ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Methodology.tex
Revision: 2905
Committed: Wed Jun 28 19:09:25 2006 UTC (18 years, 2 months ago) by tim
Content type: application/x-tex
File size: 30635 byte(s)
Log Message:
more corrections.

File Contents

# User Rev Content
1 tim 2685 \chapter{\label{chapt:methodology}METHODOLOGY}
2    
3     \section{\label{methodSection:rigidBodyIntegrators}Integrators for Rigid Body Motion in Molecular Dynamics}
4    
5 tim 2881 In order to mimic experiments which are usually performed under
6 tim 2729 constant temperature and/or pressure, extended Hamiltonian system
7 tim 2739 methods have been developed to generate statistical ensembles, such
8 tim 2881 as the canonical and isobaric-isothermal ensembles. In addition to
9     the standard ensemble, specific ensembles have been developed to
10     account for the anisotropy between the lateral and normal directions
11     of membranes. The $NPAT$ ensemble, in which the normal pressure and
12     the lateral surface area of the membrane are kept constant, and the
13     $NP\gamma T$ ensemble, in which the normal pressure and the lateral
14     surface tension are kept constant were proposed to address the
15     issues.
16 tim 2685
17 tim 2881 Integration schemes for the rotational motion of the rigid molecules
18     in the microcanonical ensemble have been extensively studied over
19     the last two decades. Matubayasi developed a time-reversible
20     integrator for rigid bodies in quaternion representation. Although
21     it is not symplectic, this integrator still demonstrates a better
22     long-time energy conservation than Euler angle methods because of
23     the time-reversible nature. Extending the Trotter-Suzuki
24     factorization to general system with a flat phase space, Miller and
25     his colleagues devised a novel symplectic, time-reversible and
26     volume-preserving integrator in the quaternion representation, which
27     was shown to be superior to the Matubayasi's time-reversible
28     integrator. However, all of the integrators in the quaternion
29     representation suffer from the computational penalty of constructing
30     a rotation matrix from quaternions to evolve coordinates and
31     velocities at every time step. An alternative integration scheme
32     utilizing the rotation matrix directly proposed by Dullweber,
33     Leimkuhler and McLachlan (DLM) also preserved the same structural
34     properties of the Hamiltonian flow. In this section, the integration
35     scheme of DLM method will be reviewed and extended to other
36     ensembles.
37 tim 2685
38 tim 2729 \subsection{\label{methodSection:DLM}Integrating the Equations of Motion: the
39     DLM method}
40    
41     The DLM method uses a Trotter factorization of the orientational
42     propagator. This has three effects:
43     \begin{enumerate}
44     \item the integrator is area-preserving in phase space (i.e. it is
45     {\it symplectic}),
46     \item the integrator is time-{\it reversible}, making it suitable for Hybrid
47     Monte Carlo applications, and
48     \item the error for a single time step is of order $\mathcal{O}\left(h^4\right)$
49     for timesteps of length $h$.
50     \end{enumerate}
51     The integration of the equations of motion is carried out in a
52     velocity-Verlet style 2-part algorithm, where $h= \delta t$:
53    
54     {\tt moveA:}
55     \begin{align*}
56     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
57     + \frac{h}{2} \left( {\bf f}(t) / m \right), \\
58     %
59     {\bf r}(t + h) &\leftarrow {\bf r}(t)
60     + h {\bf v}\left(t + h / 2 \right), \\
61     %
62     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
63     + \frac{h}{2} {\bf \tau}^b(t), \\
64     %
65     \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
66     (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right).
67     \end{align*}
68     In this context, the $\mathrm{rotate}$ function is the reversible
69     product of the three body-fixed rotations,
70     \begin{equation}
71     \mathrm{rotate}({\bf a}) = \mathsf{G}_x(a_x / 2) \cdot
72     \mathsf{G}_y(a_y / 2) \cdot \mathsf{G}_z(a_z) \cdot \mathsf{G}_y(a_y
73     / 2) \cdot \mathsf{G}_x(a_x /2),
74     \end{equation}
75     where each rotational propagator, $\mathsf{G}_\alpha(\theta)$,
76     rotates both the rotation matrix ($\mathsf{A}$) and the body-fixed
77     angular momentum (${\bf j}$) by an angle $\theta$ around body-fixed
78     axis $\alpha$,
79     \begin{equation}
80     \mathsf{G}_\alpha( \theta ) = \left\{
81     \begin{array}{lcl}
82     \mathsf{A}(t) & \leftarrow & \mathsf{A}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
83     {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf
84     j}(0).
85     \end{array}
86     \right.
