ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Methodology.tex
Revision: 2804
Committed: Tue Jun 6 19:47:27 2006 UTC (18 years, 1 month ago) by tim
Content type: application/x-tex
File size: 53077 byte(s)
Log Message:
add langevin paper into chapter 2

File Contents

# Content
1 \chapter{\label{chapt:methodology}METHODOLOGY}
2
3 \section{\label{methodSection:rigidBodyIntegrators}Integrators for Rigid Body Motion in Molecular Dynamics}
4
5 In order to mimic the experiments, which are usually performed under
6 constant temperature and/or pressure, extended Hamiltonian system
7 methods have been developed to generate statistical ensembles, such
8 as canonical ensemble and isobaric-isothermal ensemble \textit{etc}.
9 In addition to the standard ensemble, specific ensembles have been
10 developed to account for the anisotropy between the lateral and
11 normal directions of membranes. The $NPAT$ ensemble, in which the
12 normal pressure and the lateral surface area of the membrane are
13 kept constant, and the $NP\gamma T$ ensemble, in which the normal
14 pressure and the lateral surface tension are kept constant were
15 proposed to address this issue.
16
17 Integration schemes for rotational motion of the rigid molecules in
18 microcanonical ensemble have been extensively studied in the last
19 two decades. Matubayasi and Nakahara developed a time-reversible
20 integrator for rigid bodies in quaternion representation. Although
21 it is not symplectic, this integrator still demonstrates a better
22 long-time energy conservation than traditional methods because of
23 the time-reversible nature. Extending Trotter-Suzuki to general
24 system with a flat phase space, Miller and his colleagues devised an
25 novel symplectic, time-reversible and volume-preserving integrator
26 in quaternion representation, which was shown to be superior to the
27 time-reversible integrator of Matubayasi and Nakahara. However, all
28 of the integrators in quaternion representation suffer from the
29 computational penalty of constructing a rotation matrix from
30 quaternions to evolve coordinates and velocities at every time step.
31 An alternative integration scheme utilizing rotation matrix directly
32 proposed by Dullweber, Leimkuhler and McLachlan (DLM) also preserved
33 the same structural properties of the Hamiltonian flow. In this
34 section, the integration scheme of DLM method will be reviewed and
35 extended to other ensembles.
36
37 \subsection{\label{methodSection:DLM}Integrating the Equations of Motion: the
38 DLM method}
39
40 The DLM method uses a Trotter factorization of the orientational
41 propagator. This has three effects:
42 \begin{enumerate}
43 \item the integrator is area-preserving in phase space (i.e. it is
44 {\it symplectic}),
45 \item the integrator is time-{\it reversible}, making it suitable for Hybrid
46 Monte Carlo applications, and
47 \item the error for a single time step is of order $\mathcal{O}\left(h^4\right)$
48 for timesteps of length $h$.
49 \end{enumerate}
50
51 The integration of the equations of motion is carried out in a
52 velocity-Verlet style 2-part algorithm, where $h= \delta t$:
53
54 {\tt moveA:}
55 \begin{align*}
56 {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
57 + \frac{h}{2} \left( {\bf f}(t) / m \right), \\
58 %
59 {\bf r}(t + h) &\leftarrow {\bf r}(t)
60 + h {\bf v}\left(t + h / 2 \right), \\
61 %
62 {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
63 + \frac{h}{2} {\bf \tau}^b(t), \\
64 %
65 \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
66 (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right).
67 \end{align*}
68
69 In this context, the $\mathrm{rotate}$ function is the reversible
70 product of the three body-fixed rotations,
71 \begin{equation}
72 \mathrm{rotate}({\bf a}) = \mathsf{G}_x(a_x / 2) \cdot
73 \mathsf{G}_y(a_y / 2) \cdot \mathsf{G}_z(a_z) \cdot \mathsf{G}_y(a_y
74 / 2) \cdot \mathsf{G}_x(a_x /2),
75 \end{equation}
76 where each rotational propagator, $\mathsf{G}_\alpha(\theta)$,
77 rotates both the rotation matrix ($\mathsf{A}$) and the body-fixed
78 angular momentum (${\bf j}$) by an angle $\theta$ around body-fixed
79 axis $\alpha$,
80 \begin{equation}
81 \mathsf{G}_\alpha( \theta ) = \left\{
82 \begin{array}{lcl}
83 \mathsf{A}(t) & \leftarrow & \mathsf{A}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
84 {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf
85 j}(0).
86 \end{array}
87 \right.
88 \end{equation}
89 $\mathsf{R}_\alpha$ is a quadratic approximation to the single-axis
90 rotation matrix. For example, in the small-angle limit, the
91 rotation matrix around the body-fixed x-axis can be approximated as
92 \begin{equation}
93 \mathsf{R}_x(\theta) \approx \left(
94 \begin{array}{ccc}
95 1 & 0 & 0 \\
96 0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4} & -\frac{\theta}{1+
97 \theta^2 / 4} \\
98 0 & \frac{\theta}{1+ \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 +
99 \theta^2 / 4}
100 \end{array}
101 \right).
102 \end{equation}
103 All other rotations follow in a straightforward manner.
104
105 After the first part of the propagation, the forces and body-fixed
106 torques are calculated at the new positions and orientations
107
108 {\tt doForces:}
109 \begin{align*}
110 {\bf f}(t + h) &\leftarrow
111 - \left(\frac{\partial V}{\partial {\bf r}}\right)_{{\bf r}(t + h)}, \\
112 %
113 {\bf \tau}^{s}(t + h) &\leftarrow {\bf u}(t + h)
114 \times \frac{\partial V}{\partial {\bf u}}, \\
115 %
116 {\bf \tau}^{b}(t + h) &\leftarrow \mathsf{A}(t + h)
117 \cdot {\bf \tau}^s(t + h).
118 \end{align*}
119
120 {\sc oopse} automatically updates ${\bf u}$ when the rotation matrix
121 $\mathsf{A}$ is calculated in {\tt moveA}. Once the forces and
122 torques have been obtained at the new time step, the velocities can
123 be advanced to the same time value.
124
125 {\tt moveB:}
126 \begin{align*}
127 {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t + h / 2
128 \right)
129 + \frac{h}{2} \left( {\bf f}(t + h) / m \right), \\
130 %
131 {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t + h / 2
132 \right)
133 + \frac{h}{2} {\bf \tau}^b(t + h) .
134 \end{align*}
135
136 The matrix rotations used in the DLM method end up being more costly
137 computationally than the simpler arithmetic quaternion propagation.
138 With the same time step, a 1000-molecule water simulation shows an
139 average 7\% increase in computation time using the DLM method in
140 place of quaternions. This cost is more than justified when
141 comparing the energy conservation of the two methods as illustrated
142 in Fig.~\ref{timestep}.
143
144 \begin{figure}
145 \centering
146 \includegraphics[width=\linewidth]{timeStep.eps}
147 \caption[Energy conservation for quaternion versus DLM
148 dynamics]{Energy conservation using quaternion based integration
149 versus the method proposed by Dullweber \emph{et al.} with
150 increasing time step. For each time step, the dotted line is total
151 energy using the DLM integrator, and the solid line comes from the
152 quaternion integrator. The larger time step plots are shifted up
153 from the true energy baseline for clarity.}
154 \label{methodFig:timestep}
155 \end{figure}
156
157 In Fig.~\ref{methodFig:timestep}, the resulting energy drift at
158 various time steps for both the DLM and quaternion integration
159 schemes is compared. All of the 1000 molecule water simulations
160 started with the same configuration, and the only difference was the
161 method for handling rotational motion. At time steps of 0.1 and 0.5
162 fs, both methods for propagating molecule rotation conserve energy
163 fairly well, with the quaternion method showing a slight energy
164 drift over time in the 0.5 fs time step simulation. At time steps of
165 1 and 2 fs, the energy conservation benefits of the DLM method are
166 clearly demonstrated. Thus, while maintaining the same degree of
167 energy conservation, one can take considerably longer time steps,
168 leading to an overall reduction in computation time.
