ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/tengDissertation/Methodology.tex
(Generate patch)

Comparing trunk/tengDissertation/Methodology.tex (file contents):
Revision 2798 by tim, Tue Jun 6 14:12:59 2006 UTC vs.
Revision 2801 by tim, Tue Jun 6 14:56:36 2006 UTC

# Line 150 | Line 150 | from the true energy baseline for clarity.} \label{tim
150   increasing time step. For each time step, the dotted line is total
151   energy using the DLM integrator, and the solid line comes from the
152   quaternion integrator. The larger time step plots are shifted up
153 < from the true energy baseline for clarity.} \label{timestep}
153 > from the true energy baseline for clarity.}
154 > \label{methodFig:timestep}
155   \end{figure}
156  
157 < In Fig.~\ref{timestep}, the resulting energy drift at various time
158 < steps for both the DLM and quaternion integration schemes is
159 < compared. All of the 1000 molecule water simulations started with
160 < the same configuration, and the only difference was the method for
161 < handling rotational motion. At time steps of 0.1 and 0.5 fs, both
162 < methods for propagating molecule rotation conserve energy fairly
163 < well, with the quaternion method showing a slight energy drift over
164 < time in the 0.5 fs time step simulation. At time steps of 1 and 2
165 < fs, the energy conservation benefits of the DLM method are clearly
166 < demonstrated. Thus, while maintaining the same degree of energy
167 < conservation, one can take considerably longer time steps, leading
168 < to an overall reduction in computation time.
157 > In Fig.~\ref{methodFig:timestep}, the resulting energy drift at
158 > various time steps for both the DLM and quaternion integration
159 > schemes is compared. All of the 1000 molecule water simulations
160 > started with the same configuration, and the only difference was the
161 > method for handling rotational motion. At time steps of 0.1 and 0.5
162 > fs, both methods for propagating molecule rotation conserve energy
163 > fairly well, with the quaternion method showing a slight energy
164 > drift over time in the 0.5 fs time step simulation. At time steps of
165 > 1 and 2 fs, the energy conservation benefits of the DLM method are
166 > clearly demonstrated. Thus, while maintaining the same degree of
167 > energy conservation, one can take considerably longer time steps,
168 > leading to an overall reduction in computation time.
169  
170   \subsection{\label{methodSection:NVT}Nos\'{e}-Hoover Thermostatting}
171  
172 < The Nos\'e-Hoover equations of motion are given by\cite{Hoover85}
172 > The Nos\'e-Hoover equations of motion are given by\cite{Hoover1985}
173   \begin{eqnarray}
174   \dot{{\bf r}} & = & {\bf v}, \\
175   \dot{{\bf v}} & = & \frac{{\bf f}}{m} - \chi {\bf v} ,\\
# Line 284 | Line 285 | Helmholtz free energy,\cite{melchionna93}
285  
286   The Nos\'e-Hoover algorithm is known to conserve a Hamiltonian for
287   the extended system that is, to within a constant, identical to the
288 < Helmholtz free energy,\cite{melchionna93}
288 > Helmholtz free energy,\cite{Melchionna1993}
289   \begin{equation}
290   H_{\mathrm{NVT}} = V + K + f k_B T_{\mathrm{target}} \left(
291   \frac{\tau_{T}^2 \chi^2(t)}{2} + \int_{0}^{t} \chi(t^\prime)
# Line 295 | Line 296 | Bond constraints are applied at the end of both the {\
296   last column of the {\tt .stat} file to allow checks on the quality
297   of the integration.
298  
298 Bond constraints are applied at the end of both the {\tt moveA} and
299 {\tt moveB} portions of the algorithm.  Details on the constraint
300 algorithms are given in section \ref{oopseSec:rattle}.
301
299   \subsection{\label{methodSection:NPTi}Constant-pressure integration with
300   isotropic box deformations (NPTi)}
301  
302   To carry out isobaric-isothermal ensemble calculations {\sc oopse}
303   implements the Melchionna modifications to the
304 < Nos\'e-Hoover-Andersen equations of motion,\cite{melchionna93}
304 > Nos\'e-Hoover-Andersen equations of motion,\cite{Melchionna1993}
305  
306   \begin{eqnarray}
307   \dot{{\bf r}} & = & {\bf v} + \eta \left( {\bf r} - {\bf R}_0 \right), \\
# Line 623 | Line 620 | standard NPT ensemble with a different pressure contro
620   standard NPT ensemble with a different pressure control strategy
621  
622   \begin{equation}
623 < \.{\overleftrightarrow{{\eta _{\alpha \beta}}}}=\left\{\begin{array}{ll}
623 > \dot {\overleftrightarrow{\eta}} _{\alpha \beta}=\left\{\begin{array}{ll}
624                    \frac{{V(P_{\alpha \beta }  - P_{{\rm{target}}} )}}{{\tau_{\rm{B}}^{\rm{2}} fk_B T_{{\rm{target}}} }}
625 <                  & \mbox{if \[ \alpha = \beta  = z)$}\\
625 >                  & \mbox{if $ \alpha = \beta  = z$}\\
626                    0 & \mbox{otherwise}\\
627             \end{array}
628      \right.
# Line 649 | Line 646 | $\eta$, in $NP\gamma T$ is
646   pressure. The equation of motion for cell size control tensor,
647   $\eta$, in $NP\gamma T$ is
648   \begin{equation}
649 < \.{\overleftrightarrow{{\eta _{\alpha \beta}}}}=\left\{\begin{array}{ll}
649 > \dot {\overleftrightarrow{\eta}} _{\alpha \beta}=\left\{\begin{array}{ll}
650      - A_{xy} (\gamma _\alpha   - \gamma _{{\rm{target}}} ) & \mbox{$\alpha  = \beta  = x$ or $\alpha  = \beta  = y$}\\
651      \frac{{V(P_{\alpha \beta }  - P_{{\rm{target}}} )}}{{\tau _{\rm{B}}^{\rm{2}} fk_B T_{{\rm{target}}}}} & \mbox{$\alpha  = \beta  = z$} \\
652      0 & \mbox{$\alpha  \ne \beta$} \\
653 +       \end{array}
654      \right.
655   \end{equation}
656   where $ \gamma _{{\rm{target}}}$ is the external surface tension and
657   the instantaneous surface tensor $\gamma _\alpha$ is given by
658   \begin{equation}
659 < \gamma _\alpha   =  - h_z
660 < (\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\leftrightarrow$}}
663 < \over P} _{\alpha \alpha }  - P_{{\rm{target}}} )
659 > \gamma _\alpha   =  - h_z( \overleftrightarrow{P} _{\alpha \alpha }
660 > - P_{{\rm{target}}} )
661   \label{methodEquation:instantaneousSurfaceTensor}
662   \end{equation}
663  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines