ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Methodology.tex
(Generate patch)

Comparing trunk/tengDissertation/Methodology.tex (file contents):
Revision 2799 by tim, Tue Jun 6 14:30:41 2006 UTC vs.
Revision 2938 by tim, Mon Jul 17 15:28:44 2006 UTC

# Line 2 | Line 2 | In order to mimic the experiments, which are usually p
2  
3   \section{\label{methodSection:rigidBodyIntegrators}Integrators for Rigid Body Motion in Molecular Dynamics}
4  
5 < In order to mimic the experiments, which are usually performed under
5 > In order to mimic experiments which are usually performed under
6   constant temperature and/or pressure, extended Hamiltonian system
7   methods have been developed to generate statistical ensembles, such
8 < as canonical ensemble and isobaric-isothermal ensemble \textit{etc}.
9 < In addition to the standard ensemble, specific ensembles have been
10 < developed to account for the anisotropy between the lateral and
11 < normal directions of membranes. The $NPAT$ ensemble, in which the
12 < normal pressure and the lateral surface area of the membrane are
13 < kept constant, and the $NP\gamma T$ ensemble, in which the normal
14 < pressure and the lateral surface tension are kept constant were
15 < proposed to address this issue.
8 > as the canonical and isobaric-isothermal ensembles. In addition to
9 > the standard ensemble, specific ensembles have been developed to
10 > account for the anisotropy between the lateral and normal directions
11 > of membranes. The $NPAT$ ensemble, in which the normal pressure and
12 > the lateral surface area of the membrane are kept constant, and the
13 > $NP\gamma T$ ensemble, in which the normal pressure and the lateral
14 > surface tension are kept constant were proposed to address the
15 > issues.
16  
17 < Integration schemes for rotational motion of the rigid molecules in
18 < microcanonical ensemble have been extensively studied in the last
19 < two decades. Matubayasi and Nakahara developed a time-reversible
20 < integrator for rigid bodies in quaternion representation. Although
21 < it is not symplectic, this integrator still demonstrates a better
22 < long-time energy conservation than traditional methods because of
23 < the time-reversible nature. Extending Trotter-Suzuki to general
24 < system with a flat phase space, Miller and his colleagues devised an
25 < novel symplectic, time-reversible and volume-preserving integrator
26 < in quaternion representation, which was shown to be superior to the
27 < time-reversible integrator of Matubayasi and Nakahara. However, all
28 < of the integrators in quaternion representation suffer from the
17 > Integration schemes for the rotational motion of the rigid molecules
18 > in the microcanonical ensemble have been extensively studied over
19 > the last two decades. Matubayasi developed a
20 > time-reversible integrator for rigid bodies in quaternion
21 > representation\cite{Matubayasi1999}. Although it is not symplectic, this integrator still
22 > demonstrates a better long-time energy conservation than Euler angle
23 > methods because of the time-reversible nature. Extending the
24 > Trotter-Suzuki factorization to general system with a flat phase
25 > space, Miller\cite{Miller2002} and his colleagues devised a novel
26 > symplectic, time-reversible and volume-preserving integrator in the
27 > quaternion representation, which was shown to be superior to the
28 > Matubayasi's time-reversible integrator. However, all of the
29 > integrators in the quaternion representation suffer from the
30   computational penalty of constructing a rotation matrix from
31   quaternions to evolve coordinates and velocities at every time step.
32 < An alternative integration scheme utilizing rotation matrix directly
33 < proposed by Dullweber, Leimkuhler and McLachlan (DLM) also preserved
34 < the same structural properties of the Hamiltonian flow. In this
35 < section, the integration scheme of DLM method will be reviewed and
36 < extended to other ensembles.
32 > An alternative integration scheme utilizing the rotation matrix
33 > directly proposed by Dullweber, Leimkuhler and McLachlan (DLM) also
34 > preserved the same structural properties of the Hamiltonian
35 > propagator\cite{Dullweber1997}. In this section, the integration
36 > scheme of DLM method will be reviewed and extended to other
37 > ensembles.
38  
39 < \subsection{\label{methodSection:DLM}Integrating the Equations of Motion: the
40 < DLM method}
39 > \subsection{\label{methodSection:DLM}Integrating the Equations of Motion: The
40 > DLM Method}
41  
42   The DLM method uses a Trotter factorization of the orientational
43   propagator.  This has three effects:
# Line 44 | Line 46 | Monte Carlo applications, and
46   {\it symplectic}),
47   \item the integrator is time-{\it reversible}, making it suitable for Hybrid
48   Monte Carlo applications, and
49 < \item the error for a single time step is of order $\mathcal{O}\left(h^4\right)$
49 > \item the error for a single time step is of order $\mathcal{O}\left(h^3\right)$
50   for timesteps of length $h$.
51   \end{enumerate}
50
52   The integration of the equations of motion is carried out in a
53   velocity-Verlet style 2-part algorithm, where $h= \delta t$:
54  
# Line 62 | Line 63 | velocity-Verlet style 2-part algorithm, where $h= \del
63   {\bf j}\left(t + h / 2 \right)  &\leftarrow {\bf j}(t)
64      + \frac{h}{2} {\bf \tau}^b(t), \\
65   %
66 < \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
66 > \mathsf{Q}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
67      (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right).