87     \end{equation}
88     $\mathsf{R}_\alpha$ is a quadratic approximation to the single-axis
89     rotation matrix. For example, in the small-angle limit, the
90     rotation matrix around the body-fixed x-axis can be approximated as
91     \begin{equation}
92     \mathsf{R}_x(\theta) \approx \left(
93     \begin{array}{ccc}
94     1 & 0 & 0 \\
95     0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4} & -\frac{\theta}{1+
96     \theta^2 / 4} \\
97     0 & \frac{\theta}{1+ \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 +
98     \theta^2 / 4}
99     \end{array}
100     \right).
101     \end{equation}
102 tim 2905 All other rotations follow in a straightforward manner. After the
103     first part of the propagation, the forces and body-fixed torques are
104     calculated at the new positions and orientations
105 tim 2729
106     {\tt doForces:}
107     \begin{align*}
108     {\bf f}(t + h) &\leftarrow
109     - \left(\frac{\partial V}{\partial {\bf r}}\right)_{{\bf r}(t + h)}, \\
110     %
111     {\bf \tau}^{s}(t + h) &\leftarrow {\bf u}(t + h)
112 tim 2881 \times (\frac{\partial V}{\partial {\bf u}})_{u(t+h)}, \\
113 tim 2729 %
114     {\bf \tau}^{b}(t + h) &\leftarrow \mathsf{A}(t + h)
115     \cdot {\bf \tau}^s(t + h).
116     \end{align*}
117 tim 2881 ${\bf u}$ is automatically updated when the rotation matrix
118 tim 2729 $\mathsf{A}$ is calculated in {\tt moveA}. Once the forces and
119     torques have been obtained at the new time step, the velocities can
120     be advanced to the same time value.
121    
122     {\tt moveB:}
123     \begin{align*}
124     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t + h / 2
125     \right)
126     + \frac{h}{2} \left( {\bf f}(t + h) / m \right), \\
127     %
128     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t + h / 2
129     \right)
130     + \frac{h}{2} {\bf \tau}^b(t + h) .
131     \end{align*}
132     The matrix rotations used in the DLM method end up being more costly
133     computationally than the simpler arithmetic quaternion propagation.
134     With the same time step, a 1000-molecule water simulation shows an
135     average 7\% increase in computation time using the DLM method in
136     place of quaternions. This cost is more than justified when
137     comparing the energy conservation of the two methods as illustrated
138 tim 2905 in Fig.~\ref{methodFig:timestep} where the resulting energy drift at
139     various time steps for both the DLM and quaternion integration
140     schemes is compared. All of the 1000 molecule water simulations
141     started with the same configuration, and the only difference was the
142     method for handling rotational motion. At time steps of 0.1 and 0.5
143     fs, both methods for propagating molecule rotation conserve energy
144     fairly well, with the quaternion method showing a slight energy
145     drift over time in the 0.5 fs time step simulation. At time steps of
146     1 and 2 fs, the energy conservation benefits of the DLM method are
147     clearly demonstrated. Thus, while maintaining the same degree of
148     energy conservation, one can take considerably longer time steps,
149     leading to an overall reduction in computation time.
150 tim 2729
151     \begin{figure}
152     \centering
153     \includegraphics[width=\linewidth]{timeStep.eps}
154     \caption[Energy conservation for quaternion versus DLM
155     dynamics]{Energy conservation using quaternion based integration
156     versus the method proposed by Dullweber \emph{et al.} with
157     increasing time step. For each time step, the dotted line is total
158     energy using the DLM integrator, and the solid line comes from the
159     quaternion integrator. The larger time step plots are shifted up
160 tim 2801 from the true energy baseline for clarity.}
161     \label{methodFig:timestep}
162 tim 2729 \end{figure}
163    
164     \subsection{\label{methodSection:NVT}Nos\'{e}-Hoover Thermostatting}
165    
166 tim 2801 The Nos\'e-Hoover equations of motion are given by\cite{Hoover1985}
167 tim 2729 \begin{eqnarray}
168     \dot{{\bf r}} & = & {\bf v}, \\
169     \dot{{\bf v}} & = & \frac{{\bf f}}{m} - \chi {\bf v} ,\\
170     \dot{\mathsf{A}} & = & \mathsf{A} \cdot
171     \mbox{ skew}\left(\overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j}\right), \\
172     \dot{{\bf j}} & = & {\bf j} \times \left(
173     \overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j} \right) - \mbox{
174     rot}\left(\mathsf{A}^{T} \cdot \frac{\partial V}{\partial
175     \mathsf{A}} \right) - \chi {\bf j}. \label{eq:nosehoovereom}
176     \end{eqnarray}
177     $\chi$ is an ``extra'' variable included in the extended system, and
178     it is propagated using the first order equation of motion
179     \begin{equation}
180     \dot{\chi} = \frac{1}{\tau_{T}^2} \left(
181     \frac{T}{T_{\mathrm{target}}} - 1 \right). \label{eq:nosehooverext}
182     \end{equation}
183     The instantaneous temperature $T$ is proportional to the total
184     kinetic energy (both translational and orientational) and is given
185     by
186     \begin{equation}
187 tim 2905 T = \frac{2 K}{f k_B}.
