ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Methodology.tex
Revision: 2882
Committed: Fri Jun 23 21:33:52 2006 UTC (18 years ago) by tim
Content type: application/x-tex
File size: 30709 byte(s)
Log Message:
format change

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:methodology}METHODOLOGY}
2    
3     \section{\label{methodSection:rigidBodyIntegrators}Integrators for Rigid Body Motion in Molecular Dynamics}
4    
5 tim 2881 In order to mimic experiments which are usually performed under
6 tim 2729 constant temperature and/or pressure, extended Hamiltonian system
7 tim 2739 methods have been developed to generate statistical ensembles, such
8 tim 2881 as the canonical and isobaric-isothermal ensembles. In addition to
9     the standard ensemble, specific ensembles have been developed to
10     account for the anisotropy between the lateral and normal directions
11     of membranes. The $NPAT$ ensemble, in which the normal pressure and
12     the lateral surface area of the membrane are kept constant, and the
13     $NP\gamma T$ ensemble, in which the normal pressure and the lateral
14     surface tension are kept constant were proposed to address the
15     issues.
16 tim 2685
17 tim 2881 Integration schemes for the rotational motion of the rigid molecules
18     in the microcanonical ensemble have been extensively studied over
19     the last two decades. Matubayasi developed a time-reversible
20     integrator for rigid bodies in quaternion representation. Although
21     it is not symplectic, this integrator still demonstrates a better
22     long-time energy conservation than Euler angle methods because of
23     the time-reversible nature. Extending the Trotter-Suzuki
24     factorization to general system with a flat phase space, Miller and
25     his colleagues devised a novel symplectic, time-reversible and
26     volume-preserving integrator in the quaternion representation, which
27     was shown to be superior to the Matubayasi's time-reversible
28     integrator. However, all of the integrators in the quaternion
29     representation suffer from the computational penalty of constructing
30     a rotation matrix from quaternions to evolve coordinates and
31     velocities at every time step. An alternative integration scheme
32     utilizing the rotation matrix directly proposed by Dullweber,
33     Leimkuhler and McLachlan (DLM) also preserved the same structural
34     properties of the Hamiltonian flow. In this section, the integration
35     scheme of DLM method will be reviewed and extended to other
36     ensembles.
37 tim 2685
38 tim 2729 \subsection{\label{methodSection:DLM}Integrating the Equations of Motion: the
39     DLM method}
40    
41     The DLM method uses a Trotter factorization of the orientational
42     propagator. This has three effects:
43     \begin{enumerate}
44     \item the integrator is area-preserving in phase space (i.e. it is
45     {\it symplectic}),
46     \item the integrator is time-{\it reversible}, making it suitable for Hybrid
47     Monte Carlo applications, and
48     \item the error for a single time step is of order $\mathcal{O}\left(h^4\right)$
49     for timesteps of length $h$.
50     \end{enumerate}
51    
52     The integration of the equations of motion is carried out in a
53     velocity-Verlet style 2-part algorithm, where $h= \delta t$:
54    
55     {\tt moveA:}
56     \begin{align*}
57     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
58     + \frac{h}{2} \left( {\bf f}(t) / m \right), \\
59     %
60     {\bf r}(t + h) &\leftarrow {\bf r}(t)
61     + h {\bf v}\left(t + h / 2 \right), \\
62     %
63     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
64     + \frac{h}{2} {\bf \tau}^b(t), \\
65     %
66     \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
67     (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right).
68     \end{align*}
69    
70     In this context, the $\mathrm{rotate}$ function is the reversible
71     product of the three body-fixed rotations,
72     \begin{equation}
73     \mathrm{rotate}({\bf a}) = \mathsf{G}_x(a_x / 2) \cdot
74     \mathsf{G}_y(a_y / 2) \cdot \mathsf{G}_z(a_z) \cdot \mathsf{G}_y(a_y
75     / 2) \cdot \mathsf{G}_x(a_x /2),
76     \end{equation}
77     where each rotational propagator, $\mathsf{G}_\alpha(\theta)$,
78     rotates both the rotation matrix ($\mathsf{A}$) and the body-fixed
79     angular momentum (${\bf j}$) by an angle $\theta$ around body-fixed
80     axis $\alpha$,
81     \begin{equation}
82     \mathsf{G}_\alpha( \theta ) = \left\{
83     \begin{array}{lcl}
84     \mathsf{A}(t) & \leftarrow & \mathsf{A}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
85     {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf
86     j}(0).
87     \end{array}
88     \right.
89     \end{equation}
90     $\mathsf{R}_\alpha$ is a quadratic approximation to the single-axis
91     rotation matrix. For example, in the small-angle limit, the
92     rotation matrix around the body-fixed x-axis can be approximated as
93     \begin{equation}
94     \mathsf{R}_x(\theta) \approx \left(
95     \begin{array}{ccc}
96     1 & 0 & 0 \\
97     0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4} & -\frac{\theta}{1+
98     \theta^2 / 4} \\
99     0 & \frac{\theta}{1+ \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 +
100     \theta^2 / 4}
101     \end{array}
102     \right).
103     \end{equation}
104     All other rotations follow in a straightforward manner.
105    
106     After the first part of the propagation, the forces and body-fixed
107     torques are calculated at the new positions and orientations
108    
109     {\tt doForces:}
110     \begin{align*}
111     {\bf f}(t + h) &\leftarrow
112     - \left(\frac{\partial V}{\partial {\bf r}}\right)_{{\bf r}(t + h)}, \\
113     %
114     {\bf \tau}^{s}(t + h) &\leftarrow {\bf u}(t + h)
115 tim 2881 \times (\frac{\partial V}{\partial {\bf u}})_{u(t+h)}, \\
116 tim 2729 %
117     {\bf \tau}^{b}(t + h) &\leftarrow \mathsf{A}(t + h)
118     \cdot {\bf \tau}^s(t + h).
119     \end{align*}
120    
121 tim 2881 ${\bf u}$ is automatically updated when the rotation matrix
122 tim 2729 $\mathsf{A}$ is calculated in {\tt moveA}. Once the forces and
123     torques have been obtained at the new time step, the velocities can
124     be advanced to the same time value.
125    
126     {\tt moveB:}
127     \begin{align*}
128     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t + h / 2
129     \right)
130     + \frac{h}{2} \left( {\bf f}(t + h) / m \right), \\
131     %
132     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t + h / 2
133     \right)
134     + \frac{h}{2} {\bf \tau}^b(t + h) .
135     \end{align*}
136    
137     The matrix rotations used in the DLM method end up being more costly
138     computationally than the simpler arithmetic quaternion propagation.
139     With the same time step, a 1000-molecule water simulation shows an
140     average 7\% increase in computation time using the DLM method in
141     place of quaternions. This cost is more than justified when
142     comparing the energy conservation of the two methods as illustrated
143 tim 2807 in Fig.~\ref{methodFig:timestep}.
144 tim 2729
145     \begin{figure}
146     \centering
147     \includegraphics[width=\linewidth]{timeStep.eps}
148     \caption[Energy conservation for quaternion versus DLM
149     dynamics]{Energy conservation using quaternion based integration
150     versus the method proposed by Dullweber \emph{et al.} with
151     increasing time step. For each time step, the dotted line is total
152     energy using the DLM integrator, and the solid line comes from the
153     quaternion integrator. The larger time step plots are shifted up
154 tim 2801 from the true energy baseline for clarity.}
155     \label{methodFig:timestep}
156 tim 2729 \end{figure}
157    
158 tim 2801 In Fig.~\ref{methodFig:timestep}, the resulting energy drift at
159     various time steps for both the DLM and quaternion integration
160     schemes is compared. All of the 1000 molecule water simulations
161     started with the same configuration, and the only difference was the
162     method for handling rotational motion. At time steps of 0.1 and 0.5
163     fs, both methods for propagating molecule rotation conserve energy
164     fairly well, with the quaternion method showing a slight energy
165     drift over time in the 0.5 fs time step simulation. At time steps of
166     1 and 2 fs, the energy conservation benefits of the DLM method are
167     clearly demonstrated. Thus, while maintaining the same degree of
168     energy conservation, one can take considerably longer time steps,
169     leading to an overall reduction in computation time.