68   \end{align*}
68
69   In this context, the $\mathrm{rotate}$ function is the reversible
70   product of the three body-fixed rotations,
71   \begin{equation}
# Line 74 | Line 74 | rotates both the rotation matrix ($\mathsf{A}$) and th
74   / 2) \cdot \mathsf{G}_x(a_x /2),
75   \end{equation}
76   where each rotational propagator, $\mathsf{G}_\alpha(\theta)$,
77 < rotates both the rotation matrix ($\mathsf{A}$) and the body-fixed
78 < angular momentum (${\bf j}$) by an angle $\theta$ around body-fixed
77 > rotates both the rotation matrix $\mathsf{Q}$ and the body-fixed
78 > angular momentum ${\bf j}$ by an angle $\theta$ around body-fixed
79   axis $\alpha$,
80   \begin{equation}
81   \mathsf{G}_\alpha( \theta ) = \left\{
82   \begin{array}{lcl}
83 < \mathsf{A}(t) & \leftarrow & \mathsf{A}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
83 > \mathsf{Q}(t) & \leftarrow & \mathsf{Q}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
84   {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf
85   j}(0).
86   \end{array}
# Line 100 | Line 100 | All other rotations follow in a straightforward manner
100   \end{array}
101   \right).
102   \end{equation}
103 < All other rotations follow in a straightforward manner.
103 > All other rotations follow in a straightforward manner. After the
104 > first part of the propagation, the forces and body-fixed torques are
105 > calculated at the new positions and orientations
106  
105 After the first part of the propagation, the forces and body-fixed
106 torques are calculated at the new positions and orientations
107
107   {\tt doForces:}
108   \begin{align*}
109   {\bf f}(t + h) &\leftarrow
110      - \left(\frac{\partial V}{\partial {\bf r}}\right)_{{\bf r}(t + h)}, \\
111   %
112   {\bf \tau}^{s}(t + h) &\leftarrow {\bf u}(t + h)
113 <    \times \frac{\partial V}{\partial {\bf u}}, \\
113 >    \times (\frac{\partial V}{\partial {\bf u}})_{u(t+h)}, \\
114   %
115 < {\bf \tau}^{b}(t + h) &\leftarrow \mathsf{A}(t + h)
115 > {\bf \tau}^{b}(t + h) &\leftarrow \mathsf{Q}(t + h)
116      \cdot {\bf \tau}^s(t + h).
117   \end{align*}
118 <
119 < {\sc oopse} automatically updates ${\bf u}$ when the rotation matrix
121 < $\mathsf{A}$ is calculated in {\tt moveA}.  Once the forces and
118 > ${\bf u}$ is automatically updated when the rotation matrix
119 > $\mathsf{Q}$ is calculated in {\tt moveA}.  Once the forces and
120   torques have been obtained at the new time step, the velocities can
121   be advanced to the same time value.
122  
# Line 132 | Line 130 | be advanced to the same time value.
130   \right)
131      + \frac{h}{2} {\bf \tau}^b(t + h) .
132   \end{align*}
135
133   The matrix rotations used in the DLM method end up being more costly
134   computationally than the simpler arithmetic quaternion propagation.
135   With the same time step, a 1000-molecule water simulation shows an
136   average 7\% increase in computation time using the DLM method in
137   place of quaternions. This cost is more than justified when
138   comparing the energy conservation of the two methods as illustrated
139 < in Fig.~\ref{timestep}.
139 > in Fig.~\ref{methodFig:timestep} where the resulting energy drifts at
140 > various time steps for both the DLM and quaternion integration
141 > schemes are compared. All of the 1000 molecule water simulations
142 > started with the same configuration, and the only difference was the
143 > method for handling rotational motion. At time steps of 0.1 and 0.5
144 > fs, both methods for propagating molecule rotation conserve energy
145 > fairly well, with the quaternion method showing a slight energy
146 > drift over time in the 0.5 fs time step simulation. At time steps of
147 > 1 and 2 fs, the energy conservation benefits of the DLM method are
148 > clearly demonstrated. Thus, while maintaining the same degree of
149 > energy conservation, one can take considerably longer time steps,
150 > leading to an overall reduction in computation time.
151  
152   \begin{figure}
153   \centering
# Line 150 | Line 158 | from the true energy baseline for clarity.} \label{tim
158   increasing time step. For each time step, the dotted line is total
159   energy using the DLM integrator, and the solid line comes from the
160   quaternion integrator. The larger time step plots are shifted up
161 < from the true energy baseline for clarity.} \label{timestep}
161 > from the true energy baseline for clarity.}
162 > \label{methodFig:timestep}
163   \end{figure}
164  
156 In Fig.~\ref{timestep}, the resulting energy drift at various time
157 steps for both the DLM and quaternion integration schemes is
158 compared. All of the 1000 molecule water simulations started with
159 the same configuration, and the only difference was the method for
160 handling rotational motion. At time steps of 0.1 and 0.5 fs, both
161 methods for propagating molecule rotation conserve energy fairly
162 well, with the quaternion method showing a slight energy drift over
163 time in the 0.5 fs time step simulation. At time steps of 1 and 2
164 fs, the energy conservation benefits of the DLM method are clearly
165 demonstrated. Thus, while maintaining the same degree of energy
166 conservation, one can take considerably longer time steps, leading
167 to an overall reduction in computation time.