188 tim 2729 \end{equation}
189     Here, $f$ is the total number of degrees of freedom in the system,
190     \begin{equation}
191     f = 3 N + 3 N_{\mathrm{orient}} - N_{\mathrm{constraints}},
192     \end{equation}
193 tim 2881 where $N_{\mathrm{orient}}$ is the number of molecules with
194     orientational degrees of freedom, and $K$ is the total kinetic
195     energy,
196 tim 2729 \begin{equation}
197     K = \sum_{i=1}^{N} \frac{1}{2} m_i {\bf v}_i^T \cdot {\bf v}_i +
198     \sum_{i=1}^{N_{\mathrm{orient}}} \frac{1}{2} {\bf j}_i^T \cdot
199     \overleftrightarrow{\mathsf{I}}_i^{-1} \cdot {\bf j}_i.
200     \end{equation}
201 tim 2905 In Eq.~\ref{eq:nosehooverext}, $\tau_T$ is the time constant for
202 tim 2864 relaxation of the temperature to the target value. The integration
203     of the equations of motion is carried out in a velocity-Verlet style
204     2 part algorithm:
205 tim 2729
206     {\tt moveA:}
207     \begin{align*}
208     T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
209     %
210     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
211     + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t)
212     \chi(t)\right), \\
213     %
214     {\bf r}(t + h) &\leftarrow {\bf r}(t)
215     + h {\bf v}\left(t + h / 2 \right) ,\\
216     %
217     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
218     + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
219     \chi(t) \right) ,\\
220     %
221     \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}
222     \left(h * {\bf j}(t + h / 2)
223     \overleftrightarrow{\mathsf{I}}^{-1} \right) ,\\
224     %
225     \chi\left(t + h / 2 \right) &\leftarrow \chi(t)
226     + \frac{h}{2 \tau_T^2} \left( \frac{T(t)}
227     {T_{\mathrm{target}}} - 1 \right) .
228     \end{align*}
229     Here $\mathrm{rotate}(h * {\bf j}
230     \overleftrightarrow{\mathsf{I}}^{-1})$ is the same symplectic
231     Trotter factorization of the three rotation operations that was
232     discussed in the section on the DLM integrator. Note that this
233     operation modifies both the rotation matrix $\mathsf{A}$ and the
234     angular momentum ${\bf j}$. {\tt moveA} propagates velocities by a
235     half time step, and positional degrees of freedom by a full time
236     step. The new positions (and orientations) are then used to
237     calculate a new set of forces and torques in exactly the same way
238     they are calculated in the {\tt doForces} portion of the DLM
239 tim 2905 integrator. Once the forces and torques have been obtained at the
240     new time step, the temperature, velocities, and the extended system
241     variable can be advanced to the same time value.
242 tim 2729
243     {\tt moveB:}
244     \begin{align*}
245     T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
246     \left\{{\bf j}(t + h)\right\}, \\
247     %
248     \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
249     2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+h)}
250     {T_{\mathrm{target}}} - 1 \right), \\
251     %
252     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t
253     + h / 2 \right) + \frac{h}{2} \left(
254     \frac{{\bf f}(t + h)}{m} - {\bf v}(t + h)
255     \chi(t h)\right) ,\\
256     %
257     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
258     + h / 2 \right) + \frac{h}{2}
259     \left( {\bf \tau}^b(t + h) - {\bf j}(t + h)
260     \chi(t + h) \right) .
261     \end{align*}
262     Since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required to
263     caclculate $T(t + h)$ as well as $\chi(t + h)$, they indirectly
264     depend on their own values at time $t + h$. {\tt moveB} is
265     therefore done in an iterative fashion until $\chi(t + h)$ becomes
266 tim 2905 self-consistent. The Nos\'e-Hoover algorithm is known to conserve a
267     Hamiltonian for the extended system that is, to within a constant,
268     identical to the Helmholtz free energy,\cite{Melchionna1993}
269 tim 2729 \begin{equation}
270     H_{\mathrm{NVT}} = V + K + f k_B T_{\mathrm{target}} \left(
271     \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
272     dt^\prime \right).
273     \end{equation}
274     Poor choices of $h$ or $\tau_T$ can result in non-conservation of
275     $H_{\mathrm{NVT}}$, so the conserved quantity is maintained in the
276     last column of the {\tt .stat} file to allow checks on the quality
277     of the integration.
