{\int_{0}^{\infty
678     }\langle\delta F(z,t)\delta F(z,0)\rangle dt}.%
679     \end{equation}
680 tim 2776
681 tim 2804 The Z-Constraint method, which fixes the z coordinates of the
682     molecules with respect to the center of the mass of the system, has
683     been a method suggested to obtain the forces required for the force
684     auto-correlation calculation.\cite{Marrink1994} However, simply
685     resetting the coordinate will move the center of the mass of the
686     whole system. To avoid this problem, we reset the forces of
687     z-constrained molecules as well as subtract the total constraint
688     forces from the rest of the system after the force calculation at
689     each time step instead of resetting the coordinate.
690    
691     After the force calculation, define $G_\alpha$ as
692     \begin{equation}
693     G_{\alpha} = \sum_i F_{\alpha i}, \label{oopseEq:zc1}
694     \end{equation}
695     where $F_{\alpha i}$ is the force in the z direction of atom $i$ in
696     z-constrained molecule $\alpha$. The forces of the z constrained
697     molecule are then set to:
698     \begin{equation}
699     F_{\alpha i} = F_{\alpha i} -
700     \frac{m_{\alpha i} G_{\alpha}}{\sum_i m_{\alpha i}}.
701     \end{equation}
702     Here, $m_{\alpha i}$ is the mass of atom $i$ in the z-constrained
703     molecule. Having rescaled the forces, the velocities must also be
704     rescaled to subtract out any center of mass velocity in the z
705     direction.
706     \begin{equation}
707     v_{\alpha i} = v_{\alpha i} -
708     \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}},
709     \end{equation}
710     where $v_{\alpha i}$ is the velocity of atom $i$ in the z direction.
711     Lastly, all of the accumulated z constrained forces must be
712     subtracted from the system to keep the system center of mass from
713     drifting.
714     \begin{equation}
715     F_{\beta i} = F_{\beta i} - \frac{m_{\beta i} \sum_{\alpha}
716     G_{\alpha}}
717     {\sum_{\beta}\sum_i m_{\beta i}},
718     \end{equation}
719     where $\beta$ are all of the unconstrained molecules in the system.
720     Similarly, the velocities of the unconstrained molecules must also
721     be scaled.
722     \begin{equation}
723     v_{\beta i} = v_{\beta i} + \sum_{\alpha}
724     \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}}.
725     \end{equation}
726    
727     At the very beginning of the simulation, the molecules may not be at
728     their constrained positions. To move a z-constrained molecule to its
729     specified position, a simple harmonic potential is used
730     \begin{equation}
731     U(t)=\frac{1}{2}k_{\text{Harmonic}}(z(t)-z_{\text{cons}})^{2},%
732     \end{equation}
733     where $k_{\text{Harmonic}}$ is the harmonic force constant, $z(t)$
734     is the current $z$ coordinate of the center of mass of the
735     constrained molecule, and $z_{\text{cons}}$ is the constrained
736     position. The harmonic force operating on the z-constrained molecule
737     at time $t$ can be calculated by
738     \begin{equation}
739     F_{z_{\text{Harmonic}}}(t)=-\frac{\partial U(t)}{\partial z(t)}=
740     -k_{\text{Harmonic}}(z(t)-z_{\text{cons}}).
741     \end{equation}