168
165   \subsection{\label{methodSection:NVT}Nos\'{e}-Hoover Thermostatting}
166  
167 < The Nos\'e-Hoover equations of motion are given by\cite{Hoover85}
167 > The Nos\'e-Hoover equations of motion are given by\cite{Hoover1985}
168   \begin{eqnarray}
169   \dot{{\bf r}} & = & {\bf v}, \\
170   \dot{{\bf v}} & = & \frac{{\bf f}}{m} - \chi {\bf v} ,\\
171 < \dot{\mathsf{A}} & = & \mathsf{A} \cdot
171 > \dot{\mathsf{Q}} & = & \mathsf{Q} \cdot
172   \mbox{ skew}\left(\overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j}\right), \\
173   \dot{{\bf j}} & = & {\bf j} \times \left(
174   \overleftrightarrow{\mathsf{I}}^{-1} \cdot {\bf j} \right) - \mbox{
175 < rot}\left(\mathsf{A}^{T} \cdot \frac{\partial V}{\partial
176 < \mathsf{A}} \right) - \chi {\bf j}. \label{eq:nosehoovereom}
175 > rot}\left(\mathsf{Q}^{T} \cdot \frac{\partial V}{\partial
176 > \mathsf{Q}} \right) - \chi {\bf j}. \label{eq:nosehoovereom}
177   \end{eqnarray}
182
178   $\chi$ is an ``extra'' variable included in the extended system, and
179   it is propagated using the first order equation of motion
180   \begin{equation}
181   \dot{\chi} = \frac{1}{\tau_{T}^2} \left(
182   \frac{T}{T_{\mathrm{target}}} - 1 \right). \label{eq:nosehooverext}
183   \end{equation}
184 <
185 < The instantaneous temperature $T$ is proportional to the total
186 < kinetic energy (both translational and orientational) and is given
192 < by
184 > where $\tau_T$ is the time constant for relaxation of the
185 > temperature to the target value, and the instantaneous temperature
186 > $T$ is given by
187   \begin{equation}
188 < T = \frac{2 K}{f k_B}
188 > T = \frac{2 K}{f k_B}.
189   \end{equation}
190   Here, $f$ is the total number of degrees of freedom in the system,
191   \begin{equation}
192   f = 3 N + 3 N_{\mathrm{orient}} - N_{\mathrm{constraints}},
193   \end{equation}
194 < and $K$ is the total kinetic energy,
195 < \begin{equation}
196 < K = \sum_{i=1}^{N} \frac{1}{2} m_i {\bf v}_i^T \cdot {\bf v}_i +
203 < \sum_{i=1}^{N_{\mathrm{orient}}}  \frac{1}{2} {\bf j}_i^T \cdot
204 < \overleftrightarrow{\mathsf{I}}_i^{-1} \cdot {\bf j}_i.
205 < \end{equation}
194 > where $N_{\mathrm{orient}}$ is the number of molecules with
195 > orientational degrees of freedom. The integration of the equations of motion
196 > is carried out in a velocity-Verlet style 2 part algorithm:
197  
207 In eq.(\ref{eq:nosehooverext}), $\tau_T$ is the time constant for
208 relaxation of the temperature to the target value.  To set values
209 for $\tau_T$ or $T_{\mathrm{target}}$ in a simulation, one would use
210 the {\tt tauThermostat} and {\tt targetTemperature} keywords in the
211 {\tt .bass} file.  The units for {\tt tauThermostat} are fs, and the
212 units for the {\tt targetTemperature} are degrees K.   The
213 integration of the equations of motion is carried out in a
214 velocity-Verlet style 2 part algorithm:
215
198   {\tt moveA:}
199   \begin{align*}
200   T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
# Line 228 | Line 210 | T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\b
210      + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
211      \chi(t) \right) ,\\
212   %
213 < \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}
214 <    \left(h * {\bf j}(t + h / 2)
213 > \mathsf{Q}(t + h) &\leftarrow \mathrm{rotate}
214 >    \left(h {\bf j}(t + h / 2)
215      \overleftrightarrow{\mathsf{I}}^{-1} \right) ,\\
216   %
217   \chi\left(t + h / 2 \right) &\leftarrow \chi(t)
218      + \frac{h}{2 \tau_T^2} \left( \frac{T(t)}
219      {T_{\mathrm{target}}} - 1 \right) .