278    
279     \subsection{\label{methodSection:NPTi}Constant-pressure integration with
280 tim 2900 isotropic box (NPTi)}
281 tim 2729
282 tim 2881 We can used an isobaric-isothermal ensemble integrator which is
283     implemented using the Melchionna modifications to the
284 tim 2905 Nos\'e-Hoover-Andersen equations of motion\cite{Melchionna1993}
285 tim 2729 \begin{eqnarray}
286     \dot{{\bf r}} & = & {\bf v} + \eta \left( {\bf r} - {\bf R}_0 \right), \\
287     \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\eta + \chi) {\bf v}, \\
288     \dot{\mathsf{A}} & = & \mathsf{A} \cdot
289     \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right),\\
290     \dot{{\bf j}} & = & {\bf j} \times \left(
291     \overleftrightarrow{I}^{-1} \cdot {\bf j} \right) - \mbox{
292     rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
293     V}{\partial \mathsf{A}} \right) - \chi {\bf j}, \\
294     \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
295     \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
296     \dot{\eta} & = & \frac{1}{\tau_{B}^2 f k_B T_{\mathrm{target}}} V
297     \left( P -
298     P_{\mathrm{target}} \right), \\
299     \dot{\mathcal{V}} & = & 3 \mathcal{V} \eta . \label{eq:melchionna1}
300     \end{eqnarray}
301     $\chi$ and $\eta$ are the ``extra'' degrees of freedom in the
302     extended system. $\chi$ is a thermostat, and it has the same
303     function as it does in the Nos\'e-Hoover NVT integrator. $\eta$ is
304     a barostat which controls changes to the volume of the simulation
305     box. ${\bf R}_0$ is the location of the center of mass for the
306     entire system, and $\mathcal{V}$ is the volume of the simulation
307     box. At any time, the volume can be calculated from the determinant
308     of the matrix which describes the box shape:
309     \begin{equation}
310     \mathcal{V} = \det(\mathsf{H}).
311     \end{equation}
312    
313     The NPTi integrator requires an instantaneous pressure. This
314     quantity is calculated via the pressure tensor,
315     \begin{equation}
316     \overleftrightarrow{\mathsf{P}}(t) = \frac{1}{\mathcal{V}(t)} \left(
317     \sum_{i=1}^{N} m_i {\bf v}_i(t) \otimes {\bf v}_i(t) \right) +
318     \overleftrightarrow{\mathsf{W}}(t).
319     \end{equation}
320     The kinetic contribution to the pressure tensor utilizes the {\it
321     outer} product of the velocities denoted by the $\otimes$ symbol.
322     The stress tensor is calculated from another outer product of the
323     inter-atomic separation vectors (${\bf r}_{ij} = {\bf r}_j - {\bf
324     r}_i$) with the forces between the same two atoms,
325     \begin{equation}
326     \overleftrightarrow{\mathsf{W}}(t) = \sum_{i} \sum_{j>i} {\bf
327     r}_{ij}(t) \otimes {\bf f}_{ij}(t).
328     \end{equation}
329     The instantaneous pressure is then simply obtained from the trace of
330     the Pressure tensor,
331     \begin{equation}
332     P(t) = \frac{1}{3} \mathrm{Tr} \left(
333 tim 2905 \overleftrightarrow{\mathsf{P}}(t) \right) .
334 tim 2729 \end{equation}
335 tim 2905 In Eq.~\ref{eq:melchionna1}, $\tau_B$ is the time constant for
336 tim 2853 relaxation of the pressure to the target value. Like in the NVT
337 tim 2729 integrator, the integration of the equations of motion is carried
338     out in a velocity-Verlet style 2 part algorithm:
339    
340     {\tt moveA:}
341     \begin{align*}
342     T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
343     %
344     P(t) &\leftarrow \left\{{\bf r}(t)\right\}, \left\{{\bf v}(t)\right\} ,\\
345     %
346     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
347     + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t)
348     \left(\chi(t) + \eta(t) \right) \right), \\
349     %
350     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
351     + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
352     \chi(t) \right), \\
353     %
354     \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
355     {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
356     \right) ,\\
357     %
358     \chi\left(t + h / 2 \right) &\leftarrow \chi(t) +
359     \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}} - 1
360     \right) ,\\
361     %
362     \eta(t + h / 2) &\leftarrow \eta(t) + \frac{h
363     \mathcal{V}(t)}{2 N k_B T(t) \tau_B^2} \left( P(t)
364     - P_{\mathrm{target}} \right), \\
365     %
366     {\bf r}(t + h) &\leftarrow {\bf r}(t) + h
367     \left\{ {\bf v}\left(t + h / 2 \right)
368     + \eta(t + h / 2)\left[ {\bf r}(t + h)
369     - {\bf R}_0 \right] \right\} ,\\
370     %
371     \mathsf{H}(t + h) &\leftarrow e^{-h \eta(t + h / 2)}
372     \mathsf{H}(t).
373     \end{align*}
374     Most of these equations are identical to their counterparts in the
375     NVT integrator, but the propagation of positions to time $t + h$
376 tim 2854 depends on the positions at the same time. The simulation box
377     $\mathsf{H}$ is scaled uniformly for one full time step by an
378     exponential factor that depends on the value of $\eta$ at time $t +
379     h / 2$. Reshaping the box uniformly also scales the volume of the
380     box by
381 tim 2729 \begin{equation}
382     \mathcal{V}(t + h) \leftarrow e^{ - 3 h \eta(t + h /2)}.
383     \mathcal{V}(t)
384     \end{equation}
385     The {\tt doForces} step for the NPTi integrator is exactly the same
386     as in both the DLM and NVT integrators. Once the forces and torques
387     have been obtained at the new time step, the velocities can be
388     advanced to the same time value.
389    
390     {\tt moveB:}
391     \begin{align*}
392     T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
393     \left\{{\bf j}(t + h)\right\} ,\\
394     %
395     P(t + h) &\leftarrow \left\{{\bf r}(t + h)\right\},
396     \left\{{\bf v}(t + h)\right\}, \\
397     %
398     \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
399     2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+h)}
400     {T_{\mathrm{target}}} - 1 \right), \\
401     %
402     \eta(t + h) &\leftarrow \eta(t + h / 2) +
403     \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h)
404     \tau_B^2} \left( P(t + h) - P_{\mathrm{target}} \right), \\
405     %
406     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t
407     + h / 2 \right) + \frac{h}{2} \left(
408     \frac{{\bf f}(t + h)}{m} - {\bf v}(t + h)
409     (\chi(t + h) + \eta(t + h)) \right) ,\\
410     %
411     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
412     + h / 2 \right) + \frac{h}{2} \left( {\bf
413     \tau}^b(t + h) - {\bf j}(t + h)
414     \chi(t + h) \right) .
415     \end{align*}
416     Once again, since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required
417     to caclculate $T(t + h)$, $P(t + h)$, $\chi(t + h)$, and $\eta(t +
418     h)$, they indirectly depend on their own values at time $t + h$.
419     {\tt moveB} is therefore done in an iterative fashion until $\chi(t
420 tim 2854 + h)$ and $\eta(t + h)$ become self-consistent.
421 tim 2729
422     The Melchionna modification of the Nos\'e-Hoover-Andersen algorithm
423     is known to conserve a Hamiltonian for the extended system that is,
424     to within a constant, identical to the Gibbs free energy,
425     \begin{equation}
426     H_{\mathrm{NPTi}} = V + K + f k_B T_{\mathrm{target}} \left(
427     \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
428     dt^\prime \right) + P_{\mathrm{target}} \mathcal{V}(t).
429     \end{equation}
430     Poor choices of $\delta t$, $\tau_T$, or $\tau_B$ can result in
431     non-conservation of $H_{\mathrm{NPTi}}$, so the conserved quantity
432     is maintained in the last column of the {\tt .stat} file to allow
433     checks on the quality of the integration. It is also known that
434     this algorithm samples the equilibrium distribution for the enthalpy
435     (including contributions for the thermostat and barostat),
436     \begin{equation}
437     H_{\mathrm{NPTi}} = V + K + \frac{f k_B T_{\mathrm{target}}}{2}
438     \left( \chi^2 \tau_T^2 + \eta^2 \tau_B^2 \right) +
439     P_{\mathrm{target}} \mathcal{V}(t).
440     \end{equation}
441    
442     \subsection{\label{methodSection:NPTf}Constant-pressure integration with a
443     flexible box (NPTf)}
444    
445     There is a relatively simple generalization of the
446     Nos\'e-Hoover-Andersen method to include changes in the simulation
447     box {\it shape} as well as in the volume of the box. This method
448     utilizes the full $3 \times 3$ pressure tensor and introduces a
449     tensor of extended variables ($\overleftrightarrow{\eta}$) to
450     control changes to the box shape. The equations of motion for this
451     method are
452     \begin{eqnarray}
453     \dot{{\bf r}} & = & {\bf v} + \overleftrightarrow{\eta} \cdot \left( {\bf r} - {\bf R}_0 \right), \\
454     \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\overleftrightarrow{\eta} +
455     \chi \cdot \mathsf{1}) {\bf v}, \\
456     \dot{\mathsf{A}} & = & \mathsf{A} \cdot
457     \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right) ,\\
458     \dot{{\bf j}} & = & {\bf j} \times \left(
459     \overleftrightarrow{I}^{-1} \cdot {\bf j} \right) - \mbox{
460     rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
461     V}{\partial \mathsf{A}} \right) - \chi {\bf j} ,\\
462     \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
463     \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
464     \dot{\overleftrightarrow{\eta}} & = & \frac{1}{\tau_{B}^2 f k_B
465     T_{\mathrm{target}}} V \left( \overleftrightarrow{\mathsf{P}} - P_{\mathrm{target}}\mathsf{1} \right) ,\\
466     \dot{\mathsf{H}} & = & \overleftrightarrow{\eta} \cdot \mathsf{H} .