170 tim 2729
171     \subsection{\label{methodSection:NVT}Nos\'{e}-Hoover Thermostatting}
172    
173 tim 2801 The Nos\'e-Hoover equations of motion are given by\cite{Hoover1985}
174 tim 2729 \begin{eqnarray}
175     \dot{{\bf r}} & = & {\bf v}, \\
176     \dot{{\bf v}} & = & \frac{{\bf f}}{m} - \chi {\bf v} ,\\
177     \dot{\mathsf{A}} & = & \mathsf{A} \cdot
178     \mbox{ skew}\left(\overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j}\right), \\
179     \dot{{\bf j}} & = & {\bf j} \times \left(
180     \overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j} \right) - \mbox{
181     rot}\left(\mathsf{A}^{T} \cdot \frac{\partial V}{\partial
182     \mathsf{A}} \right) - \chi {\bf j}. \label{eq:nosehoovereom}
183     \end{eqnarray}
184    
185     $\chi$ is an ``extra'' variable included in the extended system, and
186     it is propagated using the first order equation of motion
187     \begin{equation}
188     \dot{\chi} = \frac{1}{\tau_{T}^2} \left(
189     \frac{T}{T_{\mathrm{target}}} - 1 \right). \label{eq:nosehooverext}
190     \end{equation}
191    
192     The instantaneous temperature $T$ is proportional to the total
193     kinetic energy (both translational and orientational) and is given
194     by
195     \begin{equation}
196     T = \frac{2 K}{f k_B}
197     \end{equation}
198     Here, $f$ is the total number of degrees of freedom in the system,
199     \begin{equation}
200     f = 3 N + 3 N_{\mathrm{orient}} - N_{\mathrm{constraints}},
201     \end{equation}
202 tim 2881 where $N_{\mathrm{orient}}$ is the number of molecules with
203     orientational degrees of freedom, and $K$ is the total kinetic
204     energy,
205 tim 2729 \begin{equation}
206     K = \sum_{i=1}^{N} \frac{1}{2} m_i {\bf v}_i^T \cdot {\bf v}_i +
207     \sum_{i=1}^{N_{\mathrm{orient}}} \frac{1}{2} {\bf j}_i^T \cdot
208     \overleftrightarrow{\mathsf{I}}_i^{-1} \cdot {\bf j}_i.
209     \end{equation}
210    
211     In eq.(\ref{eq:nosehooverext}), $\tau_T$ is the time constant for
212 tim 2864 relaxation of the temperature to the target value. The integration
213     of the equations of motion is carried out in a velocity-Verlet style
214     2 part algorithm:
215 tim 2729
216     {\tt moveA:}
217     \begin{align*}
218     T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
219     %
220     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
221     + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t)
222     \chi(t)\right), \\
223     %
224     {\bf r}(t + h) &\leftarrow {\bf r}(t)
225     + h {\bf v}\left(t + h / 2 \right) ,\\
226     %
227     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
228     + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
229     \chi(t) \right) ,\\
230     %
231     \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}
232     \left(h * {\bf j}(t + h / 2)
233     \overleftrightarrow{\mathsf{I}}^{-1} \right) ,\\
234     %
235     \chi\left(t + h / 2 \right) &\leftarrow \chi(t)
236     + \frac{h}{2 \tau_T^2} \left( \frac{T(t)}
237     {T_{\mathrm{target}}} - 1 \right) .
238     \end{align*}
239    
240     Here $\mathrm{rotate}(h * {\bf j}
241     \overleftrightarrow{\mathsf{I}}^{-1})$ is the same symplectic
242     Trotter factorization of the three rotation operations that was
243     discussed in the section on the DLM integrator. Note that this
244     operation modifies both the rotation matrix $\mathsf{A}$ and the
245     angular momentum ${\bf j}$. {\tt moveA} propagates velocities by a
246     half time step, and positional degrees of freedom by a full time
247     step. The new positions (and orientations) are then used to
248     calculate a new set of forces and torques in exactly the same way
249     they are calculated in the {\tt doForces} portion of the DLM
250     integrator.
251    
252     Once the forces and torques have been obtained at the new time step,
253     the temperature, velocities, and the extended system variable can be
254     advanced to the same time value.
255    
256     {\tt moveB:}
257     \begin{align*}
258     T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
259     \left\{{\bf j}(t + h)\right\}, \\
260     %
261     \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
262     2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+h)}
263     {T_{\mathrm{target}}} - 1 \right), \\
264     %
265     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t
266     + h / 2 \right) + \frac{h}{2} \left(
267     \frac{{\bf f}(t + h)}{m} - {\bf v}(t + h)
268     \chi(t h)\right) ,\\
269     %
270     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
271     + h / 2 \right) + \frac{h}{2}
272     \left( {\bf \tau}^b(t + h) - {\bf j}(t + h)
273     \chi(t + h) \right) .
274     \end{align*}
275    
276     Since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required to
277     caclculate $T(t + h)$ as well as $\chi(t + h)$, they indirectly
278     depend on their own values at time $t + h$. {\tt moveB} is
279     therefore done in an iterative fashion until $\chi(t + h)$ becomes
280 tim 2854 self-consistent.
281 tim 2729
282     The Nos\'e-Hoover algorithm is known to conserve a Hamiltonian for
283     the extended system that is, to within a constant, identical to the
284 tim 2801 Helmholtz free energy,\cite{Melchionna1993}
285 tim 2729 \begin{equation}
286     H_{\mathrm{NVT}} = V + K + f k_B T_{\mathrm{target}} \left(
287     \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
288     dt^\prime \right).
289     \end{equation}
290     Poor choices of $h$ or $\tau_T$ can result in non-conservation of
291     $H_{\mathrm{NVT}}$, so the conserved quantity is maintained in the
292     last column of the {\tt .stat} file to allow checks on the quality
293     of the integration.
294    
295     \subsection{\label{methodSection:NPTi}Constant-pressure integration with
296     isotropic box deformations (NPTi)}
297    
298 tim 2881 We can used an isobaric-isothermal ensemble integrator which is
299     implemented using the Melchionna modifications to the
300     Nos\'e-Hoover-Andersen equations of motion,\cite{Melchionna1993}
301 tim 2729
302     \begin{eqnarray}
303     \dot{{\bf r}} & = & {\bf v} + \eta \left( {\bf r} - {\bf R}_0 \right), \\
304     \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\eta + \chi) {\bf v}, \\
305     \dot{\mathsf{A}} & = & \mathsf{A} \cdot
306     \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right),\\
307     \dot{{\bf j}} & = & {\bf j} \times \left(
308     \overleftrightarrow{I}^{-1} \cdot {\bf j} \right) - \mbox{
309     rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
310     V}{\partial \mathsf{A}} \right) - \chi {\bf j}, \\
311     \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
312     \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
313     \dot{\eta} & = & \frac{1}{\tau_{B}^2 f k_B T_{\mathrm{target}}} V
314     \left( P -
315     P_{\mathrm{target}} \right), \\
316     \dot{\mathcal{V}} & = & 3 \mathcal{V} \eta . \label{eq:melchionna1}
317     \end{eqnarray}
318    
319     $\chi$ and $\eta$ are the ``extra'' degrees of freedom in the
320     extended system. $\chi$ is a thermostat, and it has the same
321     function as it does in the Nos\'e-Hoover NVT integrator. $\eta$ is
322     a barostat which controls changes to the volume of the simulation
323     box. ${\bf R}_0$ is the location of the center of mass for the
324     entire system, and $\mathcal{V}$ is the volume of the simulation
325     box. At any time, the volume can be calculated from the determinant
326     of the matrix which describes the box shape:
327     \begin{equation}
328     \mathcal{V} = \det(\mathsf{H}).
329     \end{equation}
330    
331     The NPTi integrator requires an instantaneous pressure. This
332     quantity is calculated via the pressure tensor,
333     \begin{equation}
334     \overleftrightarrow{\mathsf{P}}(t) = \frac{1}{\mathcal{V}(t)} \left(
335     \sum_{i=1}^{N} m_i {\bf v}_i(t) \otimes {\bf v}_i(t) \right) +
336     \overleftrightarrow{\mathsf{W}}(t).
337     \end{equation}
338     The kinetic contribution to the pressure tensor utilizes the {\it
339     outer} product of the velocities denoted by the $\otimes$ symbol.
340     The stress tensor is calculated from another outer product of the
341     inter-atomic separation vectors (${\bf r}_{ij} = {\bf r}_j - {\bf
342     r}_i$) with the forces between the same two atoms,
343     \begin{equation}
344     \overleftrightarrow{\mathsf{W}}(t) = \sum_{i} \sum_{j>i} {\bf
345     r}_{ij}(t) \otimes {\bf f}_{ij}(t).
346     \end{equation}
347     The instantaneous pressure is then simply obtained from the trace of
348     the Pressure tensor,
349     \begin{equation}
350     P(t) = \frac{1}{3} \mathrm{Tr} \left(
351     \overleftrightarrow{\mathsf{P}}(t). \right)
352     \end{equation}
353    
354     In eq.(\ref{eq:melchionna1}), $\tau_B$ is the time constant for
355 tim 2853 relaxation of the pressure to the target value. Like in the NVT
356 tim 2729 integrator, the integration of the equations of motion is carried
357     out in a velocity-Verlet style 2 part algorithm:
358    
359     {\tt moveA:}
360     \begin{align*}
361     T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
362     %
363     P(t) &\leftarrow \left\{{\bf r}(t)\right\}, \left\{{\bf v}(t)\right\} ,\\
364     %
365     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
366     + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t)
367     \left(\chi(t) + \eta(t) \right) \right), \\
368     %
369     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
370     + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
371     \chi(t) \right), \\
372     %
373     \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
374     {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
375     \right) ,\\
376     %
377     \chi\left(t + h / 2 \right) &\leftarrow \chi(t) +
378     \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}} - 1
379     \right) ,\\
380     %
381     \eta(t + h / 2) &\leftarrow \eta(t) + \frac{h
382     \mathcal{V}(t)}{2 N k_B T(t) \tau_B^2} \left( P(t)
383     - P_{\mathrm{target}} \right), \\
384     %
385     {\bf r}(t + h) &\leftarrow {\bf r}(t) + h
386     \left\{ {\bf v}\left(t + h / 2 \right)
387     + \eta(t + h / 2)\left[ {\bf r}(t + h)
388     - {\bf R}_0 \right] \right\} ,\\
389     %
390     \mathsf{H}(t + h) &\leftarrow e^{-h \eta(t + h / 2)}
391     \mathsf{H}(t).
392     \end{align*}
393    
394     Most of these equations are identical to their counterparts in the
395     NVT integrator, but the propagation of positions to time $t + h$
396 tim 2854 depends on the positions at the same time. The simulation box
397     $\mathsf{H}$ is scaled uniformly for one full time step by an
398     exponential factor that depends on the value of $\eta$ at time $t +
399     h / 2$. Reshaping the box uniformly also scales the volume of the
400     box by
401 tim 2729 \begin{equation}
402     \mathcal{V}(t + h) \leftarrow e^{ - 3 h \eta(t + h /2)}.
403     \mathcal{V}(t)
404     \end{equation}
405    
406     The {\tt doForces} step for the NPTi integrator is exactly the same
407     as in both the DLM and NVT integrators. Once the forces and torques
408     have been obtained at the new time step, the velocities can be
409     advanced to the same time value.
410    
411     {\tt moveB:}
412     \begin{align*}
413     T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
414     \left\{{\bf j}(t + h)\right\} ,\\
415     %
416     P(t + h) &\leftarrow \left\{{\bf r}(t + h)\right\},
417     \left\{{\bf v}(t + h)\right\}, \\
418     %
419     \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
420     2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+h)}
421     {T_{\mathrm{target}}} - 1 \right), \\
422     %
423     \eta(t + h) &\leftarrow \eta(t + h / 2) +
424     \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h)
425     \tau_B^2} \left( P(t + h) - P_{\mathrm{target}} \right), \\
426     %
427     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t
428     + h / 2 \right) + \frac{h}{2} \left(
429     \frac{{\bf f}(t + h)}{m} - {\bf v}(t + h)
430     (\chi(t + h) + \eta(t + h)) \right) ,\\
431     %
432     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
433     + h / 2 \right) + \frac{h}{2} \left( {\bf
434     \tau}^b(t + h) - {\bf j}(t + h)
435     \chi(t + h) \right) .
436     \end{align*}
437    
438     Once again, since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required
439     to caclculate $T(t + h)$, $P(t + h)$, $\chi(t + h)$, and $\eta(t +
440     h)$, they indirectly depend on their own values at time $t + h$.
441     {\tt moveB} is therefore done in an iterative fashion until $\chi(t
442 tim 2854 + h)$ and $\eta(t + h)$ become self-consistent.
443 tim 2729
444     The Melchionna modification of the Nos\'e-Hoover-Andersen algorithm
445     is known to conserve a Hamiltonian for the extended system that is,
446     to within a constant, identical to the Gibbs free energy,
447     \begin{equation}
448     H_{\mathrm{NPTi}} = V + K + f k_B T_{\mathrm{target}} \left(
449     \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
450     dt^\prime \right) + P_{\mathrm{target}} \mathcal{V}(t).
451     \end{equation}
452     Poor choices of $\delta t$, $\tau_T$, or $\tau_B$ can result in
453     non-conservation of $H_{\mathrm{NPTi}}$, so the conserved quantity
454     is maintained in the last column of the {\tt .stat} file to allow
455     checks on the quality of the integration. It is also known that
456     this algorithm samples the equilibrium distribution for the enthalpy
457     (including contributions for the thermostat and barostat),
458     \begin{equation}
459     H_{\mathrm{NPTi}} = V + K + \frac{f k_B T_{\mathrm{target}}}{2}
460     \left( \chi^2 \tau_T^2 + \eta^2 \tau_B^2 \right) +
461     P_{\mathrm{target}} \mathcal{V}(t).
462     \end{equation}
463    
464     \subsection{\label{methodSection:NPTf}Constant-pressure integration with a
465     flexible box (NPTf)}
466    
467     There is a relatively simple generalization of the
468     Nos\'e-Hoover-Andersen method to include changes in the simulation
469     box {\it shape} as well as in the volume of the box. This method
470     utilizes the full $3 \times 3$ pressure tensor and introduces a
471     tensor of extended variables ($\overleftrightarrow{\eta}$) to
472     control changes to the box shape. The equations of motion for this
473     method are
474     \begin{eqnarray}
475     \dot{{\bf r}} & = & {\bf v} + \overleftrightarrow{\eta} \cdot \left( {\bf r} - {\bf R}_0 \right), \\
476     \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\overleftrightarrow{\eta} +
477     \chi \cdot \mathsf{1}) {\bf v}, \\
478     \dot{\mathsf{A}} & = & \mathsf{A} \cdot
479     \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right) ,\\
480     \dot{{\bf j}} & = & {\bf j} \times \left(
481     \overleftrightarrow{I}^{-1} \cdot {\bf j} \right) - \mbox{
482     rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
483     V}{\partial \mathsf{A}} \right) - \chi {\bf j} ,\\
484     \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
485     \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
486     \dot{\overleftrightarrow{\eta}} & = & \frac{1}{\tau_{B}^2 f k_B
487     T_{\mathrm{target}}} V \left( \overleftrightarrow{\mathsf{P}} - P_{\mathrm{target}}\mathsf{1} \right) ,\\
488     \dot{\mathsf{H}} & = & \overleftrightarrow{\eta} \cdot \mathsf{H} .
489     \label{eq:melchionna2}
490     \end{eqnarray}
491    
492     Here, $\mathsf{1}$ is the unit matrix and
493     $\overleftrightarrow{\mathsf{P}}$ is the pressure tensor. Again,
494     the volume, $\mathcal{V} = \det \mathsf{H}$.
495    
496     The propagation of the equations of motion is nearly identical to
497     the NPTi integration:
498    
499     {\tt moveA:}
500     \begin{align*}
501     T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
502     %
503     \overleftrightarrow{\mathsf{P}}(t) &\leftarrow \left\{{\bf
504     r}(t)\right\},
505     \left\{{\bf v}(t)\right\} ,\\
506     %
507     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
508     + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} -
509     \left(\chi(t)\mathsf{1} + \overleftrightarrow{\eta}(t) \right) \cdot
510     {\bf v}(t) \right), \\
511     %
512     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
513     + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
514     \chi(t) \right), \\
515     %
516     \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
517     {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
518     \right), \\
519     %
520     \chi\left(t + h / 2 \right) &\leftarrow \chi(t) +
521     \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}}
522     - 1 \right), \\
523     %
524     \overleftrightarrow{\eta}(t + h / 2) &\leftarrow
525     \overleftrightarrow{\eta}(t) + \frac{h \mathcal{V}(t)}{2 N k_B
526     T(t) \tau_B^2} \left( \overleftrightarrow{\mathsf{P}}(t)
527     - P_{\mathrm{target}}\mathsf{1} \right), \\
528     %
529     {\bf r}(t + h) &\leftarrow {\bf r}(t) + h \left\{ {\bf v}
530     \left(t + h / 2 \right) + \overleftrightarrow{\eta}(t +
531     h / 2) \cdot \left[ {\bf r}(t + h)
532     - {\bf R}_0 \right] \right\}, \\
533     %
534     \mathsf{H}(t + h) &\leftarrow \mathsf{H}(t) \cdot e^{-h
535     \overleftrightarrow{\eta}(t + h / 2)} .
536     \end{align*}
537 tim 2854 Here, a power series expansion truncated at second order for the
538     exponential operation is used to scale the simulation box.
539 tim 2729
540     The {\tt moveB} portion of the algorithm is largely unchanged from
541     the NPTi integrator:
542    
543     {\tt moveB:}
544     \begin{align*}
545     T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
546     \left\{{\bf j}(t + h)\right\}, \\
547     %
548     \overleftrightarrow{\mathsf{P}}(t + h) &\leftarrow \left\{{\bf r}
549     (t + h)\right\}, \left\{{\bf v}(t
550     + h)\right\}, \left\{{\bf f}(t + h)\right\} ,\\
551     %
552     \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
553     2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+
554     h)}{T_{\mathrm{target}}} - 1 \right), \\
555     %
556     \overleftrightarrow{\eta}(t + h) &\leftarrow
557     \overleftrightarrow{\eta}(t + h / 2) +
558     \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h)
559     \tau_B^2} \left( \overleftrightarrow{P}(t + h)
560     - P_{\mathrm{target}}\mathsf{1} \right) ,\\
561     %
562     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t
563     + h / 2 \right) + \frac{h}{2} \left(
564     \frac{{\bf f}(t + h)}{m} -
565     (\chi(t + h)\mathsf{1} + \overleftrightarrow{\eta}(t
566     + h)) \right) \cdot {\bf v}(t + h), \\
567     %
568     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
569     + h / 2 \right) + \frac{h}{2} \left( {\bf \tau}^b(t
570     + h) - {\bf j}(t + h) \chi(t + h) \right) .
571     \end{align*}
572    
573     The iterative schemes for both {\tt moveA} and {\tt moveB} are
574     identical to those described for the NPTi integrator.
575    
576     The NPTf integrator is known to conserve the following Hamiltonian:
577 tim 2854 \begin{eqnarray*}
578     H_{\mathrm{NPTf}} & = & V + K + f k_B T_{\mathrm{target}} \left(
579 tim 2729 \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
580 tim 2854 dt^\prime \right) \\
581 tim 2882 & & + P_{\mathrm{target}} \mathcal{V}(t) + \frac{f k_B
582 tim 2856 T_{\mathrm{target}}}{2}
583 tim 2729 \mathrm{Tr}\left[\overleftrightarrow{\eta}(t)\right]^2 \tau_B^2.
584 tim 2854 \end{eqnarray*}
585 tim 2729
586     This integrator must be used with care, particularly in liquid
587     simulations. Liquids have very small restoring forces in the
588     off-diagonal directions, and the simulation box can very quickly
589     form elongated and sheared geometries which become smaller than the
590     electrostatic or Lennard-Jones cutoff radii. The NPTf integrator
591     finds most use in simulating crystals or liquid crystals which
592     assume non-orthorhombic geometries.
593    
594 tim 2855 \subsection{\label{methodSection:NPAT}NPAT Ensemble}
595 tim 2729
596 tim 2881 A comprehensive understanding of relations between structures and
597     functions in biological membrane system ultimately relies on
598     structure and dynamics of lipid bilayers, which are strongly
599     affected by the interfacial interaction between lipid molecules and
600     surrounding media. One quantity to describe the interfacial
601     interaction is so called the average surface area per lipid.
602     Constant area and constant lateral pressure simulations can be
603     achieved by extending the standard NPT ensemble with a different
604     pressure control strategy
605 tim 2798
606 tim 2729 \begin{equation}
607 tim 2799 \dot {\overleftrightarrow{\eta}} _{\alpha \beta}=\left\{\begin{array}{ll}
608 tim 2798 \frac{{V(P_{\alpha \beta } - P_{{\rm{target}}} )}}{{\tau_{\rm{B}}^{\rm{2}} fk_B T_{{\rm{target}}} }}
609 tim 2799 & \mbox{if $ \alpha = \beta = z$}\\
610 tim 2798 0 & \mbox{otherwise}\\
611     \end{array}
612     \right.
613 tim 2729 \end{equation}
614 tim 2798
615 tim 2739 Note that the iterative schemes for NPAT are identical to those
616     described for the NPTi integrator.
617 tim 2729
618 tim 2854 \subsection{\label{methodSection:NPrT}NP$\gamma$T
619     Ensemble}
620 tim 2729
621 tim 2739 Theoretically, the surface tension $\gamma$ of a stress free
622     membrane system should be zero since its surface free energy $G$ is
623     minimum with respect to surface area $A$
624     \[
625     \gamma = \frac{{\partial G}}{{\partial A}}.
626     \]
627     However, a surface tension of zero is not appropriate for relatively
628     small patches of membrane. In order to eliminate the edge effect of
629 tim 2881 the membrane simulation, a special ensemble, NP$\gamma$T, has been
630 tim 2776 proposed to maintain the lateral surface tension and normal
631 tim 2881 pressure. The equation of motion for the cell size control tensor,
632 tim 2778 $\eta$, in $NP\gamma T$ is
633 tim 2729 \begin{equation}
634 tim 2799 \dot {\overleftrightarrow{\eta}} _{\alpha \beta}=\left\{\begin{array}{ll}
635 tim 2798 - A_{xy} (\gamma _\alpha - \gamma _{{\rm{target}}} ) & \mbox{$\alpha = \beta = x$ or $\alpha = \beta = y$}\\
636     \frac{{V(P_{\alpha \beta } - P_{{\rm{target}}} )}}{{\tau _{\rm{B}}^{\rm{2}} fk_B T_{{\rm{target}}}}} & \mbox{$\alpha = \beta = z$} \\
637     0 & \mbox{$\alpha \ne \beta$} \\
638 tim 2799 \end{array}
639 tim 2798 \right.
640 tim 2729 \end{equation}
641 tim 2739 where $ \gamma _{{\rm{target}}}$ is the external surface tension and
642     the instantaneous surface tensor $\gamma _\alpha$ is given by
643 tim 2729 \begin{equation}
644 tim 2800 \gamma _\alpha = - h_z( \overleftrightarrow{P} _{\alpha \alpha }
645     - P_{{\rm{target}}} )
646 tim 2739 \label{methodEquation:instantaneousSurfaceTensor}
647 tim 2729 \end{equation}
648    
649 tim 2739 There is one additional extended system integrator (NPTxyz), in
650     which each attempt to preserve the target pressure along the box
651     walls perpendicular to that particular axis. The lengths of the box
652     axes are allowed to fluctuate independently, but the angle between
653     the box axes does not change. It should be noted that the NPTxyz
654     integrator is a special case of $NP\gamma T$ if the surface tension
655 tim 2881 $\gamma$ is set to zero, and if $x$ and $y$ can move independently.
656 tim 2729
657 tim 2881 \section{\label{methodSection:zcons}The Z-Constraint Method}
658 tim 2776
659 tim 2804 Based on the fluctuation-dissipation theorem, a force
660     auto-correlation method was developed by Roux and Karplus to
661     investigate the dynamics of ions inside ion channels\cite{Roux1991}.
662     The time-dependent friction coefficient can be calculated from the
663     deviation of the instantaneous force from its mean force.
664     \begin{equation}
665     \xi(z,t)=\langle\delta F(z,t)\delta F(z,0)\rangle/k_{B}T,
666     \end{equation}
667     where%
668     \begin{equation}
669     \delta F(z,t)=F(z,t)-\langle F(z,t)\rangle.
670     \end{equation}
671 tim 2776
672 tim 2804 If the time-dependent friction decays rapidly, the static friction
673     coefficient can be approximated by
674     \begin{equation}
675     \xi_{\text{static}}(z)=\int_{0}^{\infty}\langle\delta F(z,t)\delta
676     F(z,0)\rangle dt.
677     \end{equation}
678     Allowing diffusion constant to then be calculated through the
679     Einstein relation:\cite{Marrink1994}
680     \begin{equation}
681     D(z)=\frac{k_{B}T}{\xi_{\text{static}}(z)}=\frac{(k_{B}T)^{2}}{\int_{0}^{\infty
682     }\langle\delta F(z,t)\delta F(z,0)\rangle dt}.%
683     \end{equation}
684 tim 2776
685 tim 2804 The Z-Constraint method, which fixes the z coordinates of the
686     molecules with respect to the center of the mass of the system, has
687     been a method suggested to obtain the forces required for the force
688     auto-correlation calculation.\cite{Marrink1994} However, simply
689     resetting the coordinate will move the center of the mass of the
690     whole system. To avoid this problem, we reset the forces of
691     z-constrained molecules as well as subtract the total constraint
692     forces from the rest of the system after the force calculation at
693     each time step instead of resetting the coordinate.
694    
695 tim 2881 After the force calculation, we define $G_\alpha$ as
696 tim 2804 \begin{equation}
697     G_{\alpha} = \sum_i F_{\alpha i}, \label{oopseEq:zc1}
698     \end{equation}
699     where $F_{\alpha i}$ is the force in the z direction of atom $i$ in
700     z-constrained molecule $\alpha$. The forces of the z constrained
701     molecule are then set to:
702     \begin{equation}
703     F_{\alpha i} = F_{\alpha i} -
704     \frac{m_{\alpha i} G_{\alpha}}{\sum_i m_{\alpha i}}.
705     \end{equation}
706     Here, $m_{\alpha i}$ is the mass of atom $i$ in the z-constrained
707     molecule. Having rescaled the forces, the velocities must also be
708     rescaled to subtract out any center of mass velocity in the z
709     direction.
710     \begin{equation}
711     v_{\alpha i} = v_{\alpha i} -
712     \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}},
713     \end{equation}
714     where $v_{\alpha i}$ is the velocity of atom $i$ in the z direction.
715     Lastly, all of the accumulated z constrained forces must be
716     subtracted from the system to keep the system center of mass from
717     drifting.
718     \begin{equation}
719     F_{\beta i} = F_{\beta i} - \frac{m_{\beta i} \sum_{\alpha}
720     G_{\alpha}}
721     {\sum_{\beta}\sum_i m_{\beta i}},
722     \end{equation}
723     where $\beta$ are all of the unconstrained molecules in the system.
724     Similarly, the velocities of the unconstrained molecules must also
725     be scaled.
726     \begin{equation}
727     v_{\beta i} = v_{\beta i} + \sum_{\alpha}
728     \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}}.
729     \end{equation}
730    
731     At the very beginning of the simulation, the molecules may not be at
732     their constrained positions. To move a z-constrained molecule to its
733     specified position, a simple harmonic potential is used
734     \begin{equation}
735     U(t)=\frac{1}{2}k_{\text{Harmonic}}(z(t)-z_{\text{cons}})^{2},%
736     \end{equation}
737     where $k_{\text{Harmonic}}$ is the harmonic force constant, $z(t)$
738     is the current $z$ coordinate of the center of mass of the
739     constrained molecule, and $z_{\text{cons}}$ is the constrained
740     position. The harmonic force operating on the z-constrained molecule
741     at time $t$ can be calculated by
742     \begin{equation}
743     F_{z_{\text{Harmonic}}}(t)=-\frac{\partial U(t)}{\partial z(t)}=
744     -k_{\text{Harmonic}}(z(t)-z_{\text{cons}}).
745     \end{equation}