220   \end{align*}
239
221   Here $\mathrm{rotate}(h * {\bf j}
222 < \overleftrightarrow{\mathsf{I}}^{-1})$ is the same symplectic
223 < Trotter factorization of the three rotation operations that was
224 < discussed in the section on the DLM integrator.  Note that this
225 < operation modifies both the rotation matrix $\mathsf{A}$ and the
226 < angular momentum ${\bf j}$.  {\tt moveA} propagates velocities by a
227 < half time step, and positional degrees of freedom by a full time
228 < step.  The new positions (and orientations) are then used to
229 < calculate a new set of forces and torques in exactly the same way
230 < they are calculated in the {\tt doForces} portion of the DLM
231 < integrator.
232 <
252 < Once the forces and torques have been obtained at the new time step,
253 < the temperature, velocities, and the extended system variable can be
222 > \overleftrightarrow{\mathsf{I}}^{-1})$ is the same symplectic Strang
223 > factorization of the three rotation operations that was discussed in
224 > the section on the DLM integrator.  Note that this operation
225 > modifies both the rotation matrix $\mathsf{Q}$ and the angular
226 > momentum ${\bf j}$.  {\tt moveA} propagates velocities by a half
227 > time step, and positional degrees of freedom by a full time step.
228 > The new positions (and orientations) are then used to calculate a
229 > new set of forces and torques in exactly the same way they are
230 > calculated in the {\tt doForces} portion of the DLM integrator. Once
231 > the forces and torques have been obtained at the new time step, the
232 > temperature, velocities, and the extended system variable can be
233   advanced to the same time value.
234  
235   {\tt moveB:}
# Line 272 | Line 251 | T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
251      \left( {\bf \tau}^b(t + h) - {\bf j}(t + h)
252      \chi(t + h) \right) .
253   \end{align*}
275
254   Since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required to
255   caclculate $T(t + h)$ as well as $\chi(t + h)$, they indirectly
256   depend on their own values at time $t + h$.  {\tt moveB} is
257   therefore done in an iterative fashion until $\chi(t + h)$ becomes
258 < self-consistent.  The relative tolerance for the self-consistency
259 < check defaults to a value of $\mbox{10}^{-6}$, but {\sc oopse} will
260 < terminate the iteration after 4 loops even if the consistency check
283 < has not been satisfied.
284 <
285 < The Nos\'e-Hoover algorithm is known to conserve a Hamiltonian for
286 < the extended system that is, to within a constant, identical to the
287 < Helmholtz free energy,\cite{melchionna93}
258 > self-consistent. The Nos\'e-Hoover algorithm is known to conserve a
259 > Hamiltonian for the extended system that is, to within a constant,
260 > identical to the Helmholtz free energy,\cite{Melchionna1993}
261   \begin{equation}
262   H_{\mathrm{NVT}} = V + K + f k_B T_{\mathrm{target}} \left(
263   \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
264   dt^\prime \right).
265   \end{equation}
266   Poor choices of $h$ or $\tau_T$ can result in non-conservation of
267 < $H_{\mathrm{NVT}}$, so the conserved quantity is maintained in the
268 < last column of the {\tt .stat} file to allow checks on the quality
296 < of the integration.
267 > $H_{\mathrm{NVT}}$, so the conserved quantity should be checked
268 > periodically to verify the quality of the integration.
269  
298 Bond constraints are applied at the end of both the {\tt moveA} and
299 {\tt moveB} portions of the algorithm.  Details on the constraint
300 algorithms are given in section \ref{oopseSec:rattle}.
301
270   \subsection{\label{methodSection:NPTi}Constant-pressure integration with
271 < isotropic box deformations (NPTi)}
271 > isotropic box (NPTi)}
272  
273 < To carry out isobaric-isothermal ensemble calculations {\sc oopse}
274 < implements the Melchionna modifications to the
275 < Nos\'e-Hoover-Andersen equations of motion,\cite{melchionna93}
308 <
273 > We can used an isobaric-isothermal ensemble integrator which is
274 > implemented using the Melchionna modifications to the
275 > Nos\'e-Hoover-Andersen equations of motion\cite{Melchionna1993}
276   \begin{eqnarray}
277   \dot{{\bf r}} & = & {\bf v} + \eta \left( {\bf r} - {\bf R}_0 \right), \\
278   \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\eta + \chi) {\bf v}, \\
279 < \dot{\mathsf{A}} & = & \mathsf{A} \cdot
279 > \dot{\mathsf{Q}} & = & \mathsf{Q} \cdot
280   \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right),\\
281   \dot{{\bf j}} & = & {\bf j} \times \left(
282   \overleftrightarrow{I}^{-1} \cdot {\bf j} \right) - \mbox{
283 < rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
284 < V}{\partial \mathsf{A}} \right) - \chi {\bf j}, \\
283 > rot}\left(\mathsf{Q}^{T} \cdot \frac{\partial
284 > V}{\partial \mathsf{Q}} \right) - \chi {\bf j}, \\
285   \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
286   \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
287   \dot{\eta} & = & \frac{1}{\tau_{B}^2 f k_B T_{\mathrm{target}}} V
# Line 322 | Line 289 | P_{\mathrm{target}} \right), \\
289   P_{\mathrm{target}} \right), \\
290   \dot{\mathcal{V}} & = & 3 \mathcal{V} \eta . \label{eq:melchionna1}
291   \end{eqnarray}
325
292   $\chi$ and $\eta$ are the ``extra'' degrees of freedom in the
293   extended system.  $\chi$ is a thermostat, and it has the same
294   function as it does in the Nos\'e-Hoover NVT integrator.  $\eta$ is
# Line 352 | Line 318 | the Pressure tensor,
318   r}_{ij}(t) \otimes {\bf f}_{ij}(t).