467     \label{eq:melchionna2}
468     \end{eqnarray}
469    
470     Here, $\mathsf{1}$ is the unit matrix and
471     $\overleftrightarrow{\mathsf{P}}$ is the pressure tensor. Again,
472     the volume, $\mathcal{V} = \det \mathsf{H}$.
473    
474     The propagation of the equations of motion is nearly identical to
475     the NPTi integration:
476    
477     {\tt moveA:}
478     \begin{align*}
479     T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
480     %
481     \overleftrightarrow{\mathsf{P}}(t) &\leftarrow \left\{{\bf
482     r}(t)\right\},
483     \left\{{\bf v}(t)\right\} ,\\
484     %
485     {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
486     + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} -
487     \left(\chi(t)\mathsf{1} + \overleftrightarrow{\eta}(t) \right) \cdot
488     {\bf v}(t) \right), \\
489     %
490     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
491     + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
492     \chi(t) \right), \\
493     %
494     \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
495     {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
496     \right), \\
497     %
498     \chi\left(t + h / 2 \right) &\leftarrow \chi(t) +
499     \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}}
500     - 1 \right), \\
501     %
502     \overleftrightarrow{\eta}(t + h / 2) &\leftarrow
503     \overleftrightarrow{\eta}(t) + \frac{h \mathcal{V}(t)}{2 N k_B
504     T(t) \tau_B^2} \left( \overleftrightarrow{\mathsf{P}}(t)
505     - P_{\mathrm{target}}\mathsf{1} \right), \\
506     %
507     {\bf r}(t + h) &\leftarrow {\bf r}(t) + h \left\{ {\bf v}
508     \left(t + h / 2 \right) + \overleftrightarrow{\eta}(t +
509     h / 2) \cdot \left[ {\bf r}(t + h)
510     - {\bf R}_0 \right] \right\}, \\
511     %
512     \mathsf{H}(t + h) &\leftarrow \mathsf{H}(t) \cdot e^{-h
513     \overleftrightarrow{\eta}(t + h / 2)} .
514     \end{align*}
515 tim 2854 Here, a power series expansion truncated at second order for the
516 tim 2905 exponential operation is used to scale the simulation box. The {\tt
517     moveB} portion of the algorithm is largely unchanged from the NPTi
518     integrator:
519 tim 2729
520     {\tt moveB:}
521     \begin{align*}
522     T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
523     \left\{{\bf j}(t + h)\right\}, \\
524     %
525     \overleftrightarrow{\mathsf{P}}(t + h) &\leftarrow \left\{{\bf r}
526     (t + h)\right\}, \left\{{\bf v}(t
527     + h)\right\}, \left\{{\bf f}(t + h)\right\} ,\\
528     %
529     \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
530     2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+
531     h)}{T_{\mathrm{target}}} - 1 \right), \\
532     %
533     \overleftrightarrow{\eta}(t + h) &\leftarrow
534     \overleftrightarrow{\eta}(t + h / 2) +
535     \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h)
536     \tau_B^2} \left( \overleftrightarrow{P}(t + h)
537     - P_{\mathrm{target}}\mathsf{1} \right) ,\\
538     %
539     {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t
540     + h / 2 \right) + \frac{h}{2} \left(
541     \frac{{\bf f}(t + h)}{m} -
542     (\chi(t + h)\mathsf{1} + \overleftrightarrow{\eta}(t
543     + h)) \right) \cdot {\bf v}(t + h), \\
544     %
545     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
546     + h / 2 \right) + \frac{h}{2} \left( {\bf \tau}^b(t
547     + h) - {\bf j}(t + h) \chi(t + h) \right) .
548     \end{align*}
549     The iterative schemes for both {\tt moveA} and {\tt moveB} are
550 tim 2905 identical to those described for the NPTi integrator. The NPTf
551     integrator is known to conserve the following Hamiltonian:
552 tim 2854 \begin{eqnarray*}
553     H_{\mathrm{NPTf}} & = & V + K + f k_B T_{\mathrm{target}} \left(
554 tim 2729 \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
555 tim 2854 dt^\prime \right) \\
556 tim 2882 & & + P_{\mathrm{target}} \mathcal{V}(t) + \frac{f k_B
557 tim 2856 T_{\mathrm{target}}}{2}
558 tim 2729 \mathrm{Tr}\left[\overleftrightarrow{\eta}(t)\right]^2 \tau_B^2.
559 tim 2854 \end{eqnarray*}
560 tim 2729 This integrator must be used with care, particularly in liquid
561     simulations. Liquids have very small restoring forces in the
562     off-diagonal directions, and the simulation box can very quickly
563     form elongated and sheared geometries which become smaller than the
564     electrostatic or Lennard-Jones cutoff radii. The NPTf integrator
565     finds most use in simulating crystals or liquid crystals which
566     assume non-orthorhombic geometries.
567    
568 tim 2855 \subsection{\label{methodSection:NPAT}NPAT Ensemble}
569 tim 2729
570 tim 2881 A comprehensive understanding of relations between structures and
571     functions in biological membrane system ultimately relies on
572     structure and dynamics of lipid bilayers, which are strongly
573     affected by the interfacial interaction between lipid molecules and
574     surrounding media. One quantity to describe the interfacial
575     interaction is so called the average surface area per lipid.
576     Constant area and constant lateral pressure simulations can be
577     achieved by extending the standard NPT ensemble with a different
578     pressure control strategy
579 tim 2798
580 tim 2729 \begin{equation}
581 tim 2799 \dot {\overleftrightarrow{\eta}} _{\alpha \beta}=\left\{\begin{array}{ll}
582 tim 2798 \frac{{V(P_{\alpha \beta } - P_{{\rm{target}}} )}}{{\tau_{\rm{B}}^{\rm{2}} fk_B T_{{\rm{target}}} }}
583 tim 2799 & \mbox{if $ \alpha = \beta = z$}\\
584 tim 2798 0 & \mbox{otherwise}\\
585     \end{array}
586     \right.
587 tim 2729 \end{equation}
588 tim 2798
589 tim 2739 Note that the iterative schemes for NPAT are identical to those
590     described for the NPTi integrator.
591 tim 2729
592 tim 2854 \subsection{\label{methodSection:NPrT}NP$\gamma$T
593     Ensemble}
594 tim 2729
595 tim 2739 Theoretically, the surface tension $\gamma$ of a stress free
596     membrane system should be zero since its surface free energy $G$ is
597 tim 2905 minimum with respect to surface area $A$, $\gamma = \frac{{\partial
598     G}}{{\partial A}}.$ However, a surface tension of zero is not
599     appropriate for relatively small patches of membrane. In order to
600     eliminate the edge effect of the membrane simulation, a special
601     ensemble, NP$\gamma$T, has been proposed to maintain the lateral
602     surface tension and normal pressure. The equation of motion for the
603     cell size control tensor, $\eta$, in $NP\gamma T$ is
604 tim 2729 \begin{equation}
605 tim 2799 \dot {\overleftrightarrow{\eta}} _{\alpha \beta}=\left\{\begin{array}{ll}
606 tim 2798 - A_{xy} (\gamma _\alpha - \gamma _{{\rm{target}}} ) & \mbox{$\alpha = \beta = x$ or $\alpha = \beta = y$}\\
607     \frac{{V(P_{\alpha \beta } - P_{{\rm{target}}} )}}{{\tau _{\rm{B}}^{\rm{2}} fk_B T_{{\rm{target}}}}} & \mbox{$\alpha = \beta = z$} \\
608     0 & \mbox{$\alpha \ne \beta$} \\
609 tim 2799 \end{array}
610 tim 2798 \right.
611 tim 2729 \end{equation}
612 tim 2739 where $ \gamma _{{\rm{target}}}$ is the external surface tension and
613     the instantaneous surface tensor $\gamma _\alpha$ is given by
614 tim 2729 \begin{equation}
615 tim 2800 \gamma _\alpha = - h_z( \overleftrightarrow{P} _{\alpha \alpha }
616     - P_{{\rm{target}}} )
617 tim 2739 \label{methodEquation:instantaneousSurfaceTensor}
618 tim 2729 \end{equation}
619 tim 2739 There is one additional extended system integrator (NPTxyz), in
620     which each attempt to preserve the target pressure along the box
621     walls perpendicular to that particular axis. The lengths of the box
622     axes are allowed to fluctuate independently, but the angle between
623     the box axes does not change. It should be noted that the NPTxyz
624     integrator is a special case of $NP\gamma T$ if the surface tension
625 tim 2881 $\gamma$ is set to zero, and if $x$ and $y$ can move independently.