169
170 \subsection{\label{methodSection:NVT}Nos\'{e}-Hoover Thermostatting}
171
172 The Nos\'e-Hoover equations of motion are given by\cite{Hoover1985}
173 \begin{eqnarray}
174 \dot{{\bf r}} & = & {\bf v}, \\
175 \dot{{\bf v}} & = & \frac{{\bf f}}{m} - \chi {\bf v} ,\\
176 \dot{\mathsf{A}} & = & \mathsf{A} \cdot
177 \mbox{ skew}\left(\overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j}\right), \\
178 \dot{{\bf j}} & = & {\bf j} \times \left(
179 \overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j} \right) - \mbox{
180 rot}\left(\mathsf{A}^{T} \cdot \frac{\partial V}{\partial
181 \mathsf{A}} \right) - \chi {\bf j}. \label{eq:nosehoovereom}
182 \end{eqnarray}
183
184 $\chi$ is an ``extra'' variable included in the extended system, and
185 it is propagated using the first order equation of motion
186 \begin{equation}
187 \dot{\chi} = \frac{1}{\tau_{T}^2} \left(
188 \frac{T}{T_{\mathrm{target}}} - 1 \right). \label{eq:nosehooverext}
189 \end{equation}
190
191 The instantaneous temperature $T$ is proportional to the total
192 kinetic energy (both translational and orientational) and is given
193 by
194 \begin{equation}
195 T = \frac{2 K}{f k_B}
196 \end{equation}
197 Here, $f$ is the total number of degrees of freedom in the system,
198 \begin{equation}
199 f = 3 N + 3 N_{\mathrm{orient}} - N_{\mathrm{constraints}},
200 \end{equation}
201 and $K$ is the total kinetic energy,
202 \begin{equation}
203 K = \sum_{i=1}^{N} \frac{1}{2} m_i {\bf v}_i^T \cdot {\bf v}_i +
204 \sum_{i=1}^{N_{\mathrm{orient}}} \frac{1}{2} {\bf j}_i^T \cdot
205 \overleftrightarrow{\mathsf{I}}_i^{-1} \cdot {\bf j}_i.
206 \end{equation}
207
208 In eq.(\ref{eq:nosehooverext}), $\tau_T$ is the time constant for
209 relaxation of the temperature to the target value. To set values
210 for $\tau_T$ or $T_{\mathrm{target}}$ in a simulation, one would use
211 the {\tt tauThermostat} and {\tt targetTemperature} keywords in the
212 {\tt .bass} file. The units for {\tt tauThermostat} are fs, and the
213 units for the {\tt targetTemperature} are degrees K. The
214 integration of the equations of motion is carried out in a
215 velocity-Verlet style 2 part algorithm:
216
217 {\tt moveA:}
218 \begin{align*}
219 T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
220 %
221 {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
222 + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t)
223 \chi(t)\right), \\
224 %
225 {\bf r}(t + h) &\leftarrow {\bf r}(t)
226 + h {\bf v}\left(t + h / 2 \right) ,\\
227 %
228 {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
229 + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
230 \chi(t) \right) ,\\
231 %
232 \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}
233 \left(h * {\bf j}(t + h / 2)
234 \overleftrightarrow{\mathsf{I}}^{-1} \right) ,\\
235 %
236 \chi\left(t + h / 2 \right) &\leftarrow \chi(t)
237 + \frac{h}{2 \tau_T^2} \left( \frac{T(t)}
238 {T_{\mathrm{target}}} - 1 \right) .
239 \end{align*}
240
241 Here $\mathrm{rotate}(h * {\bf j}
242 \overleftrightarrow{\mathsf{I}}^{-1})$ is the same symplectic
243 Trotter factorization of the three rotation operations that was
244 discussed in the section on the DLM integrator. Note that this
245 operation modifies both the rotation matrix $\mathsf{A}$ and the
246 angular momentum ${\bf j}$. {\tt moveA} propagates velocities by a
247 half time step, and positional degrees of freedom by a full time
248 step. The new positions (and orientations) are then used to
249 calculate a new set of forces and torques in exactly the same way
250 they are calculated in the {\tt doForces} portion of the DLM
251 integrator.
252
253 Once the forces and torques have been obtained at the new time step,
254 the temperature, velocities, and the extended system variable can be
255 advanced to the same time value.
256
257 {\tt moveB:}
258 \begin{align*}
259 T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
260 \left\{{\bf j}(t + h)\right\}, \\
261 %
262 \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
263 2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+h)}
264 {T_{\mathrm{target}}} - 1 \right), \\
265 %
266 {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t
267 + h / 2 \right) + \frac{h}{2} \left(
268 \frac{{\bf f}(t + h)}{m} - {\bf v}(t + h)
269 \chi(t h)\right) ,\\
270 %
271 {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
272 + h / 2 \right) + \frac{h}{2}
273 \left( {\bf \tau}^b(t + h) - {\bf j}(t + h)
274 \chi(t + h) \right) .
275 \end{align*}
276
277 Since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required to
278 caclculate $T(t + h)$ as well as $\chi(t + h)$, they indirectly
279 depend on their own values at time $t + h$. {\tt moveB} is
280 therefore done in an iterative fashion until $\chi(t + h)$ becomes
281 self-consistent. The relative tolerance for the self-consistency
282 check defaults to a value of $\mbox{10}^{-6}$, but {\sc oopse} will
283 terminate the iteration after 4 loops even if the consistency check
284 has not been satisfied.
285
286 The Nos\'e-Hoover algorithm is known to conserve a Hamiltonian for
287 the extended system that is, to within a constant, identical to the
288 Helmholtz free energy,\cite{Melchionna1993}
289 \begin{equation}
290 H_{\mathrm{NVT}} = V + K + f k_B T_{\mathrm{target}} \left(
291 \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
292 dt^\prime \right).
293 \end{equation}
294 Poor choices of $h$ or $\tau_T$ can result in non-conservation of
295 $H_{\mathrm{NVT}}$, so the conserved quantity is maintained in the
296 last column of the {\tt .stat} file to allow checks on the quality
297 of the integration.
298
299 \subsection{\label{methodSection:NPTi}Constant-pressure integration with
300 isotropic box deformations (NPTi)}
301
302 To carry out isobaric-isothermal ensemble calculations {\sc oopse}
303 implements the Melchionna modifications to the
304 Nos\'e-Hoover-Andersen equations of motion,\cite{Melchionna1993}
305
306 \begin{eqnarray}
307 \dot{{\bf r}} & = & {\bf v} + \eta \left( {\bf r} - {\bf R}_0 \right), \\
308 \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\eta + \chi) {\bf v}, \\
309 \dot{\mathsf{A}} & = & \mathsf{A} \cdot
310 \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right),\\
311 \dot{{\bf j}} & = & {\bf j} \times \left(
312 \overleftrightarrow{I}^{-1} \cdot {\bf j} \right) - \mbox{
313 rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
314 V}{\partial \mathsf{A}} \right) - \chi {\bf j}, \\
315 \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
316 \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
317 \dot{\eta} & = & \frac{1}{\tau_{B}^2 f k_B T_{\mathrm{target}}} V
318 \left( P -
319 P_{\mathrm{target}} \right), \\
320 \dot{\mathcal{V}} & = & 3 \mathcal{V} \eta . \label{eq:melchionna1}
321 \end{eqnarray}
322
323 $\chi$ and $\eta$ are the ``extra'' degrees of freedom in the
324 extended system. $\chi$ is a thermostat, and it has the same
325 function as it does in the Nos\'e-Hoover NVT integrator. $\eta$ is
326 a barostat which controls changes to the volume of the simulation
327 box. ${\bf R}_0$ is the location of the center of mass for the
328 entire system, and $\mathcal{V}$ is the volume of the simulation
329 box. At any time, the volume can be calculated from the determinant
330 of the matrix which describes the box shape:
331 \begin{equation}
332 \mathcal{V} = \det(\mathsf{H}).
333 \end{equation}
334
335 The NPTi integrator requires an instantaneous pressure. This
336 quantity is calculated via the pressure tensor,
337 \begin{equation}
338 \overleftrightarrow{\mathsf{P}}(t) = \frac{1}{\mathcal{V}(t)} \left(
339 \sum_{i=1}^{N} m_i {\bf v}_i(t) \otimes {\bf v}_i(t) \right) +
340 \overleftrightarrow{\mathsf{W}}(t).
341 \end{equation}
342 The kinetic contribution to the pressure tensor utilizes the {\it
343 outer} product of the velocities denoted by the $\otimes$ symbol.
344 The stress tensor is calculated from another outer product of the
345 inter-atomic separation vectors (${\bf r}_{ij} = {\bf r}_j - {\bf
346 r}_i$) with the forces between the same two atoms,
347 \begin{equation}
348 \overleftrightarrow{\mathsf{W}}(t) = \sum_{i} \sum_{j>i} {\bf
349 r}_{ij}(t) \otimes {\bf f}_{ij}(t).
350 \end{equation}
351 The instantaneous pressure is then simply obtained from the trace of
352 the Pressure tensor,
353 \begin{equation}
354 P(t) = \frac{1}{3} \mathrm{Tr} \left(
355 \overleftrightarrow{\mathsf{P}}(t). \right)
356 \end{equation}
357
358 In eq.(\ref{eq:melchionna1}), $\tau_B$ is the time constant for
359 relaxation of the pressure to the target value. To set values for
360 $\tau_B$ or $P_{\mathrm{target}}$ in a simulation, one would use the
361 {\tt tauBarostat} and {\tt targetPressure} keywords in the {\tt
362 .bass} file. The units for {\tt tauBarostat} are fs, and the units
363 for the {\tt targetPressure} are atmospheres. Like in the NVT
364 integrator, the integration of the equations of motion is carried
365 out in a velocity-Verlet style 2 part algorithm:
366
367 {\tt moveA:}
368 \begin{align*}
369 T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
370 %
371 P(t) &\leftarrow \left\{{\bf r}(t)\right\}, \left\{{\bf v}(t)\right\} ,\\
372 %
373 {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
374 + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t)
375 \left(\chi(t) + \eta(t) \right) \right), \\
376 %
377 {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
378 + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
379 \chi(t) \right), \\
380 %
381 \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
382 {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
383 \right) ,\\
384 %
385 \chi\left(t + h / 2 \right) &\leftarrow \chi(t) +
386 \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}} - 1
387 \right) ,\\
388 %
389 \eta(t + h / 2) &\leftarrow \eta(t) + \frac{h
390 \mathcal{V}(t)}{2 N k_B T(t) \tau_B^2} \left( P(t)
391 - P_{\mathrm{target}} \right), \\
392 %
393 {\bf r}(t + h) &\leftarrow {\bf r}(t) + h
394 \left\{ {\bf v}\left(t + h / 2 \right)
395 + \eta(t + h / 2)\left[ {\bf r}(t + h)
396 - {\bf R}_0 \right] \right\} ,\\
397 %
398 \mathsf{H}(t + h) &\leftarrow e^{-h \eta(t + h / 2)}
399 \mathsf{H}(t).
400 \end{align*}
401
402 Most of these equations are identical to their counterparts in the
403 NVT integrator, but the propagation of positions to time $t + h$
404 depends on the positions at the same time. {\sc oopse} carries out
405 this step iteratively (with a limit of 5 passes through the
406 iterative loop). Also, the simulation box $\mathsf{H}$ is scaled
407 uniformly for one full time step by an exponential factor that
408 depends on the value of $\eta$ at time $t + h / 2$. Reshaping the
409 box uniformly also scales the volume of the box by
410 \begin{equation}
411 \mathcal{V}(t + h) \leftarrow e^{ - 3 h \eta(t + h /2)}.
412 \mathcal{V}(t)
413 \end{equation}
414
415 The {\tt doForces} step for the NPTi integrator is exactly the same
416 as in both the DLM and NVT integrators. Once the forces and torques
417 have been obtained at the new time step, the velocities can be
418 advanced to the same time value.
419
420 {\tt moveB:}
421 \begin{align*}
422 T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
423 \left\{{\bf j}(t + h)\right\} ,\\
424 %
425 P(t + h) &\leftarrow \left\{{\bf r}(t + h)\right\},
426 \left\{{\bf v}(t + h)\right\}, \\
427 %
428 \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
429 2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+h)}
430 {T_{\mathrm{target}}} - 1 \right), \\
431 %
432 \eta(t + h) &\leftarrow \eta(t + h / 2) +
433 \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h)
434 \tau_B^2} \left( P(t + h) - P_{\mathrm{target}} \right), \\
435 %
436 {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t
437 + h / 2 \right) + \frac{h}{2} \left(
438 \frac{{\bf f}(t + h)}{m} - {\bf v}(t + h)
439 (\chi(t + h) + \eta(t + h)) \right) ,\\
440 %
441 {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
442 + h / 2 \right) + \frac{h}{2} \left( {\bf
443 \tau}^b(t + h) - {\bf j}(t + h)
444 \chi(t + h) \right) .
445 \end{align*}
446
447 Once again, since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required
448 to caclculate $T(t + h)$, $P(t + h)$, $\chi(t + h)$, and $\eta(t +
449 h)$, they indirectly depend on their own values at time $t + h$.
450 {\tt moveB} is therefore done in an iterative fashion until $\chi(t
451 + h)$ and $\eta(t + h)$ become self-consistent. The relative
452 tolerance for the self-consistency check defaults to a value of
453 $\mbox{10}^{-6}$, but {\sc oopse} will terminate the iteration after
454 4 loops even if the consistency check has not been satisfied.
455
456 The Melchionna modification of the Nos\'e-Hoover-Andersen algorithm
457 is known to conserve a Hamiltonian for the extended system that is,
458 to within a constant, identical to the Gibbs free energy,
459 \begin{equation}
460 H_{\mathrm{NPTi}} = V + K + f k_B T_{\mathrm{target}} \left(
461 \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
462 dt^\prime \right) + P_{\mathrm{target}} \mathcal{V}(t).
463 \end{equation}
464 Poor choices of $\delta t$, $\tau_T$, or $\tau_B$ can result in
465 non-conservation of $H_{\mathrm{NPTi}}$, so the conserved quantity
466 is maintained in the last column of the {\tt .stat} file to allow
467 checks on the quality of the integration. It is also known that
468 this algorithm samples the equilibrium distribution for the enthalpy
469 (including contributions for the thermostat and barostat),
470 \begin{equation}
471 H_{\mathrm{NPTi}} = V + K + \frac{f k_B T_{\mathrm{target}}}{2}
472 \left( \chi^2 \tau_T^2 + \eta^2 \tau_B^2 \right) +
473 P_{\mathrm{target}} \mathcal{V}(t).
474 \end{equation}
475
476 Bond constraints are applied at the end of both the {\tt moveA} and
477 {\tt moveB} portions of the algorithm. Details on the constraint
478 algorithms are given in section \ref{oopseSec:rattle}.
479
480 \subsection{\label{methodSection:NPTf}Constant-pressure integration with a
481 flexible box (NPTf)}
482
483 There is a relatively simple generalization of the
484 Nos\'e-Hoover-Andersen method to include changes in the simulation
485 box {\it shape} as well as in the volume of the box. This method
486 utilizes the full $3 \times 3$ pressure tensor and introduces a
487 tensor of extended variables ($\overleftrightarrow{\eta}$) to
488 control changes to the box shape. The equations of motion for this
489 method are
490 \begin{eqnarray}
491 \dot{{\bf r}} & = & {\bf v} + \overleftrightarrow{\eta} \cdot \left( {\bf r} - {\bf R}_0 \right), \\
492 \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\overleftrightarrow{\eta} +
493 \chi \cdot \mathsf{1}) {\bf v}, \\
494 \dot{\mathsf{A}} & = & \mathsf{A} \cdot
495 \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right) ,\\
496 \dot{{\bf j}} & = & {\bf j} \times \left(
497 \overleftrightarrow{I}^{-1} \cdot {\bf j} \right) - \mbox{
498 rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
499 V}{\partial \mathsf{A}} \right) - \chi {\bf j} ,\\
500 \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
501 \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
502 \dot{\overleftrightarrow{\eta}} & = & \frac{1}{\tau_{B}^2 f k_B
503 T_{\mathrm{target}}} V \left( \overleftrightarrow{\mathsf{P}} - P_{\mathrm{target}}\mathsf{1} \right) ,\\
504 \dot{\mathsf{H}} & = & \overleftrightarrow{\eta} \cdot \mathsf{H} .
505 \label{eq:melchionna2}
506 \end{eqnarray}
507
508 Here, $\mathsf{1}$ is the unit matrix and
509 $\overleftrightarrow{\mathsf{P}}$ is the pressure tensor. Again,
510 the volume, $\mathcal{V} = \det \mathsf{H}$.
511
512 The propagation of the equations of motion is nearly identical to
513 the NPTi integration:
514
515 {\tt moveA:}
516 \begin{align*}
517 T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
518 %
519 \overleftrightarrow{\mathsf{P}}(t) &\leftarrow \left\{{\bf
520 r}(t)\right\},
521 \left\{{\bf v}(t)\right\} ,\\
522 %
523 {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
524 + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} -
525 \left(\chi(t)\mathsf{1} + \overleftrightarrow{\eta}(t) \right) \cdot
526 {\bf v}(t) \right), \\
527 %
528 {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
529 + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
530 \chi(t) \right), \\
531 %
532 \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
533 {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
534 \right), \\
535 %
536 \chi\left(t + h / 2 \right) &\leftarrow \chi(t) +
537 \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}}
538 - 1 \right), \\
539 %
540 \overleftrightarrow{\eta}(t + h / 2) &\leftarrow
541 \overleftrightarrow{\eta}(t) + \frac{h \mathcal{V}(t)}{2 N k_B
542 T(t) \tau_B^2} \left( \overleftrightarrow{\mathsf{P}}(t)
543 - P_{\mathrm{target}}\mathsf{1} \right), \\
544 %
545 {\bf r}(t + h) &\leftarrow {\bf r}(t) + h \left\{ {\bf v}
546 \left(t + h / 2 \right) + \overleftrightarrow{\eta}(t +
547 h / 2) \cdot \left[ {\bf r}(t + h)
548 - {\bf R}_0 \right] \right\}, \\
549 %
550 \mathsf{H}(t + h) &\leftarrow \mathsf{H}(t) \cdot e^{-h
551 \overleftrightarrow{\eta}(t + h / 2)} .
552 \end{align*}
553 {\sc oopse} uses a power series expansion truncated at second order
554 for the exponential operation which scales the simulation box.
555
556 The {\tt moveB} portion of the algorithm is largely unchanged from
557 the NPTi integrator:
558
559 {\tt moveB:}
560 \begin{align*}
561 T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
562 \left\{{\bf j}(t + h)\right\}, \\
563 %
564 \overleftrightarrow{\mathsf{P}}(t + h) &\leftarrow \left\{{\bf r}
565 (t + h)\right\}, \left\{{\bf v}(t
566 + h)\right\}, \left\{{\bf f}(t + h)\right\} ,\\
567 %
568 \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
569 2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+
570 h)}{T_{\mathrm{target}}} - 1 \right), \\
571 %
572 \overleftrightarrow{\eta}(t + h) &\leftarrow
573 \overleftrightarrow{\eta}(t + h / 2) +
574 \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h)
575 \tau_B^2} \left( \overleftrightarrow{P}(t + h)
576 - P_{\mathrm{target}}\mathsf{1} \right) ,\\
577 %
578 {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t
579 + h / 2 \right) + \frac{h}{2} \left(
580 \frac{{\bf f}(t + h)}{m} -
581 (\chi(t + h)\mathsf{1} + \overleftrightarrow{\eta}(t
582 + h)) \right) \cdot {\bf v}(t + h), \\
583 %
584 {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t
585 + h / 2 \right) + \frac{h}{2} \left( {\bf \tau}^b(t
586 + h) - {\bf j}(t + h) \chi(t + h) \right) .
587 \end{align*}
588
589 The iterative schemes for both {\tt moveA} and {\tt moveB} are
590 identical to those described for the NPTi integrator.
591
592 The NPTf integrator is known to conserve the following Hamiltonian:
593 \begin{equation}
594 H_{\mathrm{NPTf}} = V + K + f k_B T_{\mathrm{target}} \left(
595 \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
596 dt^\prime \right) + P_{\mathrm{target}} \mathcal{V}(t) + \frac{f k_B
597 T_{\mathrm{target}}}{2}
598 \mathrm{Tr}\left[\overleftrightarrow{\eta}(t)\right]^2 \tau_B^2.
599 \end{equation}
600
601 This integrator must be used with care, particularly in liquid
602 simulations. Liquids have very small restoring forces in the
603 off-diagonal directions, and the simulation box can very quickly
604 form elongated and sheared geometries which become smaller than the
605 electrostatic or Lennard-Jones cutoff radii. The NPTf integrator
606 finds most use in simulating crystals or liquid crystals which
607 assume non-orthorhombic geometries.
608
609 \subsection{\label{methodSection:otherSpecialEnsembles}Other Special Ensembles}
610
611 \subsubsection{\label{methodSection:NPAT}NPAT Ensemble}
612
613 A comprehensive understanding of structure¨Cfunction relations of
614 biological membrane system ultimately relies on structure and
615 dynamics of lipid bilayer, which are strongly affected by the
616 interfacial interaction between lipid molecules and surrounding
617 media. One quantity to describe the interfacial interaction is so
618 called the average surface area per lipid. Constat area and constant
619 lateral pressure simulation can be achieved by extending the
620 standard NPT ensemble with a different pressure control strategy
621
622 \begin{equation}
623 \dot {\overleftrightarrow{\eta}} _{\alpha \beta}=\left\{\begin{array}{ll}
624 \frac{{V(P_{\alpha \beta } - P_{{\rm{target}}} )}}{{\tau_{\rm{B}}^{\rm{2}} fk_B T_{{\rm{target}}} }}
625 & \mbox{if $ \alpha = \beta = z$}\\
626 0 & \mbox{otherwise}\\
627 \end{array}
628 \right.
629 \end{equation}
630
631 Note that the iterative schemes for NPAT are identical to those
632 described for the NPTi integrator.
633
634 \subsubsection{\label{methodSection:NPrT}NP$\gamma$T Ensemble}
635
636 Theoretically, the surface tension $\gamma$ of a stress free
637 membrane system should be zero since its surface free energy $G$ is
638 minimum with respect to surface area $A$
639 \[
640 \gamma = \frac{{\partial G}}{{\partial A}}.
641 \]
642 However, a surface tension of zero is not appropriate for relatively
643 small patches of membrane. In order to eliminate the edge effect of
644 the membrane simulation, a special ensemble, NP$\gamma$T, is
645 proposed to maintain the lateral surface tension and normal
646 pressure. The equation of motion for cell size control tensor,
647 $\eta$, in $NP\gamma T$ is
648 \begin{equation}
649 \dot {\overleftrightarrow{\eta}} _{\alpha \beta}=\left\{\begin{array}{ll}
650 - A_{xy} (\gamma _\alpha - \gamma _{{\rm{target}}} ) & \mbox{$\alpha = \beta = x$ or $\alpha = \beta = y$}\\
651 \frac{{V(P_{\alpha \beta } - P_{{\rm{target}}} )}}{{\tau _{\rm{B}}^{\rm{2}} fk_B T_{{\rm{target}}}}} & \mbox{$\alpha = \beta = z$} \\
652 0 & \mbox{$\alpha \ne \beta$} \\
653 \end{array}
654 \right.
655 \end{equation}
656 where $ \gamma _{{\rm{target}}}$ is the external surface tension and
657 the instantaneous surface tensor $\gamma _\alpha$ is given by
658 \begin{equation}
659 \gamma _\alpha = - h_z( \overleftrightarrow{P} _{\alpha \alpha }
660 - P_{{\rm{target}}} )
661 \label{methodEquation:instantaneousSurfaceTensor}
662 \end{equation}
663
664 There is one additional extended system integrator (NPTxyz), in
665 which each attempt to preserve the target pressure along the box
666 walls perpendicular to that particular axis. The lengths of the box
667 axes are allowed to fluctuate independently, but the angle between
668 the box axes does not change. It should be noted that the NPTxyz
669 integrator is a special case of $NP\gamma T$ if the surface tension
670 $\gamma$ is set to zero.
671
672 \section{\label{methodSection:zcons}Z-Constraint Method}
673
674 Based on the fluctuation-dissipation theorem, a force
675 auto-correlation method was developed by Roux and Karplus to
676 investigate the dynamics of ions inside ion channels\cite{Roux1991}.
677 The time-dependent friction coefficient can be calculated from the
678 deviation of the instantaneous force from its mean force.
679 \begin{equation}
680 \xi(z,t)=\langle\delta F(z,t)\delta F(z,0)\rangle/k_{B}T,
681 \end{equation}
682 where%
683 \begin{equation}
684 \delta F(z,t)=F(z,t)-\langle F(z,t)\rangle.
685 \end{equation}
686
687 If the time-dependent friction decays rapidly, the static friction
688 coefficient can be approximated by
689 \begin{equation}
690 \xi_{\text{static}}(z)=\int_{0}^{\infty}\langle\delta F(z,t)\delta
691 F(z,0)\rangle dt.
692 \end{equation}
693 Allowing diffusion constant to then be calculated through the
694 Einstein relation:\cite{Marrink1994}
695 \begin{equation}
696 D(z)=\frac{k_{B}T}{\xi_{\text{static}}(z)}=\frac{(k_{B}T)^{2}}{\int_{0}^{\infty
697 }\langle\delta F(z,t)\delta F(z,0)\rangle dt}.%
698 \end{equation}
699
700 The Z-Constraint method, which fixes the z coordinates of the
701 molecules with respect to the center of the mass of the system, has
702 been a method suggested to obtain the forces required for the force
703 auto-correlation calculation.\cite{Marrink1994} However, simply
704 resetting the coordinate will move the center of the mass of the
705 whole system. To avoid this problem, we reset the forces of
706 z-constrained molecules as well as subtract the total constraint
707 forces from the rest of the system after the force calculation at
708 each time step instead of resetting the coordinate.
709
710 After the force calculation, define $G_\alpha$ as
711 \begin{equation}
712 G_{\alpha} = \sum_i F_{\alpha i}, \label{oopseEq:zc1}
713 \end{equation}
714 where $F_{\alpha i}$ is the force in the z direction of atom $i$ in
715 z-constrained molecule $\alpha$. The forces of the z constrained
716 molecule are then set to:
717 \begin{equation}
718 F_{\alpha i} = F_{\alpha i} -
719 \frac{m_{\alpha i} G_{\alpha}}{\sum_i m_{\alpha i}}.
720 \end{equation}
721 Here, $m_{\alpha i}$ is the mass of atom $i$ in the z-constrained
722 molecule. Having rescaled the forces, the velocities must also be
723 rescaled to subtract out any center of mass velocity in the z
724 direction.
725 \begin{equation}
726 v_{\alpha i} = v_{\alpha i} -
727 \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}},
728 \end{equation}
729 where $v_{\alpha i}$ is the velocity of atom $i$ in the z direction.
730 Lastly, all of the accumulated z constrained forces must be
731 subtracted from the system to keep the system center of mass from
732 drifting.
733 \begin{equation}
734 F_{\beta i} = F_{\beta i} - \frac{m_{\beta i} \sum_{\alpha}
735 G_{\alpha}}
736 {\sum_{\beta}\sum_i m_{\beta i}},
737 \end{equation}
738 where $\beta$ are all of the unconstrained molecules in the system.
739 Similarly, the velocities of the unconstrained molecules must also
740 be scaled.
741 \begin{equation}
742 v_{\beta i} = v_{\beta i} + \sum_{\alpha}
743 \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}}.
744 \end{equation}
745
746 At the very beginning of the simulation, the molecules may not be at
747 their constrained positions. To move a z-constrained molecule to its
748 specified position, a simple harmonic potential is used
749 \begin{equation}
750 U(t)=\frac{1}{2}k_{\text{Harmonic}}(z(t)-z_{\text{cons}})^{2},%
751 \end{equation}
752 where $k_{\text{Harmonic}}$ is the harmonic force constant, $z(t)$
753 is the current $z$ coordinate of the center of mass of the
754 constrained molecule, and $z_{\text{cons}}$ is the constrained
755 position. The harmonic force operating on the z-constrained molecule
756 at time $t$ can be calculated by
757 \begin{equation}
758 F_{z_{\text{Harmonic}}}(t)=-\frac{\partial U(t)}{\partial z(t)}=
759 -k_{\text{Harmonic}}(z(t)-z_{\text{cons}}).
760 \end{equation}
761
762
763 \section{\label{methodSection:langevin}Integrators for Langevin Dynamics of Rigid Bodies}
764
765 %\subsection{\label{methodSection:temperature}Temperature Control}
766
767 %\subsection{\label{methodSection:pressureControl}Pressure Control}
768
769 %\section{\label{methodSection:hydrodynamics}Hydrodynamics}
770
771 %applications of langevin dynamics
772 As an excellent alternative to newtonian dynamics, Langevin
773 dynamics, which mimics a simple heat bath with stochastic and
774 dissipative forces, has been applied in a variety of studies. The
775 stochastic treatment of the solvent enables us to carry out
776 substantially longer time simulation. Implicit solvent Langevin
777 dynamics simulation of met-enkephalin not only outperforms explicit
778 solvent simulation on computation efficiency, but also agrees very
779 well with explicit solvent simulation on dynamics
780 properties\cite{Shen2002}. Recently, applying Langevin dynamics with
781 UNRES model, Liow and his coworkers suggest that protein folding
782 pathways can be possibly exploited within a reasonable amount of
783 time\cite{Liwo2005}. The stochastic nature of the Langevin dynamics
784 also enhances the sampling of the system and increases the
785 probability of crossing energy barrier\cite{Banerjee2004, Cui2003}.
786 Combining Langevin dynamics with Kramers's theory, Klimov and
787 Thirumalai identified the free-energy barrier by studying the
788 viscosity dependence of the protein folding rates\cite{Klimov1997}.
789 In order to account for solvent induced interactions missing from
790 implicit solvent model, Kaya incorporated desolvation free energy
791 barrier into implicit coarse-grained solvent model in protein
792 folding/unfolding study and discovered a higher free energy barrier
793 between the native and denatured states. Because of its stability
794 against noise, Langevin dynamics is very suitable for studying
795 remagnetization processes in various
796 systems\cite{Garcia-Palacios1998,Berkov2002,Denisov2003}. For
797 instance, the oscillation power spectrum of nanoparticles from
798 Langevin dynamics simulation has the same peak frequencies for
799 different wave vectors,which recovers the property of magnetic
800 excitations in small finite structures\cite{Berkov2005a}. In an
801 attempt to reduce the computational cost of simulation, multiple
802 time stepping (MTS) methods have been introduced and have been of
803 great interest to macromolecule and protein
804 community\cite{Tuckerman1992}. Relying on the observation that
805 forces between distant atoms generally demonstrate slower
806 fluctuations than forces between close atoms, MTS method are
807 generally implemented by evaluating the slowly fluctuating forces
808 less frequently than the fast ones. Unfortunately, nonlinear
809 instability resulting from increasing timestep in MTS simulation
810 have became a critical obstruction preventing the long time
811 simulation. Due to the coupling to the heat bath, Langevin dynamics
812 has been shown to be able to damp out the resonance artifact more
813 efficiently\cite{Sandu1999}.
814
815 %review rigid body dynamics
816 Rigid bodies are frequently involved in the modeling of different
817 areas, from engineering, physics, to chemistry. For example,
818 missiles and vehicle are usually modeled by rigid bodies. The
819 movement of the objects in 3D gaming engine or other physics
820 simulator is governed by the rigid body dynamics. In molecular
821 simulation, rigid body is used to simplify the model in
822 protein-protein docking study\cite{Gray2003}.
823
824 It is very important to develop stable and efficient methods to
825 integrate the equations of motion of orientational degrees of
826 freedom. Euler angles are the nature choice to describe the
827 rotational degrees of freedom. However, due to its singularity, the
828 numerical integration of corresponding equations of motion is very
829 inefficient and inaccurate. Although an alternative integrator using
830 different sets of Euler angles can overcome this
831 difficulty\cite{Ryckaert1977, Andersen1983}, the computational
832 penalty and the lost of angular momentum conservation still remain.
833 In 1977, a singularity free representation utilizing quaternions was
834 developed by Evans\cite{Evans1977}. Unfortunately, this approach
835 suffer from the nonseparable Hamiltonian resulted from quaternion
836 representation, which prevents the symplectic algorithm to be
837 utilized. Another different approach is to apply holonomic
838 constraints to the atoms belonging to the rigid
839 body\cite{Barojas1973}. Each atom moves independently under the
840 normal forces deriving from potential energy and constraint forces
841 which are used to guarantee the rigidness. However, due to their
842 iterative nature, SHAKE and Rattle algorithm converge very slowly
843 when the number of constraint increases.
844
845 The break through in geometric literature suggests that, in order to
846 develop a long-term integration scheme, one should preserve the
847 geometric structure of the flow. Matubayasi and Nakahara developed a
848 time-reversible integrator for rigid bodies in quaternion
849 representation. Although it is not symplectic, this integrator still
850 demonstrates a better long-time energy conservation than traditional
851 methods because of the time-reversible nature. Extending
852 Trotter-Suzuki to general system with a flat phase space, Miller and
853 his colleagues devised an novel symplectic, time-reversible and
854 volume-preserving integrator in quaternion representation. However,
855 all of the integrators in quaternion representation suffer from the
856 computational penalty of constructing a rotation matrix from
857 quaternions to evolve coordinates and velocities at every time step.
858 An alternative integration scheme utilizing rotation matrix directly
859 is RSHAKE\cite{Kol1997}, in which a conjugate momentum to rotation
860 matrix is introduced to re-formulate the Hamiltonian's equation and
861 the Hamiltonian is evolved in a constraint manifold by iteratively
862 satisfying the orthogonality constraint. However, RSHAKE is
863 inefficient because of the iterative procedure. An extremely
864 efficient integration scheme in rotation matrix representation,
865 which also preserves the same structural properties of the
866 Hamiltonian flow as Miller's integrator, is proposed by Dullweber,
867 Leimkuhler and McLachlan (DLM)\cite{Dullweber1997}.
868
869 %review langevin/browninan dynamics for arbitrarily shaped rigid body
870 Combining Langevin or Brownian dynamics with rigid body dynamics,
871 one can study the slow processes in biomolecular systems. Modeling
872 the DNA as a chain of rigid spheres beads, which subject to harmonic
873 potentials as well as excluded volume potentials, Mielke and his
874 coworkers discover rapid superhelical stress generations from the
875 stochastic simulation of twin supercoiling DNA with response to
876 induced torques\cite{Mielke2004}. Membrane fusion is another key
877 biological process which controls a variety of physiological
878 functions, such as release of neurotransmitters \textit{etc}. A
879 typical fusion event happens on the time scale of millisecond, which
880 is impracticable to study using all atomistic model with newtonian
881 mechanics. With the help of coarse-grained rigid body model and
882 stochastic dynamics, the fusion pathways were exploited by many
883 researchers\cite{Noguchi2001,Noguchi2002,Shillcock2005}. Due to the
884 difficulty of numerical integration of anisotropy rotation, most of
885 the rigid body models are simply modeled by sphere, cylinder,
886 ellipsoid or other regular shapes in stochastic simulations. In an
887 effort to account for the diffusion anisotropy of the arbitrary
888 particles, Fernandes and de la Torre improved the original Brownian
889 dynamics simulation algorithm\cite{Ermak1978,Allison1991} by
890 incorporating a generalized $6\times6$ diffusion tensor and
891 introducing a simple rotation evolution scheme consisting of three
892 consecutive rotations\cite{Fernandes2002}. Unfortunately, unexpected
893 error and bias are introduced into the system due to the arbitrary
894 order of applying the noncommuting rotation
895 operators\cite{Beard2003}. Based on the observation the momentum
896 relaxation time is much less than the time step, one may ignore the
897 inertia in Brownian dynamics. However, assumption of the zero
898 average acceleration is not always true for cooperative motion which
899 is common in protein motion. An inertial Brownian dynamics (IBD) was
900 proposed to address this issue by adding an inertial correction
901 term\cite{Beard2001}. As a complement to IBD which has a lower bound
902 in time step because of the inertial relaxation time, long-time-step
903 inertial dynamics (LTID) can be used to investigate the inertial
904 behavior of the polymer segments in low friction
905 regime\cite{Beard2001}. LTID can also deal with the rotational
906 dynamics for nonskew bodies without translation-rotation coupling by
907 separating the translation and rotation motion and taking advantage
908 of the analytical solution of hydrodynamics properties. However,
909 typical nonskew bodies like cylinder and ellipsoid are inadequate to
910 represent most complex macromolecule assemblies. These intricate
911 molecules have been represented by a set of beads and their
912 hydrodynamics properties can be calculated using variant
913 hydrodynamic interaction tensors.
914
915 The goal of the present work is to develop a Langevin dynamics
916 algorithm for arbitrary rigid particles by integrating the accurate
917 estimation of friction tensor from hydrodynamics theory into the
918 sophisticated rigid body dynamics.
919
920
921 \subsection{Friction Tensor}
922
923 For an arbitrary rigid body moves in a fluid, it may experience
924 friction force $f_r$ or friction torque $\tau _r$ along the opposite
925 direction of the velocity $v$ or angular velocity $\omega$ at
926 arbitrary origin $P$,
927 \begin{equation}
928 \left( \begin{array}{l}
929 f_r \\
930 \tau _r \\
931 \end{array} \right) = - \left( {\begin{array}{*{20}c}
932 {\Xi _{P,t} } & {\Xi _{P,c}^T } \\
933 {\Xi _{P,c} } & {\Xi _{P,r} } \\
934 \end{array}} \right)\left( \begin{array}{l}
935 \nu \\
936 \omega \\
937 \end{array} \right)
938 \end{equation}
939 where $\Xi _{P,t}t$ is the translation friction tensor, $\Xi _{P,r}$
940 is the rotational friction tensor and $\Xi _{P,c}$ is the
941 translation-rotation coupling tensor. The procedure of calculating
942 friction tensor using hydrodynamic tensor and comparison between
943 bead model and shell model were elaborated by Carrasco \textit{et
944 al}\cite{Carrasco1999}. An important property of the friction tensor
945 is that the translational friction tensor is independent of origin
946 while the rotational and coupling are sensitive to the choice of the
947 origin \cite{Brenner1967}, which can be described by
948 \begin{equation}
949 \begin{array}{c}
950 \Xi _{P,t} = \Xi _{O,t} = \Xi _t \\
951 \Xi _{P,c} = \Xi _{O,c} - r_{OP} \times \Xi _t \\
952 \Xi _{P,r} = \Xi _{O,r} - r_{OP} \times \Xi _t \times r_{OP} + \Xi _{O,c} \times r_{OP} - r_{OP} \times \Xi _{O,c}^T \\
953 \end{array}
954 \end{equation}
955 Where $O$ is another origin and $r_{OP}$ is the vector joining $O$
956 and $P$. It is also worthy of mention that both of translational and
957 rotational frictional tensors are always symmetric. In contrast,
958 coupling tensor is only symmetric at center of reaction:
959 \begin{equation}
960 \Xi _{R,c} = \Xi _{R,c}^T
961 \end{equation}
962 The proper location for applying friction force is the center of
963 reaction, at which the trace of rotational resistance tensor reaches
964 minimum.
965
966 \subsection{Rigid body dynamics}
967
968 The Hamiltonian of rigid body can be separated in terms of potential
969 energy $V(r,A)$ and kinetic energy $T(p,\pi)$,
970 \[
971 H = V(r,A) + T(v,\pi )
972 \]
973 A second-order symplectic method is now obtained by the composition
974 of the flow maps,
975 \[
976 \varphi _{\Delta t} = \varphi _{\Delta t/2,V} \circ \varphi
977 _{\Delta t,T} \circ \varphi _{\Delta t/2,V}.
978 \]
979 Moreover, $\varphi _{\Delta t/2,V}$ can be divided into two
980 sub-flows which corresponding to force and torque respectively,
981 \[
982 \varphi _{\Delta t/2,V} = \varphi _{\Delta t/2,F} \circ \varphi
983 _{\Delta t/2,\tau }.
984 \]
985 Since the associated operators of $\varphi _{\Delta t/2,F} $ and
986 $\circ \varphi _{\Delta t/2,\tau }$ are commuted, the composition
987 order inside $\varphi _{\Delta t/2,V}$ does not matter.
988
989 Furthermore, kinetic potential can be separated to translational
990 kinetic term, $T^t (p)$, and rotational kinetic term, $T^r (\pi )$,
991 \begin{equation}
992 T(p,\pi ) =T^t (p) + T^r (\pi ).
993 \end{equation}
994 where $ T^t (p) = \frac{1}{2}v^T m v $ and $T^r (\pi )$ is defined
995 by \ref{introEquation:rotationalKineticRB}. Therefore, the
996 corresponding flow maps are given by
997 \[
998 \varphi _{\Delta t,T} = \varphi _{\Delta t,T^t } \circ \varphi
999 _{\Delta t,T^r }.
1000 \]
1001 The free rigid body is an example of Lie-Poisson system with
1002 Hamiltonian function
1003 \begin{equation}
1004 T^r (\pi ) = T_1 ^r (\pi _1 ) + T_2^r (\pi _2 ) + T_3^r (\pi _3 )
1005 \label{introEquation:rotationalKineticRB}
1006 \end{equation}
1007 where $T_i^r (\pi _i ) = \frac{{\pi _i ^2 }}{{2I_i }}$ and
1008 Lie-Poisson structure matrix,
1009 \begin{equation}
1010 J(\pi ) = \left( {\begin{array}{*{20}c}
1011 0 & {\pi _3 } & { - \pi _2 } \\
1012 { - \pi _3 } & 0 & {\pi _1 } \\
1013 {\pi _2 } & { - \pi _1 } & 0 \\
1014 \end{array}} \right)
1015 \end{equation}
1016 Thus, the dynamics of free rigid body is governed by
1017 \begin{equation}
1018 \frac{d}{{dt}}\pi = J(\pi )\nabla _\pi T^r (\pi )
1019 \end{equation}
1020 One may notice that each $T_i^r$ in Equation
1021 \ref{introEquation:rotationalKineticRB} can be solved exactly. For
1022 instance, the equations of motion due to $T_1^r$ are given by
1023 \begin{equation}
1024 \frac{d}{{dt}}\pi = R_1 \pi ,\frac{d}{{dt}}A = AR_1
1025 \label{introEqaution:RBMotionSingleTerm}
1026 \end{equation}
1027 where
1028 \[ R_1 = \left( {\begin{array}{*{20}c}
1029 0 & 0 & 0 \\
1030 0 & 0 & {\pi _1 } \\
1031 0 & { - \pi _1 } & 0 \\
1032 \end{array}} \right).
1033 \]
1034 The solutions of Equation \ref{introEqaution:RBMotionSingleTerm} is
1035 \[
1036 \pi (\Delta t) = e^{\Delta tR_1 } \pi (0),A(\Delta t) =
1037 A(0)e^{\Delta tR_1 }
1038 \]
1039 with
1040 \[
1041 e^{\Delta tR_1 } = \left( {\begin{array}{*{20}c}
1042 0 & 0 & 0 \\
1043 0 & {\cos \theta _1 } & {\sin \theta _1 } \\
1044 0 & { - \sin \theta _1 } & {\cos \theta _1 } \\
1045 \end{array}} \right),\theta _1 = \frac{{\pi _1 }}{{I_1 }}\Delta t.
1046 \]
1047 To reduce the cost of computing expensive functions in $e^{\Delta
1048 tR_1 }$, we can use Cayley transformation,
1049 \[
1050 e^{\Delta tR_1 } \approx (1 - \Delta tR_1 )^{ - 1} (1 + \Delta tR_1
1051 )
1052 \]
1053 The flow maps for $T_2^r$ and $T_3^r$ can be found in the same
1054 manner.
1055
1056 In order to construct a second-order symplectic method, we split the
1057 angular kinetic Hamiltonian function into five terms
1058 \[
1059 T^r (\pi ) = \frac{1}{2}T_1 ^r (\pi _1 ) + \frac{1}{2}T_2^r (\pi _2
1060 ) + T_3^r (\pi _3 ) + \frac{1}{2}T_2^r (\pi _2 ) + \frac{1}{2}T_1 ^r
1061 (\pi _1 )
1062 \].
1063 Concatenating flows corresponding to these five terms, we can obtain
1064 the flow map for free rigid body,
1065 \[
1066 \varphi _{\Delta t,T^r } = \varphi _{\Delta t/2,\pi _1 } \circ
1067 \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 }
1068 \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi
1069 _1 }.
1070 \]
1071
1072 The equations of motion corresponding to potential energy and
1073 kinetic energy are listed in the below table,
1074 \begin{center}
1075 \begin{tabular}{|l|l|}
1076 \hline
1077 % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
1078 Potential & Kinetic \\
1079 $\frac{{dq}}{{dt}} = \frac{p}{m}$ & $\frac{d}{{dt}}q = p$ \\
1080 $\frac{d}{{dt}}p = - \frac{{\partial V}}{{\partial q}}$ & $ \frac{d}{{dt}}p = 0$ \\
1081 $\frac{d}{{dt}}Q = 0$ & $ \frac{d}{{dt}}Q = Qskew(I^{ - 1} j)$ \\
1082 $ \frac{d}{{dt}}\pi = \sum\limits_i {\left( {Q^T F_i (r,Q)} \right) \times X_i }$ & $\frac{d}{{dt}}\pi = \pi \times I^{ - 1} \pi$\\
1083 \hline
1084 \end{tabular}
1085 \end{center}
1086
1087 Finally, we obtain the overall symplectic flow maps for free moving
1088 rigid body
1089 \begin{align*}
1090 \varphi _{\Delta t} = &\varphi _{\Delta t/2,F} \circ \varphi _{\Delta t/2,\tau } \circ \\
1091 &\varphi _{\Delta t,T^t } \circ \varphi _{\Delta t/2,\pi _1 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t,\pi _3 } \circ \varphi _{\Delta t/2,\pi _2 } \circ \varphi _{\Delta t/2,\pi _1 } \circ \\
1092 &\varphi _{\Delta t/2,\tau } \circ \varphi _{\Delta t/2,F} .\\
1093 \label{introEquation:overallRBFlowMaps}
1094 \end{align*}
1095
1096 \subsection{Langevin dynamics for rigid particles of arbitrary shape}
1097
1098 Consider a Langevin equation of motions in generalized coordinates
1099 \begin{equation}
1100 M_i \dot V_i (t) = F_{s,i} (t) + F_{f,i(t)} + F_{r,i} (t)
1101 \label{LDGeneralizedForm}
1102 \end{equation}
1103 where $M_i$ is a $6\times6$ generalized diagonal mass (include mass
1104 and moment of inertial) matrix and $V_i$ is a generalized velocity,
1105 $V_i = V_i(v_i,\omega _i)$. The right side of Eq.
1106 (\ref{LDGeneralizedForm}) consists of three generalized forces in
1107 lab-fixed frame, systematic force $F_{s,i}$, dissipative force
1108 $F_{f,i}$ and stochastic force $F_{r,i}$. While the evolution of the
1109 system in Newtownian mechanics typically refers to lab-fixed frame,
1110 it is also convenient to handle the rotation of rigid body in
1111 body-fixed frame. Thus the friction and random forces are calculated
1112 in body-fixed frame and converted back to lab-fixed frame by:
1113 \[
1114 \begin{array}{l}
1115 F_{f,i}^l (t) = A^T F_{f,i}^b (t), \\
1116 F_{r,i}^l (t) = A^T F_{r,i}^b (t) \\
1117 \end{array}.
1118 \]
1119 Here, the body-fixed friction force $F_{r,i}^b$ is proportional to
1120 the body-fixed velocity at center of resistance $v_{R,i}^b$ and
1121 angular velocity $\omega _i$,
1122 \begin{equation}
1123 F_{r,i}^b (t) = \left( \begin{array}{l}
1124 f_{r,i}^b (t) \\
1125 \tau _{r,i}^b (t) \\
1126 \end{array} \right) = - \left( {\begin{array}{*{20}c}
1127 {\Xi _{R,t} } & {\Xi _{R,c}^T } \\
1128 {\Xi _{R,c} } & {\Xi _{R,r} } \\
1129 \end{array}} \right)\left( \begin{array}{l}
1130 v_{R,i}^b (t) \\
1131 \omega _i (t) \\
1132 \end{array} \right),
1133 \end{equation}
1134 while the random force $F_{r,i}^l$ is a Gaussian stochastic variable
1135 with zero mean and variance
1136 \begin{equation}
1137 \left\langle {F_{r,i}^l (t)(F_{r,i}^l (t'))^T } \right\rangle =
1138 \left\langle {F_{r,i}^b (t)(F_{r,i}^b (t'))^T } \right\rangle =
1139 2k_B T\Xi _R \delta (t - t').
1140 \end{equation}
1141 The equation of motion for $v_i$ can be written as
1142 \begin{equation}
1143 m\dot v_i (t) = f_{t,i} (t) = f_{s,i} (t) + f_{f,i}^l (t) +
1144 f_{r,i}^l (t)
1145 \end{equation}
1146 Since the frictional force is applied at the center of resistance
1147 which generally does not coincide with the center of mass, an extra
1148 torque is exerted at the center of mass. Thus, the net body-fixed
1149 frictional torque at the center of mass, $\tau _{n,i}^b (t)$, is
1150 given by
1151 \begin{equation}
1152 \tau _{r,i}^b = \tau _{r,i}^b +r_{MR} \times f_{r,i}^b
1153 \end{equation}
1154 where $r_{MR}$ is the vector from the center of mass to the center
1155 of the resistance. Instead of integrating angular velocity in
1156 lab-fixed frame, we consider the equation of motion of angular
1157 momentum in body-fixed frame
1158 \begin{equation}
1159 \dot \pi _i (t) = \tau _{t,i} (t) = \tau _{s,i} (t) + \tau _{f,i}^b
1160 (t) + \tau _{r,i}^b(t)
1161 \end{equation}
1162
1163 Embedding the friction terms into force and torque, one can
1164 integrate the langevin equations of motion for rigid body of
1165 arbitrary shape in a velocity-Verlet style 2-part algorithm, where
1166 $h= \delta t$:
1167
1168 {\tt part one:}
1169 \begin{align*}
1170 v_i (t + h/2) &\leftarrow v_i (t) + \frac{{hf_{t,i}^l (t)}}{{2m_i }} \\
1171 \pi _i (t + h/2) &\leftarrow \pi _i (t) + \frac{{h\tau _{t,i}^b (t)}}{2} \\
1172 r_i (t + h) &\leftarrow r_i (t) + hv_i (t + h/2) \\
1173 A_i (t + h) &\leftarrow rotate\left( {h\pi _i (t + h/2)I^{ - 1} } \right) \\
1174 \end{align*}
1175 In this context, the $\mathrm{rotate}$ function is the reversible
1176 product of five consecutive body-fixed rotations,
1177 \begin{equation}
1178 \mathrm{rotate}({\bf a}) = \mathsf{G}_x(a_x / 2) \cdot
1179 \mathsf{G}_y(a_y / 2) \cdot \mathsf{G}_z(a_z) \cdot \mathsf{G}_y(a_y
1180 / 2) \cdot \mathsf{G}_x(a_x /2),
1181 \end{equation}
1182 where each rotational propagator, $\mathsf{G}_\alpha(\theta)$,
1183 rotates both the rotation matrix ($\mathsf{A}$) and the body-fixed
1184 angular momentum ($\pi$) by an angle $\theta$ around body-fixed axis
1185 $\alpha$,
1186 \begin{equation}
1187 \mathsf{G}_\alpha( \theta ) = \left\{
1188 \begin{array}{lcl}
1189 \mathsf{A}(t) & \leftarrow & \mathsf{A}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
1190 {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf
1191 j}(0).
1192 \end{array}
1193 \right.
1194 \end{equation}
1195 $\mathsf{R}_\alpha$ is a quadratic approximation to the single-axis
1196 rotation matrix. For example, in the small-angle limit, the
1197 rotation matrix around the body-fixed x-axis can be approximated as
1198 \begin{equation}
1199 \mathsf{R}_x(\theta) \approx \left(
1200 \begin{array}{ccc}
1201 1 & 0 & 0 \\
1202 0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4} & -\frac{\theta}{1+
1203 \theta^2 / 4} \\
1204 0 & \frac{\theta}{1+ \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 +
1205 \theta^2 / 4}
1206 \end{array}
1207 \right).
1208 \end{equation}
1209 All other rotations follow in a straightforward manner.
1210
1211 After the first part of the propagation, the friction and random
1212 forces are generated at the center of resistance in body-fixed frame
1213 and converted back into lab-fixed frame
1214 \[
1215 f_{t,i}^l (t + h) = - \left( {\frac{{\partial V}}{{\partial r_i }}}
1216 \right)_{r_i (t + h)} + A_i^T (t + h)[F_{f,i}^b (t + h) + F_{r,i}^b
1217 (t + h)],
1218 \]
1219 while the system torque in lab-fixed frame is transformed into
1220 body-fixed frame,
1221 \[
1222 \tau _{t,i}^b (t + h) = A\tau _{s,i}^l (t) + \tau _{n,i}^b (t) +
1223 \tau _{r,i}^b (t).
1224 \]
1225 Once the forces and torques have been obtained at the new time step,
1226 the velocities can be advanced to the same time value.
1227
1228 {\tt part two:}
1229 \begin{align*}
1230 v_i (t) &\leftarrow v_i (t + h/2) + \frac{{hf_{t,i}^l (t + h)}}{{2m_i }} \\
1231 \pi _i (t) &\leftarrow \pi _i (t + h/2) + \frac{{h\tau _{t,i}^b (t + h)}}{2} \\
1232 \end{align*}
1233
1234 \subsection{Results and discussion}