319   \end{equation}
320   The instantaneous pressure is then simply obtained from the trace of
321 < the Pressure tensor,
321 > the pressure tensor,
322   \begin{equation}
323   P(t) = \frac{1}{3} \mathrm{Tr} \left(
324 < \overleftrightarrow{\mathsf{P}}(t). \right)
324 > \overleftrightarrow{\mathsf{P}}(t) \right) .
325   \end{equation}
326 <
327 < In eq.(\ref{eq:melchionna1}), $\tau_B$ is the time constant for
362 < relaxation of the pressure to the target value.  To set values for
363 < $\tau_B$ or $P_{\mathrm{target}}$ in a simulation, one would use the
364 < {\tt tauBarostat} and {\tt targetPressure} keywords in the {\tt
365 < .bass} file.  The units for {\tt tauBarostat} are fs, and the units
366 < for the {\tt targetPressure} are atmospheres.  Like in the NVT
326 > In Eq.~\ref{eq:melchionna1}, $\tau_B$ is the time constant for
327 > relaxation of the pressure to the target value. Like in the NVT
328   integrator, the integration of the equations of motion is carried
329   out in a velocity-Verlet style 2 part algorithm:
330  
# Line 381 | Line 342 | P(t) &\leftarrow \left\{{\bf r}(t)\right\}, \left\{{\b
342      + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
343      \chi(t) \right), \\
344   %
345 < \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
345 > \mathsf{Q}(t + h) &\leftarrow \mathrm{rotate}\left(h *
346      {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
347      \right) ,\\
348   %
# Line 401 | Line 362 | P(t) &\leftarrow \left\{{\bf r}(t)\right\}, \left\{{\b
362   \mathsf{H}(t + h) &\leftarrow e^{-h \eta(t + h / 2)}
363      \mathsf{H}(t).
364   \end{align*}
404
365   Most of these equations are identical to their counterparts in the
366   NVT integrator, but the propagation of positions to time $t + h$
367 < depends on the positions at the same time.  {\sc oopse} carries out
368 < this step iteratively (with a limit of 5 passes through the
369 < iterative loop).  Also, the simulation box $\mathsf{H}$ is scaled
370 < uniformly for one full time step by an exponential factor that
371 < depends on the value of $\eta$ at time $t + h / 2$.  Reshaping the
412 < box uniformly also scales the volume of the box by
367 > depends on the positions at the same time. The simulation box
368 > $\mathsf{H}$ is scaled uniformly for one full time step by an
369 > exponential factor that depends on the value of $\eta$ at time $t +
370 > h / 2$.  Reshaping the box uniformly also scales the volume of the
371 > box by
372   \begin{equation}
373   \mathcal{V}(t + h) \leftarrow e^{ - 3 h \eta(t + h /2)}.
374   \mathcal{V}(t)
375   \end{equation}
417
376   The {\tt doForces} step for the NPTi integrator is exactly the same
377   as in both the DLM and NVT integrators.  Once the forces and torques
378   have been obtained at the new time step, the velocities can be
# Line 446 | Line 404 | P(t + h) &\leftarrow  \left\{{\bf r}(t + h)\right\},
404      \tau}^b(t + h) - {\bf j}(t + h)
405      \chi(t + h) \right) .
406   \end{align*}
449
407   Once again, since ${\bf v}(t + h)$ and ${\bf j}(t + h)$ are required
408   to caclculate $T(t + h)$, $P(t + h)$, $\chi(t + h)$, and $\eta(t +
409   h)$, they indirectly depend on their own values at time $t + h$.
410   {\tt moveB} is therefore done in an iterative fashion until $\chi(t
411 < + h)$ and $\eta(t + h)$ become self-consistent.  The relative
455 < tolerance for the self-consistency check defaults to a value of
456 < $\mbox{10}^{-6}$, but {\sc oopse} will terminate the iteration after
457 < 4 loops even if the consistency check has not been satisfied.
411 > + h)$ and $\eta(t + h)$ become self-consistent.
412  
413   The Melchionna modification of the Nos\'e-Hoover-Andersen algorithm
414   is known to conserve a Hamiltonian for the extended system that is,
# Line 464 | Line 418 | Poor choices of $\delta t$, $\tau_T$, or $\tau_B$ can
418   \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
419   dt^\prime \right) + P_{\mathrm{target}} \mathcal{V}(t).