626 tim 2729
627 tim 2881 \section{\label{methodSection:zcons}The Z-Constraint Method}
628 tim 2776
629 tim 2804 Based on the fluctuation-dissipation theorem, a force
630     auto-correlation method was developed by Roux and Karplus to
631     investigate the dynamics of ions inside ion channels\cite{Roux1991}.
632     The time-dependent friction coefficient can be calculated from the
633     deviation of the instantaneous force from its mean force.
634     \begin{equation}
635     \xi(z,t)=\langle\delta F(z,t)\delta F(z,0)\rangle/k_{B}T,
636     \end{equation}
637     where%
638     \begin{equation}
639     \delta F(z,t)=F(z,t)-\langle F(z,t)\rangle.
640     \end{equation}
641     If the time-dependent friction decays rapidly, the static friction
642     coefficient can be approximated by
643     \begin{equation}
644     \xi_{\text{static}}(z)=\int_{0}^{\infty}\langle\delta F(z,t)\delta
645     F(z,0)\rangle dt.
646     \end{equation}
647     Allowing diffusion constant to then be calculated through the
648     Einstein relation:\cite{Marrink1994}
649     \begin{equation}
650     D(z)=\frac{k_{B}T}{\xi_{\text{static}}(z)}=\frac{(k_{B}T)^{2}}{\int_{0}^{\infty
651     }\langle\delta F(z,t)\delta F(z,0)\rangle dt}.%
652     \end{equation}
653     The Z-Constraint method, which fixes the z coordinates of the
654     molecules with respect to the center of the mass of the system, has
655     been a method suggested to obtain the forces required for the force
656     auto-correlation calculation.\cite{Marrink1994} However, simply
657     resetting the coordinate will move the center of the mass of the
658     whole system. To avoid this problem, we reset the forces of
659     z-constrained molecules as well as subtract the total constraint
660     forces from the rest of the system after the force calculation at
661 tim 2905 each time step instead of resetting the coordinate. After the force
662     calculation, we define $G_\alpha$ as
663 tim 2804 \begin{equation}
664     G_{\alpha} = \sum_i F_{\alpha i}, \label{oopseEq:zc1}
665     \end{equation}
666     where $F_{\alpha i}$ is the force in the z direction of atom $i$ in
667     z-constrained molecule $\alpha$. The forces of the z constrained
668     molecule are then set to:
669     \begin{equation}
670     F_{\alpha i} = F_{\alpha i} -
671     \frac{m_{\alpha i} G_{\alpha}}{\sum_i m_{\alpha i}}.
672     \end{equation}
673     Here, $m_{\alpha i}$ is the mass of atom $i$ in the z-constrained
674     molecule. Having rescaled the forces, the velocities must also be
675     rescaled to subtract out any center of mass velocity in the z
676     direction.
677     \begin{equation}
678     v_{\alpha i} = v_{\alpha i} -
679     \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}},
680     \end{equation}
681     where $v_{\alpha i}$ is the velocity of atom $i$ in the z direction.
682     Lastly, all of the accumulated z constrained forces must be
683     subtracted from the system to keep the system center of mass from
684     drifting.
685     \begin{equation}
686     F_{\beta i} = F_{\beta i} - \frac{m_{\beta i} \sum_{\alpha}
687     G_{\alpha}}
688     {\sum_{\beta}\sum_i m_{\beta i}},
689     \end{equation}
690     where $\beta$ are all of the unconstrained molecules in the system.
691     Similarly, the velocities of the unconstrained molecules must also
692     be scaled.
693     \begin{equation}
694     v_{\beta i} = v_{\beta i} + \sum_{\alpha}
695     \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}}.
696     \end{equation}
697     At the very beginning of the simulation, the molecules may not be at
698     their constrained positions. To move a z-constrained molecule to its
699     specified position, a simple harmonic potential is used
700     \begin{equation}
701     U(t)=\frac{1}{2}k_{\text{Harmonic}}(z(t)-z_{\text{cons}})^{2},%
702     \end{equation}
703     where $k_{\text{Harmonic}}$ is the harmonic force constant, $z(t)$
704     is the current $z$ coordinate of the center of mass of the
705     constrained molecule, and $z_{\text{cons}}$ is the constrained
706     position. The harmonic force operating on the z-constrained molecule
707     at time $t$ can be calculated by
708     \begin{equation}
709     F_{z_{\text{Harmonic}}}(t)=-\frac{\partial U(t)}{\partial z(t)}=
710     -k_{\text{Harmonic}}(z(t)-z_{\text{cons}}).
711     \end{equation}