420   \end{equation}
421 < Poor choices of $\delta t$, $\tau_T$, or $\tau_B$ can result in
422 < non-conservation of $H_{\mathrm{NPTi}}$, so the conserved quantity
423 < is maintained in the last column of the {\tt .stat} file to allow
470 < checks on the quality of the integration.  It is also known that
471 < this algorithm samples the equilibrium distribution for the enthalpy
472 < (including contributions for the thermostat and barostat),
421 > It is also known that this algorithm samples the equilibrium
422 > distribution for the enthalpy (including contributions for the
423 > thermostat and barostat),
424   \begin{equation}
425   H_{\mathrm{NPTi}} = V + K + \frac{f k_B T_{\mathrm{target}}}{2}
426   \left( \chi^2 \tau_T^2 + \eta^2 \tau_B^2 \right) +
427   P_{\mathrm{target}} \mathcal{V}(t).
428   \end{equation}
429  
479 Bond constraints are applied at the end of both the {\tt moveA} and
480 {\tt moveB} portions of the algorithm.  Details on the constraint
481 algorithms are given in section \ref{oopseSec:rattle}.
482
430   \subsection{\label{methodSection:NPTf}Constant-pressure integration with a
431   flexible box (NPTf)}
432  
# Line 494 | Line 441 | method are
441   \dot{{\bf r}} & = & {\bf v} + \overleftrightarrow{\eta} \cdot \left( {\bf r} - {\bf R}_0 \right), \\
442   \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\overleftrightarrow{\eta} +
443   \chi \cdot \mathsf{1}) {\bf v}, \\
444 < \dot{\mathsf{A}} & = & \mathsf{A} \cdot
444 > \dot{\mathsf{Q}} & = & \mathsf{Q} \cdot
445   \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right) ,\\
446   \dot{{\bf j}} & = & {\bf j} \times \left(
447   \overleftrightarrow{I}^{-1} \cdot {\bf j} \right) - \mbox{
448 < rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
449 < V}{\partial \mathsf{A}} \right) - \chi {\bf j} ,\\
448 > rot}\left(\mathsf{Q}^{T} \cdot \frac{\partial
449 > V}{\partial \mathsf{Q}} \right) - \chi {\bf j} ,\\
450   \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
451   \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
452   \dot{\overleftrightarrow{\eta}} & = & \frac{1}{\tau_{B}^2 f k_B
# Line 532 | Line 479 | r}(t)\right\},
479      + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
480      \chi(t) \right), \\
481   %
482 < \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
482 > \mathsf{Q}(t + h) &\leftarrow \mathrm{rotate}\left(h *
483      {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
484      \right), \\
485   %
# Line 553 | Line 500 | r}(t)\right\},
500   \mathsf{H}(t + h) &\leftarrow \mathsf{H}(t) \cdot e^{-h
501      \overleftrightarrow{\eta}(t + h / 2)} .
502   \end{align*}
503 < {\sc oopse} uses a power series expansion truncated at second order
504 < for the exponential operation which scales the simulation box.
503 > Here, a power series expansion truncated at second order for the
504 > exponential operation is used to scale the simulation box. The {\tt
505 > moveB} portion of the algorithm is largely unchanged from the NPTi
506 > integrator:
507  
559 The {\tt moveB} portion of the algorithm is largely unchanged from
560 the NPTi integrator:
561
508   {\tt moveB:}
509   \begin{align*}
510   T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
# Line 588 | Line 534 | T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
534      + h / 2 \right) + \frac{h}{2} \left( {\bf \tau}^b(t
535      + h) - {\bf j}(t + h) \chi(t + h) \right) .
536   \end{align*}
591
537   The iterative schemes for both {\tt moveA} and {\tt moveB} are
538 < identical to those described for the NPTi integrator.
539 <
540 < The NPTf integrator is known to conserve the following Hamiltonian:
541 < \begin{equation}
597 < H_{\mathrm{NPTf}} = V + K + f k_B T_{\mathrm{target}} \left(
538 > identical to those described for the NPTi integrator. The NPTf
539 > integrator is known to conserve the following Hamiltonian:
540 > \begin{eqnarray*}
541 > H_{\mathrm{NPTf}} & = & V + K + f k_B T_{\mathrm{target}} \left(
542   \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
543 < dt^\prime \right) + P_{\mathrm{target}} \mathcal{V}(t) + \frac{f k_B
543 > dt^\prime \right) \\
544 > & & + P_{\mathrm{target}} \mathcal{V}(t) + \frac{f k_B
545   T_{\mathrm{target}}}{2}
546   \mathrm{Tr}\left[\overleftrightarrow{\eta}(t)\right]^2 \tau_B^2.
547 < \end{equation}
603 <
547 > \end{eqnarray*}
548   This integrator must be used with care, particularly in liquid
549   simulations.  Liquids have very small restoring forces in the
550   off-diagonal directions, and the simulation box can very quickly
# Line 609 | Line 553 | assume non-orthorhombic geometries.
553   finds most use in simulating crystals or liquid crystals which
554   assume non-orthorhombic geometries.
555  
556 < \subsection{\label{methodSection:otherSpecialEnsembles}Other Special Ensembles}
556 > \subsection{\label{methodSection:NPAT}NPAT Ensemble}
557  
558 < \subsubsection{\label{methodSection:NPAT}NPAT Ensemble}
558 > A comprehensive understanding of relations between structures and
559 > functions in biological membrane system ultimately relies on
560 > structure and dynamics of lipid bilayers, which are strongly
561 > affected by the interfacial interaction between lipid molecules and
562 > surrounding media. One quantity used to describe the interfacial
563 > interaction is the average surface area per lipid.
564 > Constant area and constant lateral pressure simulations can be
565 > achieved by extending the standard NPT ensemble with a different
566 > pressure control strategy
567  
616 A comprehensive understanding of structure¨Cfunction relations of
617 biological membrane system ultimately relies on structure and
618 dynamics of lipid bilayer, which are strongly affected by the
619 interfacial interaction between lipid molecules and surrounding
620 media. One quantity to describe the interfacial interaction is so
621 called the average surface area per lipid. Constat area and constant
622 lateral pressure simulation can be achieved by extending the
623 standard NPT ensemble with a different pressure control strategy
624
568   \begin{equation}
569   \dot {\overleftrightarrow{\eta}} _{\alpha \beta}=\left\{\begin{array}{ll}
570                    \frac{{V(P_{\alpha \beta }  - P_{{\rm{target}}} )}}{{\tau_{\rm{B}}^{\rm{2}} fk_B T_{{\rm{target}}} }}
# Line 630 | Line 573 | standard NPT ensemble with a different pressure contro
573             \end{array}
574      \right.
575   \end{equation}
633
576   Note that the iterative schemes for NPAT are identical to those
577   described for the NPTi integrator.
578  
579 < \subsubsection{\label{methodSection:NPrT}NP$\gamma$T Ensemble}
579 > \subsection{\label{methodSection:NPrT}NP$\gamma$T
580 > Ensemble}
581  
582   Theoretically, the surface tension $\gamma$ of a stress free
583   membrane system should be zero since its surface free energy $G$ is
584 < minimum with respect to surface area $A$
585 < \[
586 < \gamma  = \frac{{\partial G}}{{\partial A}}.
587 < \]
588 < However, a surface tension of zero is not appropriate for relatively
589 < small patches of membrane. In order to eliminate the edge effect of
590 < the membrane simulation, a special ensemble, NP$\gamma$T, is
591 < proposed to maintain the lateral surface tension and normal
592 < pressure. The equation of motion for cell size control tensor,
593 < $\eta$, in $NP\gamma T$ is
584 > minimum with respect to surface area $A$,
585 > \begin{equation}
586 > \gamma  = \frac{{\partial G}}{{\partial A}}=0.
587 > \end{equation}
588 > However, a surface tension of zero is not
589 > appropriate for relatively small patches of membrane. In order to
590 > eliminate the edge effect of membrane simulations, a special
591 > ensemble NP$\gamma$T has been proposed to maintain the lateral
592 > surface tension and normal pressure. The equation of motion for the
593 > cell size control tensor, $\eta$, in $NP\gamma T$ is
594   \begin{equation}
595   \dot {\overleftrightarrow{\eta}} _{\alpha \beta}=\left\{\begin{array}{ll}
596      - A_{xy} (\gamma _\alpha   - \gamma _{{\rm{target}}} ) & \mbox{$\alpha  = \beta  = x$ or $\alpha  = \beta  = y$}\\
# Line 659 | Line 602 | the instantaneous surface tensor $\gamma _\alpha$ is g
602   where $ \gamma _{{\rm{target}}}$ is the external surface tension and
603   the instantaneous surface tensor $\gamma _\alpha$ is given by
604   \begin{equation}
605 < \gamma _\alpha   =  - h_z
606 < (\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\leftrightarrow$}}
664 < \over P} _{\alpha \alpha }  - P_{{\rm{target}}} )
605 > \gamma _\alpha   =  - h_z( \overleftrightarrow{P} _{\alpha \alpha }
606 > - P_{{\rm{target}}} )
607   \label{methodEquation:instantaneousSurfaceTensor}
608   \end{equation}
667
609   There is one additional extended system integrator (NPTxyz), in
610   which each attempt to preserve the target pressure along the box
611   walls perpendicular to that particular axis.  The lengths of the box
612   axes are allowed to fluctuate independently, but the angle between
613   the box axes does not change. It should be noted that the NPTxyz
614   integrator is a special case of $NP\gamma T$ if the surface tension
615 < $\gamma$ is set to zero.
615 > $\gamma$ is set to zero, and if $x$ and $y$ can move independently.
616  
617 < %\section{\label{methodSection:constraintMethod}Constraint Method}
617 > \section{\label{methodSection:zcons}The Z-Constraint Method}
618  
619 < %\subsection{\label{methodSection:bondConstraint}Bond Constraint for Rigid Body}
620 <
621 < %\subsection{\label{methodSection:zcons}Z-constraint Method}
622 <
623 < \section{\label{methodSection:langevin}Integrators for Langevin Dynamics of Rigid Bodies}
624 <
625 < \subsection{\label{methodSection:temperature}Temperature Control}
626 <
627 < \subsection{\label{methodSection:pressureControl}Pressure Control}
628 <
629 < \section{\label{methodSection:hydrodynamics}Hydrodynamics}
630 <
631 < %\section{\label{methodSection:coarseGrained}Coarse-Grained Modeling}
632 <
633 < %\section{\label{methodSection:moleculeScale}Molecular-Scale Modeling}
619 > Based on the fluctuation-dissipation theorem, a force
620 > auto-correlation method was developed by Roux and Karplus to
621 > investigate the dynamics of ions inside ion channels\cite{Roux1991}.
622 > The time-dependent friction coefficient can be calculated from the
623 > deviation of the instantaneous force from its mean force.
624 > \begin{equation}
625 > \xi(z,t)=\langle\delta F(z,t)\delta F(z,0)\rangle/k_{B}T,
626 > \end{equation}
627 > where%
628 > \begin{equation}
629 > \delta F(z,t)=F(z,t)-\langle F(z,t)\rangle.
630 > \end{equation}
631 > If the time-dependent friction decays rapidly, the static friction
632 > coefficient can be approximated by
633 > \begin{equation}
634 > \xi_{\text{static}}(z)=\int_{0}^{\infty}\langle\delta F(z,t)\delta
635 > F(z,0)\rangle dt.
636 > \end{equation}
637 > Allowing diffusion constant to then be calculated through the
638 > Einstein relation:\cite{Marrink1994}
639 > \begin{equation}
640 > D(z)=\frac{k_{B}T}{\xi_{\text{static}}(z)}=\frac{(k_{B}T)^{2}}{\int_{0}^{\infty
641 > }\langle\delta F(z,t)\delta F(z,0)\rangle dt}.%
642 > \end{equation}
643 > The Z-Constraint method, which fixes the z coordinates of the
644 > molecules with respect to the center of the mass of the system, has
645 > been a method suggested to obtain the forces required for the force
646 > auto-correlation calculation.\cite{Marrink1994} However, simply
647 > resetting the coordinate will move the center of the mass of the
648 > whole system. To avoid this problem, we reset the forces of
649 > z-constrained molecules as well as subtract the total constraint
650 > forces from the rest of the system after the force calculation at
651 > each time step instead of resetting the coordinate. After the force
652 > calculation, we define $G_\alpha$ as
653 > \begin{equation}
654 > G_{\alpha} = \sum_i F_{\alpha i}, \label{oopseEq:zc1}
655 > \end{equation}
656 > where $F_{\alpha i}$ is the force in the z direction of atom $i$ in
657 > z-constrained molecule $\alpha$. The forces of the z constrained
658 > molecule are then set to:
659 > \begin{equation}
660 > F_{\alpha i} = F_{\alpha i} -
661 >    \frac{m_{\alpha i} G_{\alpha}}{\sum_i m_{\alpha i}}.
662 > \end{equation}
663 > Here, $m_{\alpha i}$ is the mass of atom $i$ in the z-constrained
664 > molecule. Having rescaled the forces, the velocities must also be
665 > rescaled to subtract out any center of mass velocity in the z
666 > direction.
667 > \begin{equation}
668 > v_{\alpha i} = v_{\alpha i} -
669 >    \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}},
670 > \end{equation}
671 > where $v_{\alpha i}$ is the velocity of atom $i$ in the z direction.
672 > Lastly, all of the accumulated z constrained forces must be
673 > subtracted from the system to keep the system center of mass from
674 > drifting.
675 > \begin{equation}
676 > F_{\beta i} = F_{\beta i} - \frac{m_{\beta i} \sum_{\alpha}
677 > G_{\alpha}}
678 >    {\sum_{\beta}\sum_i m_{\beta i}},
679 > \end{equation}
680 > where $\beta$ are all of the unconstrained molecules in the system.
681 > Similarly, the velocities of the unconstrained molecules must also
682 > be scaled.
683 > \begin{equation}
684 > v_{\beta i} = v_{\beta i} + \sum_{\alpha}
685 >    \frac{\sum_i m_{\alpha i} v_{\alpha i}}{\sum_i m_{\alpha i}}.
686 > \end{equation}
687 > At the very beginning of the simulation, the molecules may not be at
688 > their constrained positions. To move a z-constrained molecule to its
689 > specified position, a simple harmonic potential is used
690 > \begin{equation}
691 > U(t)=\frac{1}{2}k_{\text{Harmonic}}(z(t)-z_{\text{cons}})^{2},%
692 > \end{equation}
693 > where $k_{\text{Harmonic}}$ is the harmonic force constant, $z(t)$
694 > is the current $z$ coordinate of the center of mass of the
695 > constrained molecule, and $z_{\text{cons}}$ is the constrained
696 > position. The harmonic force operating on the z-constrained molecule
697 > at time $t$ can be calculated by
698 > \begin{equation}
699 > F_{z_{\text{Harmonic}}}(t)=-\frac{\partial U(t)}{\partial z(t)}=
700 >    -k_{\text{Harmonic}}(z(t)-z_{\text{cons}}).
701 > \end{equation}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines